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Abstract
Over successive stages, the ventral visual system develops neurons that respond with view,
size and position invariance to objects including faces. A major challenge is to explain how
invariant representations of individual objects could develop given visual input from
environments containing multiple objects. Here we show that the neurons in a 1-layer
competitive network learn to represent combinations of three objects simultaneously present
during training if the number of objects in the training set is low (e.g. 4), to represent
combinations of two objects as the number of objects is increased to for e.g. 10, and to
represent individual objects as the number of objects in the training set is increased further to
for e.g. 20. We next show that translation invariant representations can be formed even when
multiple stimuli are always present during training, by including a temporal trace in the
learning rule. Finally, we show that these concepts can be extended to a multi-layer
hierarchical network model (VisNet) of the ventral visual system. This approach provides a
way to understand how a visual system can, by self-organizing competitive learning, form
separate invariant representations of each object even when each object is presented in a scene
with multiple other objects present, as in natural visual scenes.

Keywords: Object recognition, inferior temporal visual cortex, competitive neural networks, trace
learning, multiple objects, natural scenes

Introduction

Over successive stages, the ventral visual system develops neurons that respond with

view, size and position (translation) invariance to objects including faces (Perrett

et al. 1982; Desimone 1991; Perrett et al. 1991; Tanaka et al. 1991; Rolls 1992;
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Logothetis et al. 1994; Rolls 2000; Rolls and Deco 2002; Rolls 2007). For example,

it has been shown that the inferior temporal visual cortex has neurons that respond

to faces and objects with translation (Kobotake and Tanaka 1994; Tovee et al. 1994;

Ito et al. 1995; Op de Beeck and Vogels 2000; Rolls et al. 2003), size (Rolls and

Baylis 1986; Ito et al. 1995), and view (Hasselmo et al. 1989; Booth and Rolls 1998)

invariance.

In most previous studies of invariance learning in hierarchical networks that

model the ventral visual stream, only one stimulus is presented at a time during

training (Wallis and Rolls 1997; Rolls and Milward 2000; Elliffe et al. 2002; Perry

et al. 2006; Rolls and Stringer 2006; Stringer et al. 2006). However, an important

problem in understanding natural vision is how the brain can build invariant

representations of individual objects even when multiple objects are present in a

scene. In this article we start with a 1-layer competitive network, and show that it

can learn separate representations of each object even with three objects always

presented simultaneously during training. We show in the next section that an

important factor in such learning is the number of objects in the training set, with

transitions from learning about combinations of the objects present during training

occurring as the number of objects in the training set is increased. In natural

environments, there would be a large number of objects in the training set.

We then show that similar effects apply during the learning of invariant

representations, using a trace learning rule. This is shown first in a 1-layer

competitive network, in the third section. We then extend this by showing that

similar principles can be applied to the training of a multilayer hierarchical model

VisNet of the primate ventral visual system trained with a trace rule in the fourth

section. We chose to apply this to VisNet (Wallis and Rolls 1997; Rolls and Milward

2000; Rolls and Stringer 2001, 2006) rather than to other hierarchical models of

visual object recognition (Fukushima 1980, 1991, Bartlett and Sejnowski 1998;

Riesenhuber and Poggio 1999, 2000) because VisNet has a set of hierarchically

organized competitive nets to which the present principles should apply.

The concept of training separate object representations with multiple objects

present simultaneously during training was investigated by Stringer and Rolls

(2007). The present article makes important advances by showing that as the

number of objects in the training set is increased, the network learns to form

representations of first high-order combinations of the objects, then of low-order

combinations of the objects, and then of individual objects; and by showing that

invariant representations of individual objects with multiple objects in a scene can be

formed using a temporal trace rule. Further, we present in this article for the first

time VisNet simulations for a translation invariance problem with at least two

objects always presented simultaneously during training, and in which the ten

objects are shifted through overlapping retinal locations. This is a difficult test case,

where the objects are represented by overlapping distributed representations.

Training a 1-layer competitive network with input patterns that contain

multiple independent stimuli

In this section, we investigate whether in a standard 1-layer competitive network

(Hertz et al. 1991; Rolls and Deco 2002) separate representations of each object can

162 S. M. Stringer et al.
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be formed when three objects are always simultaneously present during training

(in contrast to forming neurons that respond to combinations of objects), and how

this depends on the number of objects in the training set. Each object is presented to

the network as a set of input features, which by occurring together define the object.

To demonstrate the processes involved in learning representations of independent

stimuli even with multiple stimuli present during training, we simulated them with

the simplest model that would allow these processes to be investigated. This meant

using nonoverlapping stimulus representations in a 1-layer network. Having

demonstrated the principles involved in this section and in the third section, we

proceed to extend the demonstration to a case in which the representations of each

object overlap in space in the fourth section.

Model

The neural network architecture is shown in Figure 1. There is an input layer of cells

with feedforward associatively modifiable synaptic connections onto an output layer

of cells. At each timestep during learning, an input pattern is applied to the layer of

input cells. Next, activity from the input layer is propagated through the feedforward

connections to activate a set of cells in the output layer. Within the output layer

there is competition implemented by feedback inhibition and the threshold

non-linearity of neurons. Next, the synaptic weights between the active input cells

and the active output cells are strengthened by associative (Hebbian) learning.

The output cells self-organize to represent and thus categorize different patterns of

activity in the input layer.

The competitive network contained 100 input cells and 100 output cells (unless

otherwise specified), and was fully connected. Each simulation experiment used a

set number N of independent objects. The input patterns that represent each object

consist of nonoverlapping contiguous blocks of 100/N active cells with binary (0, 1)

Input
stimuli

Responses

hi = Dendritic
       activation

ri = Output firing 

r′j wij

Figure 1. The architecture of a competitive neural network. There is an input layer of cells
with feedforward associatively modifiable synaptic connections onto an output layer of cells.
At each timestep during learning, an input pattern is applied to the layer of input cells. Next,
activity from the input layer is propagated through the feedforward connections to activate a
winning set of cells in the output layer. Within the output layer there is feedback inhibition,
which ensures that only a small subset of output cells remains active. Next, the synaptic
weights between the active input cells and the active output cells are strengthened. In this
way, the output cells become associated with particular patterns of activity in the input layer.

