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The motion of an object (such as a wheel rotating) is seen as consistent
independent of its position and size on the retina. Neurons in higher cor-
tical visual areas respond to these global motion stimuli invariantly, but
neurons in early cortical areas with small receptive fields cannot represent
this motion, not only because of the aperture problem but also because
they do not have invariant representations. In a unifying hypothesis with
the design of the ventral cortical visual system, we propose that the dor-
sal visual system uses a hierarchical feedforward network architecture
(V1, V2, MT, MSTd, parietal cortex) with training of the connections with
a short-term memory trace associative synaptic modification rule to cap-
ture what is invariant at each stage. Simulations show that the proposal is
computationally feasible, in that invariant representations of the motion
flow fields produced by objects self-organize in the later layers of the ar-
chitecture. The model produces invariant representations of the motion
flow fields produced by global in-plane motion of an object, in-plane ro-
tational motion, looming versus receding of the object, and object-based
rotation about a principal axis. Thus, the dorsal and ventral visual sys-
tems may share some similar computational principles.

1 Introduction

A key issue in understanding the cortical mechanisms that underlie mo-
tion perception is how we perceive the motion of objects such as a rotating
wheel invariantly with respect to position on the retina, and size. For ex-
ample, we perceive the wheel shown in Figures 1 and 4a rotating clockwise
independent of its position on the retina. This occurs even though the lo-
cal motion for the wheels in the different positions may be opposite (as
indicated in the dashed box in Figure 1). How could this invariance of the
visual motion perception of objects arise in the visual system? Invariant
motion representations are known to be developed in the cortical dorsal
visual system. Motion-sensitive neurons in V1 have small receptive fields
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Figure 1: A wheel rotating clockwise at different locations on the retina. How
can a network learn to represent the clockwise rotation independent of the
location of the moving object? The dashed box shows that local motion cues
available at the beginning of the visual system are ambiguous about the direction
of rotation when the stimulus is seen in different locations. One rotating wheel is
presented at any one time, but the need is to develop a representation of the fact
that in the case shown, the rotating flow field is always clockwise, independent
of the location of the flow field and even though the local motion cues may be
ambiguous, as shown in the dashed box.

(in the range 1–2 degrees at the fovea), and therefore cannot detect global
motion, and this is part of the aperture problem (Wurtz & Kandel, 2000).
Neurons in MT, which receives inputs from V1 and V2, have larger recep-
tive fields (e.g., 5 degrees at the fovea) and are able to respond to planar
global motion, such as a field of small dots in which the majority (in prac-
tice, as little as 55%) move in one direction, or to the overall direction of a
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moving plaid, the orthogonal grating components of which have motion at
45 degrees to the overall motion (Movshon, Adelson, Gizzi, & Newsome,
1985; Newsome, Britten, & Movshon, 1989). Further on in the dorsal visual
system, some neurons in macaque visual area MST (but not MT) respond
to rotating flow fields or looming with considerable translation invariance
(Graziano, Andersen, & Snowden, 1994; Geesaman & Andersen, 1996).

It is known that single neurons in the ventral visual system have trans-
lation, size, and even view-invariant representations of stationary objects
(Rolls & Deco, 2002; Desimone, 1991; Tanaka, 1996; Logothetis & Sheinberg,
1996; Rolls, 1992, 2000, 2006). A theory that can account for this uses a fea-
ture hierarchy network (Fukushima, 1980; Rolls, 1992; Wallis & Rolls, 1997;
Riesenhuber & Poggio, 1999) combined with an associative Hebb-like learn-
ing rule (in which the synaptic weights increase in proportion to the pre-and
postsynaptic firing rates) with a short-term memory of, for example, 1 sec,
to enable different instances of the stimulus to be associated together as the
visual objects transform continuously from second to second in the world
(Földiák, 1991; Rolls, 1992; Wallis & Rolls, 1997; Bartlett & Sejnowski, 1998;
Rolls & Milward, 2000; Stringer & Rolls, 2000, 2002; Rolls & Deco, 2002).