Invariant visual object recognition 163
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firing rates. Object 1 is represented by cells 1 to 100/N, object 2 by the next block of

100/N cells, and so on up to N objects. For the case N¼ 4, Figure 2 (left) shows the

input representations of the 4 independent objects. Figure 2 (right) shows the 4

input patterns that were used to train the 1-layer competitive network with 3 objects

present simultaneously for the case N¼ 4, in which the training patterns are:

1þ 2þ 3, 1þ 2þ 4, 1þ 3þ 4, and 2þ 3þ 4.

Each input pattern presented during training consisted of 3 objects presented

simultaneously as shown in Figure 2 (right). The activity from the input layer is then

propagated through the feedforward synaptic connections to activate a set of cells in

the output layer. (The synaptic weights from the input to output cells are initially set

to random values from a uniform distribution in the range 0–1, and then normalized

to a vector length of 1. This is standard in competitive networks, and ensures that

some firing of output cells will be produced by the inputs, with each output cell

likely to fire at a different rate for any one input pattern.) The activations of the cells

in the output layer are calculated according to

hi ¼
X
j

wij rj ð1Þ

where hi is the activation of output cell i, rj is the firing rate of input cell j, and wij is

the synaptic weight from input cell j to output cell i.

The activation hi of each neuron was converted to the firing rate ri of each neuron

using a threshold linear activation, and adjusting the threshold to achieve a

prescribed sparseness of the representation in the output cells. (This represents a

Training patterns

1

2

3

4

Stimuli

(1+2+3) (2+3+4)(1+3+4)(1+2+4)

Figure 2. The input representations of the independent objects (in this case 4) used to test the
1-layer competitive network are shown on the left. On the right are shown the training
patterns each of which consists of 3 objects presented simultaneously. All combinations of the
three objects were used as training patterns. The competitive network has 100 input cells
arranged in a column. Each simulation experiment used a set number N of independent
objects. The object patterns are represented by the activation of nonoverlapping contiguous
blocks of 100/N cells. Object 1 is represented by cells 1 to 100/N, object 2 by the next block of
100/N cells, and so on up to N objects. The case of N¼ 4 objects is represented in the figure.
For the case of N¼ 4 objects, there are a total of 4 triple-object training patterns as follows:
1þ 2þ 3, 1þ 2þ 4, 1þ 3þ 4 and 2þ 3þ 4. The cells that are active in each pattern are
shown as black.

164 S. M. Stringer et al.
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process by which mutual inhibition between the output cells through inhibitory

interneurons implements competition to ensure that there is only a small winning

set of output cells left active.) The sparseness a of the representation that was

prescribed was defined, by extending the binary notion of the proportion of neurons

that are firing, as follows

a ¼
ð
PM

i¼1 ri=MÞ
2PM

i¼1 r
2
i =M

ð2Þ

where ri is the firing rate of the i-th neuron in the set ofM neurons (Rolls and Treves

1990, 1998). In the simulations, the competition was achieved in an iterative cycle

by feedback adjustment of the threshold for the firing of neurons until the desired

sparseness was reached. The threshold was the same for all neurons. With the

graded firing rates of the neurons, the result was that typically the proportion of

neurons with nonzero firing rates after the competition was numerically somewhat

larger than the sparseness value given as a parameter to the network.

Next, the synaptic weights between the active input cells and the active output

cells are strengthened according to the associative Hebb learning rule

�wij ¼ krirj ð3Þ

where �wij is the change of synaptic weight, ri is the firing rate of output neuron i, rj is

the firing rate of input neuron j, and k is the learning rate constant which was set to

0.01 unless otherwise stated. To prevent the same few neurons always winning the

competition, the synaptic weight vectors are set to unit length after each learning

update for each training pattern, as is standard in competitive networks (Hertz et al.

1991; Rolls and Deco 2002). To implement weight vector normalization the

synaptic weights were rescaled to ensure that for each output cell i we haveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

ðwijÞ
2

s
¼ 1; ð4Þ

where the sum is over all input cells j. Such a renormalization process may be

achieved in biological systems through heterosynaptic long-term depression that

depends on the existing value of the synaptic weight (Oja 1982; Rolls and Treves

1998; Rolls and Deco 2002). (Heterosynaptic long-term depression was described

in the brain by Levy and colleagues (Levy 1985; Levy and Desmond 1985);

see Brown et al. (1990)).

The presentation of all possible multi-object training patterns corresponded to

one training epoch. For each experiment with fixed N, there were 1000 training

epochs to ensure convergence of the synaptic weights. Similar results were obtained

with a fixed order of presentation of the stimuli within an epoch as well as with

random permutations in each epoch.

For each experiment, after training, the network was tested using N single-object

input patterns, each of which contained a different independent object as illustrated

at the left of Figure 2. During this testing, for each output cell we recorded how

many of the N objects each cell responded to. This enabled each cell to be classified

as responding to one, two, or three (or more) of the objects used as training stimuli.

A neuron was classed as responsive if its firing was greater than 50% of the maximal

Invariant visual object recognition 165
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firing rate of any output cell to any test stimulus. We complemented this criterion by

analysis of the synaptic weight matrices, as will be illustrated below.

Simulation results

The results described next showed that as the number of objects N increases, there

is a shift in the behavior of the network from representing the triple-object training

patterns to representing pairs of stimuli. Then, as N increases further, there is a shift

from representing the stimulus-pairs to representing the N independent stimuli. We

note that with standard training of a competitive network on a set of patterns such as

the triple objects illustrated in Figure 2 neurons might be expected to learn to

respond to each triple-object training pattern. It was found that this happened only

for small N, and that as N increased, very different behavior was found.

For each experiment, the network was trained with all of the possible

N(N� 1)(N� 2)/6 triple-object input patterns which can be formed from the N

stimuli, as illustrated in Figure 2.

In each simulation experiment we investigated a different fixed value of N.

The sparseness of the output firing rates a was set to 0.05.

The behavior of the competitive network for different values of N can

be understood from the cell firing rates and synaptic weight matrices shown in

Figures 3 and 4. Figure 3 shows the firing rate responses of typical output cells after

training for simulations with different values of N. The firing rates are shown when

the individual objects are presented to the network after training with the triple-

object patterns. The top row shows the firing rates of two typical output cells for a

simulation with N¼ 4. These cells have each learned to respond to three different

objects, as shown also by the weight matrices in the top-right of Figure 4. These

indicate that each neuron has increased its weights (indicated by black) to encode

each triple-object training pattern. Because the neurons have learned to respond to a

triple-object training pattern, each neuron has a response to each of the three objects

presented separately. For the case N¼ 4, a total of six simulation experiments were

performed. Over 6 experiments, the average numbers of output cells that had

learned to respond to 1, 2 or 3 stimuli were 0.3, 0.0, and 20.5. The standard errors

of the means shown were in most cases less than 1. No cells were found that

responded to 4 objects.