In a unifying hypothesis, we propose here that the analysis of invariant
motion in the dorsal visual system uses a similar architecture and learning
rule, but in contrast utilizes as its inputs neurons that respond to local mo-
tion of the type found in the primary visual cortex, V1 (Wurtz & Kandel,
2000; Duffy, 2004; Bair & Movshon, 2004). A feature of the theory is that
motion in the visual field is computed only once in V1 (by processes that
take into account luminance changes across short times) and that the rep-
resentations of motion that develop in the dorsal visual system require no
further computation of time-delay-related firing to compute motion. The
theory is of interest, for it proposes that some aspects of the computations
in parts of the cerebral cortex that appear to be involved in different types
of visual function, the dorsal and ventral visual systems, may in fact be
performed by some similar organizational and computational principles.

2 The Theory and Its Implementation in a Model

2.1 The Theory. We propose that the general architecture of the dorsal
visual system areas we consider is a feedforward feature hierarchy network,
the inputs to which are local motion-sensitive neurons of V1 with receptive
fields of approximately 1 degree in diameter (see Figure 2). There is conver-
gence from stage to stage, so that a neuron at any one stage need receive only
a limited number of inputs from the preceding stage, yet by the end of the
network, an effectively global computation that can take into account infor-
mation derived from different parts of the retina can have been performed.
Within each cortical layer of the architecture (or layer of the network), local
lateral inhibition implemented by inhibitory feedback neurons implements
competition between the neurons, in such a way that fast-firing neurons



142 E. Rolls and S. Stringer

Layer 4 

Layer 3 

Layer 2 

Layer 1 

Figure 2: Stylized image of hierarchical organization in the dorsal as well as
ventral visual system. The architecture is captured by the VisNet model, in
which convergence through the network is designed to provide fourth-layer
neurons with information from across the entire input retina.

inhibit other neurons in the vicinity, so that the overall activity within an
area is kept within bounds. The competition may be nonlinear, due in part to
the threshold nonlinearity of neurons, and this competition, helped by the
diluted connectivity (i.e., the fact that only a low proportion of the neurons
are connected), enables some neurons to respond to particular combinations
of the inputs being received from the preceding area (Rolls & Deco, 2002;
Deco & Rolls, 2005). These aspects of the architecture potentially enable
single neurons at higher stages of the network to respond to combinations
of the local motion inputs from V1 to the first layer of the network. These
combinations, helped by the increasingly larger receptive fields, could in-
clude global motion to partly randomly moving dots (and to plaids) over



Invariant Global Motion Recognition 143

areas as large as 5 degrees in MT (Wurtz & Kandel, 2000; Duffy & Wurtz,
1996). In the architecture shown in Figure 2, layer 1 might correspond to
MT; layer 2 to MST, which has receptive fields of 15–65 degrees in diameter;
and layers 3 and 4 to areas in the parietal cortex such as 7a and to areas in the
cortex in the superior temporal sulcus, which receives from parietal visual
areas where view-invariant object-based motion is represented (Hasselmo,
Rolls, Baylis, & Nalwa, 1989; Sakata, Shibutani, Ito, & Tsurugai, 1986). The
synaptic plasticity between the layers of neurons has a Hebbian associative
component in order to enable the system to build reliable representations
in which the same neurons are activated by particular stimuli on different
occasions in what is effectively a hierarchical multilayer competitive net-
work (Rolls, 1992; Wallis & Rolls, 1997; Rolls & Deco, 2002). Such processes
might enable neurons in layer 2 of Figure 4a to respond to, for example,
a wheel rotating clockwise in one position on the retina (e.g., neuron A in
layer 2).