The middle row of Figure 3 shows the firing rates of two typical output cells for

N¼ 10. These cells have each learned to respond to two different objects, and this is

also evident from the weight matrices in the lower left of Figure 4. Over 6

experiments, the average numbers of output cells which had learned to respond to 1,

2 or 3 objects were 0.0, 90.5, and 0.0. The standard errors of the means shown were

in most cases less than 1. No cells were ever found which responded to 4 objects.

The bottom row of Figure 3 shows the firing rates of two typical output cells for

N¼ 20. These cells have each learned to respond to a single object, as is also evident

from the weight matrices in the lower right of Figure 4. Over 6 experiments, the

average numbers of output cells which had learned to respond to 1, 2 or 3 stimuli

were 71.3, 7.0, and 0.0. The standard errors of the means shown were in most cases

less than 2. No cells were ever found which responded to 4 or more stimuli.

(Further analysis of the six simulation results with N¼ 20 showed that in each case

approximately equal numbers of output cells responded to each of the 20 objects.)

166 S. M. Stringer et al.
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Output cell 73: Stimulus 10

N=4
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Figure 3. The learned firing rate responses of typical output cells for simulations with
different values of N. The firing rates of a selection of typical cells are shown when the
individual stimuli are presented to the network after training with the triple-stimulus patterns.
The top row shows the firing rates of two typical output cells for a simulation with N¼ 4.
These cells have each learned to respond to three different stimuli. The middle row shows the
firing rates of two typical output cells for N¼ 10. These cells have each learned to respond to
two different stimuli. The bottom row shows the firing rates of two typical output cells for
N¼ 20. These cells have each learned to respond to a single stimulus.
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We investigated further how the behavior of the system would scale up by

simulating a case with object triples, but with N ¼ 50, and accordingly in a system

with a larger number of input neurons (200). The weight matrix after training

(Figure 5) shows that almost all of the neurons have learned to respond to individual

20 40 60 80 100

20

40

60

80

100
Synaptic weights

Output cell

20 40 60 80 100
Output cell

20 40 60 80 100
Output cell

In
pu

t c
el

l

20

40
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100
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pu

t c
el

l

20

40

60

80

100

In
pu

t c
el

l

N = 20   Stimulus input length = 5N = 10   Stimulus input length = 10

N = 4  Stimulus input length = 25

Synaptic weightsSynaptic weights

N = 4

1 + 2 + 3 1 + 2 + 4 1 + 3 + 4 2 + 3 + 4

Triple-stimulus training patterns

Figure 4. The synaptic weights after the network has been trained with triple-stimulus input
patterns constructed from different numbers of stimuli N (dark shading indicates high weight
values). The top row shows results for the case N¼ 4 stimuli. On the left are shown the 4
triple-stimulus input patterns presented during training, while on the right is shown the
synaptic weight matrix within the network after training. The output cells have been ordered
to reveal the underlying weight structure developed during training. For the case N¼ 4, the
input stimuli are 25 units long, and it can be seen that the output cells have typically learned
to respond to triples of stimuli which were presented during training. The bottom left plot
shows the synaptic weight matrix after training for the case N¼ 10. For this case the input
stimuli are 10 units long, and it can be seen that the output cells have typically learned to
respond to pairs of stimuli. The bottom right plot shows the synaptic weight matrix after
training for the case N¼ 20. For this case the input stimuli are 5 units long, and the weight
matrix shows that the output cells have typically learned to respond to single stimuli.
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objects (196 of the 200 output neurons), and that only 4 neurons respond to object

pairs, none learned to object-triples, even though the network had been trained with

three objects always present during training.

The results of the experiments described in Figures 3–5 show that the transition

from coding primarily for individual objects (with N¼ 20 and 50) to coding

primarily for object-triples (with N¼ 4) was not sharp, with many neurons

responding to object-pairs at N¼ 10. We explored intermediate values for N, and

found intermediate behaviors. The important result is that as N increases, there is a

gradual transition, with neurons learning to encode single objects even when

multiple objects are always present during training.

The reason why increasing the number of independent objects N causes the

competitive network to switch from learning to represent the triple-object training

patterns to representing the pairs of objects present in the triples, and then to

representing the independent objects may be understood by examining how often

individual input neurons are co-active during training. The neurons from three

different objects are coactive on only one occasion in each training epoch, in which

all the triples are presented. In contrast, the number of times that the input neurons

common to a particular pair of objects are co-active within a training epoch is of

order N, and the number of times that the neurons within a single object are

simultaneously active during one training epoch is of order N2. Given that

competitive networks effectively build categories based on correlations between sets

of afferents to the network, as N increases, a stage is reached where instead of

representing the 3-object patterns actually presented during training, the network

will instead form representations of the component object-pairs. Then, as N is

increased further, the network similarly switches from representing object-pairs to

individual objects. The number of output neurons is clearly not a limiting factor that

causes these transitions, for as shown in Figure 4, multiple neurons are allocated to

any one representation, and some neurons remain unallocated to any pattern with

their random initial weights evident.

200

150

100

50

In
pu

t c
el

l

50 100

Output cell

Synaptic weights

150 200

Figure 5. The synaptic weights after the network has been trained with triple-object input
patterns constructed with N¼ 50 objects. Conventions as in Figure 4.
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Learning transform invariant representations in a 1-layer competitive

network through trace learning

An approach to invariance learning, trace learning (Földiák 1991; Wallis and Rolls

1997; Rolls and Milward 2000; Rolls and Stringer 2001), relies on the temporal

continuity of visual stimuli in the real world. In this section we show that a 1-layer

competitive network can combine the trace learning mechanism for learning

transform-invariant representations with the learning dynamics described above in

the second section for developing separate representations of independent stimuli

even when multiple stimuli are shown simultaneously. Spatial continuity can be

used to train invariant representations with multiple objects present simultaneously

(Stringer and Rolls 2007), but this is the first time that this has been investigated

with the more widely studied trace learning rule in a 1-layer competitive network.