A key issue not addressed by the architecture described so far is how
rotation (e.g., of a small wheel rotating clockwise) in one part of the retina
activates the same neurons at the end of the network as when it is presented
on a different part of the retina (see Figure 1). We propose that an associative
synaptic learning rule with a short-term memory trace of neuronal activity
is used between the layers to solve this problem. The idea is that if at a high
level of the architecture (labeled layer 2/3 in Figure 4a) a wheel rotating
clockwise is activating a neuron in one position on the retina, then the
activated neurons remain active in a short delay period (of, e.g., 1 s) while
the object moves to another location on the retina (e.g., the right position in
Figure 4a). Then, with the postsynaptic neurons still active from the motion
at the left position, the newly active synapses onto the layer 2/3 neuron
(C) show associative modification, resulting in neuron C learning in an
unsupervised way to respond to the wheel rotating clockwise in either the
left or the right position on the retina. The idea is, just as for the ventral
visual system (Rolls & Deco, 2002), that whatever the convergence allows to
be learned at each stage of the hierarchy will be learned by this invariance
algorithm, resulting in neurons higher in the hierarchy having higher- and
higher-level invariance properties, including view-invariant object-based
motion. More formally, the rule we propose is that identical to the one
proposed for the ventral visual system (Földiák, 1991; Rolls, 1992; Wallis &
Rolls, 1997; Rolls & Deco, 2002) as follows:

�w j = αyτ−1xτ
j , (2.1)

where the trace yτ is updated according to

yτ = (1 − η)yτ + ηyτ−1, (2.2)
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and we have the following definitions:

xj : j th input to the neuron
yτ : trace value of the output of the neuron at time step τ

w j : synaptic weight between j th input and the neuron
y : output from the neuron
α : learning rate; annealed between unity and zero
η : trace value; the optimal value varies with presentation sequence length

The parameter η may be set anywhere in the interval [0, 1], and for the
simulations described here, η was set to 0.8, which works well with nine
transforms for each object in the stimulus set (Wallis & Rolls, 1997). (A
discussion of the good performance of this rule, and its relation to other
versions of trace learning rules, including the point that the trace can be
implemented in the presynaptic firing, is provided by Rolls & Milward,
2000, and Rolls & Stringer, 2001. We note that in the version of the rule
used here (equation 2.1), the trace is calculated from the postsynaptic firing
in the preceding time step (yτ−1) but not the current time step, but that
analogous performance is obtained if the firing in the current time step is
also included (Rolls & Milward, 2000; Rolls & Stringer, 2001).) The tem-
poral trace in the brain could be implemented by a number of processes,
as simple as continuing firing of neurons for several hundred ms after a
stimulus has disappeared or moved (as shown to be present for at least
inferior temporal neurons in masking experiments—Rolls & Tovee, 1994;
Rolls, Tovee, Purcell, Stewart, & Azzopardi, 1994), or by the long time con-
stant of NMDA receptors and the resulting entry of calcium to neurons. An
important idea here is that the temporal properties of the biologically imple-
mented learning mechanism are such that it is well suited to detecting the
relevant continuities in the world of real motion of objects. The system uses
the underlying continuity in the world to help itself learn the invariances
of, for example, the motions that are typical of objects.

2.2 The Network Architecture. The model we used for the simulations
was VisNet, which was developed as a model of hierarchical processing
in the ventral visual system that uses a trace learning to develop invariant
representations of stationary objects (Wallis & Rolls, 1997; Rolls & Milward,
2000; Rolls & Deco, 2002). The simulations performed here utilized the latest
version of the VisNet model (VisNet2), with the same model parameters as
used by Rolls and Milward (2000) for their investigations of the formation
of invariant representations in the ventral visual system. These parameters
were kept identical for all the simulations described here. The difference
is that instead of using simple cell-like inputs to the model that respond
to stationary-oriented bars and edges (with four spatial frequencies and
four orientations), in the modeling described here we used motion-related
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Table 1: VisNet Dimensions.

Dimensions
Number of

Connections Radius

Layer 4 32 × 32 100 12
Layer 3 32 × 32 100 9
Layer 2 32 × 32 100 6
Layer 1 32 × 32 201 6
Input layer 128 × 128 × 8 - -

Table 2: Lateral Inhibition Parameters.