Trace learning

Trace learning utilizes the temporal continuity of objects in the world (over short

time periods) to help the learning of invariant representations. The concept here is

that on the short time scale, of e.g. a few seconds, the visual input is more likely to

be from different transforms of the same object, rather than from a different object.

A theory used to account for the development of view invariant representations in

the ventral visual system uses this temporal continuity in a trace learning rule

(Földiák 1991; Rolls 1992; Wallis and Rolls 1997; Rolls and Milward 2000; Rolls

and Stringer 2001). The trace learning mechanism relies on associative learning

rules, which utilize a temporal trace of activity in the postsynaptic neuron (Földiák

1991; Rolls 1992). Trace learning encourages neurons to respond to input patterns

which occur close together in time, which, given the statistics of natural visual

inputs, are likely to represent different transforms (positions) of the same object.

The trace learning rule (Földiák 1991; Rolls 1992; Wallis and Rolls 1997; Rolls

and Milward 2000) encourages neurons to develop invariant responses to input

patterns that tended to occur close together in time, because these are likely to be

from the same object. The particular rule in the simulations described next was

�wij ¼ kr�i r
�
j ð5Þ

where �wij is the change of synaptic weight, r�i is the trace value of the firing rate of

output neuron i at timestep �, r�j is the firing rate of input neuron j at timestep �, and
k is the learning rate constant which was set to 0.01 unless otherwise stated.

The trace r�i is updated according to

r�i ¼ ð1� �Þr�i þ �r��1
i ð6Þ

where �may be set anywhere in the interval [0, 1], and for the simulations described

here � was set to 0.9. To prevent the same few neurons always winning the

competition, the synaptic weight vectors are set to unit length using equation 4 after

each learning update for each training pattern.

An advantage of trace learning over continuous transform learning (Perry et al.

2006; Stringer et al. 2006) is that trace learning does not require the transforms of

each stimulus to be similar or overlapping. Instead, trace learning is able to associate

170 S. M. Stringer et al.
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together very different (i.e. dissimilar and nonoverlapping) transforms that occur

close together in time because they are from the same object.

Model simulations

The neural network architecture is similar to that described in the second section

above and shown in Figure 1. However, the input patterns are now altered to allow

the objects to be presented in different nonoverlapping transforms, as described

next.

In the one-layer competitive network simulations described next with trace

learning, there are N¼ 10 independent objects, each of which can occur in

4 transforms. Figure 6 shows schematically the input representations of the

4 transforms of each of the 10 independent objects. (The diagram explicitly shows

the 4 transforms of objects 1, 2 and 10. The intervening objects 3 to 9 transform

similarly.) The 10 object patterns are each represented by the activation of a

contiguous block of 5 cells. Each object undergoes transformation by shifting the

4 transforms of 10 stimuli

Input layer
contains 200 nodes

4 transforms
of stimulus 1

4 transforms
of stimulus 2

4 transforms
of stimulus 10

20 input nodes cover 4
transforms of stimulus 1

20 input nodes cover 4
transforms of stimulus 2

20 input nodes cover 4
transforms of stimulus 10 

Figure 6. In the 1-layer competitive network simulations with trace learning there are N¼ 10
independent stimuli, each of which can occur in 4 transforms. Here we show the input
representations of the 4 transforms of each of the 10 independent stimuli. (The diagram
explicitly shows the 4 transforms of stimuli 1, 2, and 10. The intervening stimuli 3 to 9
transform similarly.) The 10 stimulus patterns are each represented by the activation of a
contiguous block of 5 cells. Each stimulus undergoes transformation by shifting the location
of the stimulus by one whole stimulus length at a time. This means that successive stimulus
transforms do not overlap, which will ensure that continuous transformation learning is
prevented from operating. During training, each stimulus is shifted through 4 nonoverlapping
locations. Given that each stimulus is 5 neurons long, this means that the 4 transforms of each
stimulus cover 20 input neurons. None of the transforms of each 5-neuron stimulus overlap.
The 4 transforms of each stimulus cover a unique disjoint block of 20 input neurons. The
input layer is thus set to contain 200 neurons in order to be able to represent all of the
transforms of all of the stimuli.

Invariant visual object recognition 171



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f O
xf

or
d]

 A
t: 

19
:3

9 
9 

N
ov

em
be

r 2
00

7 

location of the object by one whole object length at a time. This means that

successive object transforms do not overlap, which will ensure that continuous

transformation learning is prevented from operating. During training, each object is

shifted through 4 nonoverlapping locations. Given that each object is 5 neurons

long, this means that the 4 transforms of each object cover 20 input neurons. None

of the transforms of each 5-neuron object overlap. The 4 transforms of each object

cover a unique disjoint block of 20 input neurons. The input layer is thus set to

contain 200 neurons in order to be able to represent all of the transforms of all of the

objects.

During training, the network is presented with every possible pair of objects.

The network was presented with a training sequence of 4 transforms for each

object-pair, with the two objects transforming together. Examples of these object-pair

training sequences are shown on the left of Figure 8. As an example, we have shown 4

transforms of object-pair 1þ 2 and 4 transforms of object pair 1þ 3. The presentation

of the 4 transforms of all possible N(N� 1)/2 object-pairs corresponded to one

training epoch. The sparseness of the output firing rates was set to 0.2 during training

and testing, the learning rate was set to k¼ 0.01, and there were 1000 training epochs

to ensure convergence of the synaptic weights. After training, the network was tested

with all 4 transforms of each of the N¼ 10 objects.

Figure 7 shows the firing rate responses of two typical output cells after the

network has been trained with the trace rule and nonoverlapping object transforms.

The upper two rows show the response of output cell 25 to each of the N¼ 10

objects in each of their 4 transforms. It can be seen that output cell 25 responds to

object 4 over all 4 transforms, but does not respond to any of the other objects in any

location. The lower two rows show the response of output cell 73 to each of the

N¼ 10 objects in each of their 4 transforms. It can be seen that output cell

73 responds to object 6 over all 4 transforms, but does not respond to any of the

other objects in any location.