Layer 1 2 3 4
Radius, σ 1.38 2.7 4.0 6.0
Contrast, δ 1.5 1.5 1.6 1.4

inputs that capture some of the relevant properties of neurons present in
V1 as part of the primate magnocellular (M) system (Wurtz & Kandel, 2000;
Duffy, 2004; Rolls & Deco, 2002).

VisNet is a four-layer feedforward network with unsupervised com-
petitive learning at each layer. For each layer, the forward connections to
individual cells are derived from a topologically corresponding region of
the preceding layer, with connection probabilities based on a gaussian dis-
tribution (see Figure 2). These distributions are defined by a radius that will
contain approximately 67% of the connections from the preceding layer.
Typical values are given in Table 1.

Within each layer there is competition between neurons, which is graded
rather than winner-take-all, and is implemented in two stages. First, to
implement lateral inhibition, the firing rates of the neurons (calculated as
the dot product of the vector of presynaptic firing rates and the synaptic
weight vector on a neuron, followed by a linear activation function to
produce a firing rate) within a layer are convolved with a spatial filter, I ,
where δ controls the contrast and σ controls the width, and a and b index
the distance away from the center of the filter:

Ia ,b =



−δe− a2+b2

σ2 if a �= 0 or b �= 0,

1 − ∑
a �=0
b �=0

Ia ,b if a = 0 and b = 0.
(2.3)

Typical lateral inhibition parameters are given in Table 2.
Next, contrast enhancement is applied by means of a sigmoid function

y = f sigmoid (r ) = 1
1 + e−2β(r−α)

, (2.4)
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Table 3: Sigmoid Parameters.

Layer 1 2 3 4
Percentile 99.2 98 88 91
Slope β 190 40 75 26

where r is the firing rate after lateral inhibition, y is the firing rate after
contrast enhancement, and α and β are the sigmoid threshold and slope, re-
spectively. The parameters α and β are constant within each layer, although
α is adjusted to control the sparseness of the firing rates. For example, to
set the sparseness to, say, 5%, the threshold is set to the value of the 95th
percentile point of the firing rates r within the layer. Typical parameters for
the sigmoid function are shown in Table 3.

The trace learning rule (Földiák, 1991; Rolls, 1992; Wallis & Rolls, 1997;
Rolls & Milward, 2000; Rolls & Stringer, 2001; Rolls & Deco, 2002) is that
shown in equation 2.1 and encourages neurons to develop invariant re-
sponses to input patterns that tend to occur close together in time, because
these are likely to be from the same moving object.

2.3 The Motion Inputs to the Network. The images presented to the
network represent local motion signals with small receptive fields. These
local visual motion (or local optic flow) input signals are similar to those
of neurons in V1 in that they have small receptive fields and cannot de-
tect global motion because of the aperture problem (Wurtz & Kandel,
2000). At each pixel coordinate in the 128 × 128 image, a direction of
local motion/optic flow is defined. The global optic flow patterns used
in the different experiments occupied part of this 128 × 128 image, as de-
scribed for each experiment below. At each coordinate, there are eight cells,
where the optimal response is defined by flows 45 degrees apart. That is, the
cells are tuned to local optic flow directions of 0, 45, 90, . . ., 315 degrees. The
firing rate of each cell is set equal to a gaussian function of the difference
between the cell’s preferred direction and the actual direction of local optic
flow. The standard deviation of this gaussian was 20 degrees. The number of
inputs from the arrays of motion sensitive cells to each cell in the first layer
of the network is 201, selected probabilistically as a gaussian function of
distance as described above and in more detail elsewhere (Rolls & Milward,
2000). The local motion signals are given to the network, and not computed
in the simulations, because the aim of the simulations is to test the theory
that (given that local motion inputs that are known to be present in early
cortical processing; Wurtz & Kandel, 2000) the trace learning mechanism
described can in a hierarchical network account for a range of the types
of global motion neuron that are found in the dorsal stream visual cortical
areas.
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2.4 Training and Test Procedure. To train the network, each stimulus is
presented to VisNet in a randomized sequence of locations or orientations
with respect to VisNet’s input retina. The different locations were spaced
32 pixels apart on the 128 × 128 retina. At each stimulus presentation, the
activation of individual neurons is calculated, then the neuronal firing rates
are calculated, and then the synaptic weights are updated. Each time a stim-
ulus has been presented in all the training locations or orientations, a new
stimulus is chosen at random and the process repeated. The presentation of
all the stimuli through all locations or orientations constitutes one epoch of
training. In this manner, the network is trained one layer at a time starting
with layer 1 and finishing with layer 4. In the investigations described here,
the numbers of training epochs for layers 1 to 4 were 50, 100, 100, and 75,
respectively, as these have been shown in previous work to provide good
performance (Wallis & Rolls, 1997; Rolls & Milward, 2000). The learning
rates α in equation 2.1 for layers 1 to 4 were 0.09, 0.067, 0.05, and 0.04.