Figure 8 shows the synaptic weights after the training. On the left are shown some

of the paired-object training patterns. On the right is shown the synaptic weight

matrix after training, where dark shading indicates a high weight value. For the

weight matrix plot, the output cells have been ordered to reveal the underlying

weight structure developed during training. It can be seen that the weight matrix has

a block-diagonal structure, which clearly shows that the output cells have each

learned to respond to all 4 transforms of one particular object, but have not learned

to respond to any of the other objects. Since the blocks on the diagonal are almost

square, the weight matrix also confirms that the output cells are distributed fairly

evenly among the 10 objects, with disjoint subsets of approximately 10 output cells

having learned to respond in a transform-invariant way to each of the 10

independent objects.

Six simulation runs were performed in total with different initial random synaptic

weights. For all six of the simulations, each of the 100 output cells learned to

respond to all transforms of one particular object, but did not respond to any of the

transforms of the other objects. In this way, each of the output cells developed a

transform-invariant representation of one of the objects. Furthermore, for each

simulation, disjoint subsets of approximately 10 output cells learned to respond in a

transform-invariant way to each of the independent objects. Thus, the N¼ 10 input

objects were all equally well-represented by the output layer of the network.
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The above simulations used 1000 training epochs. However, performance was

reduced when only a few training epochs were used. Over six simulation runs with

5 training epochs, an average of 0.16 output cells (with standard error 0.16) learned

to respond to all transforms of one particular object, but did not respond to any of

the transforms of the other objects.

These results show for the first time that the trace rule can be used to train

invariant representations of objects in a competitive network even when there is
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Figure 7. The firing rate responses of two typical output cells, after the network has been
trained with the trace rule (5) on pairs of N¼ 10 stimuli, each of which was shifted through 4
nonoverlapping transforms (i.e. locations) during learning. For this test case, all 100 output
cells learned to respond to all transforms of a single stimulus, but did not respond to any of
the other stimuli. In this way, each of the output cells developed a transform-invariant
representation of one of the stimuli. Furthermore, disjoint subsets of approximately 10 output
cells learned to respond in a transform-invariant way to each of the independent stimuli.
Thus, the N¼ 10 input stimuli were all equally well-represented by the output layer of the
network. The upper two rows show the response of output cell 25 to each of the N¼ 10
stimuli in each of their 4 transforms. It can be seen that output cell 25 responds to stimulus
4 over all 4 transforms, but does not respond to any of the other stimuli in any location. The
lower two rows show the response of output cell 73 to each of the N¼ 10 stimuli in each of
their 4 transforms. It can be seen that output cell 73 responds to stimulus 6 over all
4 transforms, but does not respond to any of the other stimuli in any location.
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more than one object (in this case two) always present during training. The

competitive network is able to set up separate representations of each object if each

object is seen on different occasions with objects that tend to be different on

different trials, as would be the case in the real world.

Training a multi-layer feedforward network (VisNet) with multiple

3-dimensional objects shifting through space

We now show how the trace-based learning mechanisms with multiple objects

described above can operate in a more biologically realistic model of transform

(e.g. location or view) invariant object recognition in the ventral visual processing

stream, VisNet (Wallis and Rolls 1997; Rolls and Milward 2000) to enable learning

of individual objects even with multiple objects present during training. Moreover,

we show that trace learning can do this in a situation when continuous

transformation learning cannot occur, that is when the different transforms of an

object do not overlap.

20 40 60 80 100
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Synaptic weights

Output cell
In

pu
t c

el
l

Paired-stimulus training patterns

4 transforms of 1+2 4 transforms of 1+3

Figure 8. The synaptic weights after the network has been trained with the trace rule (5) on
pairs of N¼ 10 stimuli, each of which was shifted through 4 nonoverlapping transforms
(i.e. locations) during learning. On the left are shown some of the paired-stimulus training
patterns. As an example, we have shown 4 transforms of stimulus-pair 1þ 2 and 4 transforms
of stimulus-pair 1þ 3. On the right is shown the synaptic weight matrix after training, where
dark shading indicates a high weight value. For the weight matrix plot, the output cells have
been ordered to reveal the underlying weight structure which developed during training.
It can be seen that the weight matrix has a block-diagonal structure, which clearly shows that
the output cells have each learned to respond to all 4 transforms of one particular stimulus,
but have not learned to respond to any of the other stimuli. Since the blocks on the diagonal
are almost square, the weight matrix also confirms that the output cells are distributed fairly
evenly among the 10 stimuli, with disjoint subsets of approximately 10 output cells having
learned to respond in a transform-invariant way to each of the 10 independent stimuli.
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To ensure these conditions, we trained on a shift invariance problem, in which

each object was a 3D object shown in a 2� 2 grid of 4 nonoverlapping locations.

(OpenGL was used to build a 3D representation of the objects, and then to project

different views onto a 2D image.) There were ten objects as shown in Figure 9. For

ten objects, there are 45 possible ways of pairing the objects during training. During

training, each of the 45 possible pairs of objects were shown shifting together

clockwise around the four locations in the grid. A typical training sequence of four

transforms is shown in Figure 10, where we show a cube and a pyramid shifting

around the grid together. Whenever one object is presented in its sequence of

locations, another object is also presented simultaneously shifting around the grid in

the same way. (It can be seen from Figure 10 that as each object shifts around the

grid, there is also an additional slight change in perspective.) The nature of the

object pairing was of the same form described above, that is each object was paired

during training with every other object. Thus, for example, object 1 was paired with

object 2 during all four transforms of the type shown in Figure 10. Then object 1

Figure 9. The ten stimuli used to train the VisNet network. The stimuli were 3D objects, each
shown in a 2�2 grid of 4 locations in a test of location-invariant recognition. The effect of the
ambient lighting and a single diffuse light source to allow different surfaces to be shown with
different intensities is illustrated. In rows from left to right the stimuli were a cube,
tetrahedron, octahedron, torus, cone, pyramid, dodecahedron, icosahedron, teapot, and a
cylinder. During training, the network was presented with every possible pair of stimuli
simultaneously shifting clockwise around the 4 locations in the grid. After training, the
network was tested with image sequences of the ten individual stimuli shifting clockwise
around the 4 locations in the grid.
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was paired with object 3 for all transforms, etc until object 1 had been paired

through all transforms for every other object. An analogous procedure was carried

out with all 45 possible pairs.

The model architecture (VisNet) (Wallis and Rolls 1997) is based on the

following: (i) A series of hierarchical competitive networks with local graded

inhibition. (ii) Convergent connections to each neuron from a topologically

corresponding region of the preceding layer, leading to an increase in the receptive

field size of neurons through the visual processing areas. (iii) Synaptic plasticity

based on a trace learning rule to allow trace invariance learning.

The model consists of a hierarchical series of four layers of competitive networks,

corresponding to V2, V4, the posterior inferior temporal cortex, and the anterior

inferior temporal cortex, as shown in Figure 11. The forward connections to

individual cells are derived from a topologically corresponding region of the

preceding layer, using a Gaussian distribution of connection probabilities. These

distributions are defined by a radius which will contain approximately 67% of the

connections from the preceding layer. The values used are given in Table I.

Before objects are presented to the network’s input layer they are pre-processed

by a set of input filters which accord with the general tuning profiles of simple cells

in V1. The input filters used are computed by weighting the difference of two

Gaussians by a third orthogonal Gaussian according to the following:

�xyð�;�;f Þ¼� e�ððxcos�þysin�Þ=ð
ffiffi
2

p
=f ÞÞ2 �

1

1:6
e�ððxcos�þysin�Þ=ð1:6

ffiffi
2

p
=f ÞÞ2

� �
e�ððxsin��ycos�Þ=ð3

ffiffi
2

p
=f ÞÞ2

ð7Þ

Transform 1

Transform 4Transform 3

Transform 2

Figure 10. An example of a 4-frame training image sequence. The image sequence shows the
cube and the pyramid shifting clockwise around the 2� 2 grid of 4 training locations. In total,
there are 45 such image sequences used during training, with each image sequence
corresponding to one of the 45 possible pairs of stimuli shifting together clockwise around the
4 locations in the grid.
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where f is the filter spatial frequency, � is the filter orientation, and � is the

sign of the filter, i.e. �1. Individual filters are tuned to spatial frequency (0.0625

to 0.5 cycles/pixel); orientation (0o to 135o in steps of 45o); and sign (þ�1).

The number of layer 1 connections to each spatial frequency filter group is given in

Table II.

The activation hi of each neuron i in the network is set equal to a linear

sum of the inputs yj from afferent neurons j weighted by the synaptic weights

wij. That is,

hi ¼
X
j

wijyj ð8Þ

where yj is the firing rate of neuron j, and wij is the strength of the synapse from

neuron j to neuron i.

Within each layer, competition is graded rather than winner-take-all, and is

implemented in two stages. First, to implement lateral inhibition the activation h of

neurons within a layer is converted to firing rates r using a linear activation function

followed by convolution with a spatial filter, I, where � controls the contrast and

larger receptive fields
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Figure 11. Left: Stylized image of the 4-layer network. Convergence through the network is
designed to provide fourth layer neurons with information from across the entire input retina.
Right: Convergence in the visual system V1: visual cortex area V1; TEO: posterior inferior
temporal cortex; TE: inferior temporal cortex (IT).

Table I. Network dimensions showing the number of connections per

neuron and the radius in the preceding layer from which 67% are received.

Dimensions Number of connections Radius

Layer 4 32� 32 100 12

Layer 3 32� 32 100 9

Layer 2 32� 32 100 6

Layer 1 32� 32 272 6

Retina 128� 128� 32 – –
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� controls the width, and a and b index the distance away from the centre of the

filter in orthogonal directions

Ia;b ¼

��e�ða2þb2Þ=�2

if a 6¼ 0 or b 6¼ 0;

1�
P
a6¼0
b6¼0

Ia;b if a ¼ 0 and b ¼ 0:

8><
>: ð9Þ

The lateral inhibition parameters are given in Table III.

The modeling of lateral inhibition also incorporates contrast enhancement

(related to nonlinearity in the neurons) which is applied by means of a sigmoid

activation function

y ¼ f sigmoidðrÞ ¼
1

1þ e�2�ðr��Þ
ð10Þ

where r is the firing rate after the lateral inhibition filter defined above, y is the firing

rate after contrast enhancement, and � and � are the sigmoid threshold and slope

respectively. The parameters � and � are constant within each layer, although � is

adjusted to control the sparseness of the firing rates. For example, to set the

sparseness to, say, 5%, the threshold is set to the value of the 95th percentile point of

the activations within the layer. The parameters for the sigmoid activation function

are shown in Table IV.

At each timestep, the activity due to the object on the retina is propagated in a

feedforward fashion through the network, stimulating patterns of activity in the later

layers. Once the activity patterns have been computed in the various layers including

competitive lateral inhibition as described above, the synaptic weights of the forward

connections between the layers are updated by the trace learning rule (5) with the

postsynaptic trace from the previous timestep as is standard in VisNet simulations.

The value of � was 0.8. To bound the growth of each neuron’s synaptic weight

vector, its length is normalized at the end of each timestep during training according

to Equation 4.

Table II. Layer 1 connectivity. The number of connections from each

spatial frequency set of filters are shown. The spatial frequency is in cycles

per pixel.

Frequency 0.5 0.25 0.125 0.0625

Number of connections 201 50 13 8

Table IV. Sigmoid parameters.

Layer 1 2 3 4

Percentile 99.2 98 88 91

Slope � 190 40 75 26

Table III. Lateral inhibition parameters.

Layer 1 2 3 4

Radius, � 1.38 2.7 4.0 6.0

Contrast, � 1.5 1.5 1.6 1.4
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Training and test procedure

In the experiment, ten objects were used because this was found to be

sufficient in the third section earlier to allow the 1-layer network to

develop representations of individual objects when the network was trained

on object-pairs. The objects and pairing during training are described above and

in Figures 9 and 10.

To train the network each pair of objects is presented to the network in a temporal

sequence of the 4 transforms (i.e. locations). At each presentation the activation of

individual neurons is calculated, then their firing rates are calculated, and then the

synaptic weights are updated. The presentation of all the object-pairs across all

transforms constitutes 1 epoch of training. In this manner the network is trained one

layer at a time starting with layer 1 and finishing with layer 4. In the investigation

described here, the numbers of training epochs for layers 1–4 were 50, 100, 100, and

75 respectively.

After training the network, we tested it by recording the firing rates of the neurons

in the 4th (output) layer of the network as the network was presented with image

sequences of the ten individual objects each presented in every location.

We used an information theoretic approach described next to measure whether a

neuron had a similar response to every transform of an object, but little response to

any transform of the other objects (Rolls and Milward 2000). For each cell the single

cell information measure used was the amount of information a cell conveyed about

the most effective object. This is computed using the following formula with details

given by Rolls et al. (1997), Rolls and Milward (2000) and Rolls (2008).

The stimulus-specific information or surprise I(s,R) is the amount of information

the set of responses R has about a specific stimulus s, and is given by

Iðs;RÞ ¼
X
r2R

PðrjsÞ log2
PðrjsÞ

PðrÞ
ð11Þ

where r is an individual response from the set of responses R. The maximum single

cell information measure is

Maximum single cell information ¼ log2ðNumber of stimuliÞ; ð12Þ

where in this case the number of objects is 10. This gives a maximum

single cell information measure of 3.32 bits, and is achieved when all the

responses to the different transforms of a stimulus are similar, that is when the

representation is invariant, and when the neuron does respond to any

other stimulus.

A multiple cell information measure, the average amount of information that is

obtained about which stimulus was shown from a single presentation of a stimulus

from the responses of all the cells, enabled measurement of whether across a

population of cells information about every object in the set was provided.

Procedures for calculating the multiple cell information measure are given elsewhere

(Rolls et al. 1997; Rolls and Milward 2000; Stringer et al. 2006). In the experiments

presented later, the multiple cell information was calculated from the subset of 50

output cells that gave the highest single cell information values for each object

(with the 5 most selective for each object being used).
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VisNet simulation results

After the network had been trained on the 45 pairs of objects each shifting clockwise

around the 2� 2 training grid, a number of cells in the 4th (output) layer were found

to have learned to respond to one of the ten objects over all four locations, but did

not respond to any of the other objects in any location, as described next.

In particular, some neurons that responded to a particular object after training had

no response to any of the other objects, even though the other objects had been

presented simultaneously with the particular object during training.

Figure 12 shows the firing rate responses of cell (6,12) in the 4th (output) layer to

all 4 locations of the ten individual objects before training. The ten plots show the
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Figure 12. The firing rate responses of cell (6, 12) in the 4th (output) layer to all 4 locations of
the ten individual stimuli before training. The ten plots show the responses of cell (6, 12) to
each of the ten stimuli as they are shifted clockwise around the 4 locations in the grid. It can
be seen that before training, the cell responds randomly to various of transforms of the
different stimuli.
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responses of cell (6,12) to each of the ten objects as they are shifted clockwise

around the 4 locations in the grid. It can be seen that before training the cell

responds randomly to various of the transforms of the different objects. Figure 13

shows the firing rate responses of cell (6,12) in the 4th (output) layer to all 4

locations of the ten individual objects after training. It is evident that after training,

the cell has learned to respond to the pyramid over all four locations, but does not

respond to any of the other objects in any locations. The cell has thus learned to

respond location invariantly to the pyramid, even though during training the

pyramid was presented on different trials with other members of the training set of

objects.
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Figure 13. The firing rate responses of cell (6, 12) in the 4th (output) layer to all 4 locations of
the ten individual stimuli after training. The ten plots show the responses of cell (6, 12) to
each of the ten stimuli as they are shifted clockwise around the 4 locations in the grid. It is
evident that after training, the cell has learned to respond to the pyramid over all four
locations, but does not respond to any of the other stimuli in any locations. The cell has thus
learned to respond location invariantly to the pyramid.
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Figure 14 shows the information results obtained when VisNet was tested with the

ten individual objects shifting clockwise around the grid. Results are presented after

training the network with image sequences of all 45 possible object-pairs (unbroken

line), and with a random untrained network (dashed line). The single cell
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Figure 14. Top: Information about which object was shown invariantly with respect to
position when VisNet was tested with the ten individual objects shifting clockwise around the
4 locations in the grid. Results are presented after training the network with image sequences
of all 45 possible object-pairs (unbroken line), and with a random untrained network (dashed
line). Top left: The single cell information measures for all top (fourth) layer neurons ranked
in order of their invariance to the objects are shown. It can be seen that training the network
on the object pairs has led to many top layer neurons attaining the maximal level of single cell
information of 3.32 bits. Top right: Multiple cell information measure showing that a
population of 50 cells has more information about which object was shown invariantly with
respect to position after training with the trace rule than with the initial untrained random
connectivity. These results show that training the network on the object pairs has led to many
output neurons learning to respond to one of the ten individual objects over all possible 4
locations. Bottom: Analysis of the information about the location where the image was
shown. Bottom left: single cell information. Bottom right: multiple cell information. Before
training, the random connectivity allowed some information to be read out about in which of
the 4 possible locations the object had been shown. (The maximum value possible is thus
2 bits.) After training to form position invariant representations of the objects, there was
very little information about where the object had been shown.
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information measures for all top (fourth) layer neurons ranked in order of their

invariance to the objects are shown. It can be seen that training the network on the

object-pairs has led to many top layer neurons attaining the maximal level of single

cell information of 3.32 bits. This corresponds to a neuron responding to only one

of the 10 objects, and indeed producing a similar response to every transform of that

object. If a neuron had responded to only some of the transforms of that object, or

had responded to any of the transforms of another object, the single cell information

would have been less than 3.32 bits. Thus the information theory analysis shown in

Figure 14 shows that many of the top layer neurons have learned to respond to all

transforms (translations) of one object, and to no transforms of any other object,

even though each object was being trained in the presence of one other object in

the scene.

Analysis of the responses showed that different output cells had learned to

respond invariantly to different objects. For example, three of the objects had output

cells with perfect recognition performance (3.32 bits), half of the training objects

had neurons that gave high levels of information (greater than 3 bits) about the

presence of that object, and 9 objects had neurons that provided with more than half

the maximal level of information. For comparison, in the control (untrained)

condition, no objects had neurons that reached half the maximal level of

information.

To confirm that the training produced position invariant representations of

objects, and did not instead result in neurons that encoded the positions of the

objects, we show in Figure 14 (bottom) the information about the location in which

an object had been shown. The single cell and multiple cell measures show that

before training, the random connectivity allowed some information to be read out

about in which of the 4 possible locations the object had been shown. After the

training described earlier to form position invariant representations of the objects,

there was very little information about where the object had been shown.

We have previously shown that the sparseness of the output representation is not a

crucial factor in forming independent representations of individual objects in a

1-layer network even with multiple objects present during training (Stringer and

Rolls 2007). Indeed, the 1-layer network operated in this way even when the

sparseness a varied in the range 0.01–0.5. To confirm that the sparseness of the

output representation is not a crucial factor in forming independent representations

in VisNet, we varied the sparseness by altering the value of � in Equation 10 in

layer 4, and showed that VisNet also produced independent object representations

over a wide range of output sparseness values (equivalent to a in the range 0.09–

0.5). Thus the crucial factor in determining whether VisNet too produces

representations of individual objects even when multiple objects are present

simultaneously during training is not the sparseness of the output representation,

but the number N of different objects.

Learning to individual objects even with multiple objects present during training

occurs in this hierarchical network model of the ventral visual stream because during

training of any one object, the features of that object always co-occur, and this leads

the competitive networks in the hierarchy to form representations of these co-active

inputs. Many neurons do not learn to respond to the other objects being presented

simultaneously. This occurs because there are 9 other objects, each of which is only

sometimes presented with the first object, so that the features of these other objects

Invariant visual object recognition 183



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f O
xf

or
d]

 A
t: 

19
:3

9 
9 

N
ov

em
be

r 2
00

7 

are not presented very frequently with the features of the first object. Moreover, this

is a particularly hard problem, because the transforms of 10 different objects overlap

in every training position. This is the first time that overlapping stimuli have been

used in a multiple object training problem.

Discussion

In natural vision an important problem is how the brain can build invariant

representations of individual objects even when multiple objects are present

in a scene. What processes enable the learning to proceed for individual objects

rather than for the combinations of objects that may be present during training

(Spratling 2005)? In this article we have made important advances to an approach to

this that relies on the statistics of natural environments (Stringer and Rolls 2007). In

particular, the features of a given object tend to co-occur with high probability with

each other during training, whereas because during training this object may be seen

with different objects on different occasions, the features of the first object are seen

with lower probability with the features of each of these other objects. In this article

we have shown that competitive networks operate usefully in this scenario when

three objects may be present at a time during learning. That is, the networks learn

primarily to form representations that reflect the high probability of co-occurrence

of features from one object and do not reflect the features of 2 other objects

presented simultaneously during training if the object being trained is seen much

more frequently than it is presented with any one other object. This occurs when the

number of objects in the training set is greater than approximately 20. Moreover, we

show that the transition from representing pairs of objects to representing triples of

objects occurs with a lower number of training objects, for example when 4 are used.

Thus we show here that as the number of objects in the training set is increased, the

network learns to form representations of first high-order combinations of the

objects, then of low-order combinations of the objects, and then of individual

objects. This leads us to conjecture that the concept will also scale up when the

number of objects presented simultaneously is four or more, although the transition

points are unknown.

The simulations described with three objects presented during training exhibited

richer behavior that with two objects as previously investigated by Stringer and Rolls

(2007). In the present simulations with three objects present, it was found that the

network tended to develop a more heterogeneous population of output cells, which

had learned to respond to a mixture of different numbers of objects. For example,

for N¼ 20 there was a mixture of output neurons that had learned to respond to

either 1 or 2 objects. It was only by raising N to the more extreme value of 50 that

the output neurons responding to pairs of objects were eliminated to leave only

neurons responding to individual stimuli. Furthermore, there were no clear cut

values of N at which the behavior of the network switched from representing

object-triples to object-pairs, or from representing object-pairs to individual objects.

Instead, the behavior of the network appeared to change more gradually with N,

with the distribution of output neurons responding to triples, pairs and singles

changing more smoothly. These results are helpful for understanding how neurons

at different stages of the ventral visual system in the brain might develop to encode
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different combinations of visual features or objects from the visual environment.

Firstly, at any stage we might anticipate a somewhat heterogeneous range of neurons

which respond to different numbers of visual features or objects. Secondly, the

numbers of the features which are represented by neurons at each stage of the visual

system will depend on the size of the receptive fields at that stage, and the relative

frequencies with which visual features or objects are combined in the real world

during learning over the receptive field size. It will be of interest to investigate this

further in future research, in which hierarchical models of the ventral visual

processing stream will be trained using video input from the real world, as well as

visual input from computer-generated 3D virtual reality environments.

If we consider further the effects of receptive field size at each stage of the ventral

visual stream, neurophysiological data suggest that the mechanism described here

works to separate out feature combinations of such size that only a relatively small

number of such feature combinations are typically co-present during training, say of

order 5–10. For example, cells in V1 learn to represent edges and bars. However,

the very small receptive field sizes of V1 neurons mean that only a small number of

edges may be seen together. Similarly, neurons in inferotemporal cortex (IT) receive

inputs from across the retina. However, the neural representations which develop in

IT are at the object (or face) level, and again only a limited number of objects will be

seen together in a natural scene. We further note that in complex, cluttered, natural

scenes, with multiple objects present, the receptive fields of inferior temporal cortex

neurons shrink to be sufficiently large to include only a few (perhaps of order 5)

objects (Rolls et al. 2003; Aggelopoulos and Rolls 2005). The implication of this is

that the mechanisms described in this paper might not need to operate with more

than of order 5–10 at most objects present simultaneously, and we have already

shown that the concept can operate with up to 3 objects present simultaneously.

In this article, we not only showed in single layer networks that trace learning can

operate to build invariant representations of individual objects when multiple

objects are presented during training, but also extended the results to a 4-layer

model of hierarchical processing in the ventral visual system, VisNet. This is the first

time that trace learning with multiple objects present during training has been tested

with VisNet, and the results are consistent with the hypothesis that the ventral visual

system in the brain could use this method to learn invariant representations of

individual objects presented in complex scenes with multiple objects present at any

one time. We further note that this is the first time that VisNet has been trained with

multiple objects present during training in a paradigm requiring translation

invariance learning, and in a paradigm which moreover has multiple objects

overlapping in every location. We note that all this is achieved without supervised

learning, in a purely feedforward network that utilizes the interesting statistics of

objects in natural scenes to separate out individual objects from other objects

present sometimes in the scene.

The effects described here could operate at every level of a feature hierarchy

network model of the ventral cortical processing stream for object recognition. This

means that potentially every layer of a hierarchical neural network like the ventral

visual system may perform the same operations of separating independent inputs

and developing transform invariant representations of those inputs. The kinds of

stimuli represented would depend on which stage the layer was in the hierarchy.

In the early layers of the network, invariance learning may occur for simple visual
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features such as corners. In the later layers, which receive inputs from across the

retina, invariance learning may occur for complete stimuli such as objects including

faces. The learning mechanisms described in this article may thus operate in every

layer of the hierarchy.
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