Two measures of performance were used to assess the ability of the
output layer of the network to develop neurons that are able to respond
with view invariance to individual stimuli or objects (see Rolls & Milward,
2000). A single cell information measure was applied to individual cells in
layer 4 and measures how much information is available from the response
of a single cell about which stimulus was shown independent of view. The
measure was the stimulus-specific information or surprise, I (s, R), which
is the amount of information the set of responses, R, has about a specific
stimulus, s. (The mutual information between the whole set of stimuli S
and of responses R is the average across stimuli of this stimulus-specific
information.) (Note that r is an individual response from the set of responses
R.)

I (s, R) =
∑
r∈R

P(r |s) log2
P(r |s)
P(r )

(2.5)

The calculation procedure was identical to that described by Rolls,
Treves, Tovee, and Panzeri (1997) with the following exceptions. First, no
correction was made for the limited number of trials because, in VisNet,
each measurement of a response is exact, with no variation due to sampling
on different trials. Second, the binning procedure was to use equispaced
rather than equipopulated bins. This small modification was useful be-
cause the data provided by VisNet can produce perfectly discriminating
responses with little trial-to-trial variability. Because the cells in VisNet can
have bimodally distributed responses, equipopulated bins could fail to sep-
arate the two modes perfectly. (This is because one of the equipopulated
bins might contain responses from both of the modes.) The number of bins
used was equal to or less than the number of trials per stimulus, that is, for
VisNet the number of positions on the retina (Rolls et al., 1997). Because
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VisNet operates as a form of competitive net to perform categorization of
the inputs received, good performance of a neuron will be characterized
by large responses to one or a few stimuli regardless of their position on
the retina (or other transform) and small responses to the other stimuli. We
are thus interested in the maximum amount of information that a neuron
provides about any of the stimuli rather than the average amount of infor-
mation it conveys about the whole set S of stimuli (known as the mutual
information). Thus, for each cell, the performance measure was the maxi-
mum amount of information a cell conveyed about any one stimulus (with
a check, in practice always satisfied, that the cell had a large response to
that stimulus, as a large response is what a correctly operating competitive
net should produce to an identified category). In many of the graphs in this
article, the amount of information each of the 50 most informative cells had
about any stimulus is shown.

A multiple cell information measure, the average amount of information
that is obtained about which stimulus was shown from a single presentation
of a stimulus from the responses of all the cells, enabled measurement of
whether across a population of cells, information about every object in the
set was provided. Procedures for calculating the multiple cell information
measure are given by Rolls, Treves, and Tovee (1997) and Rolls and Milward
(2000). The multiple cell information measure is the mutual information
I (S, R), that is, the average amount of information that is obtained from
a single presentation of a stimulus about the set of stimuli S from the
responses of all the cells. For multiple cell analysis, the set of responses,
R, consists of response vectors comprising the responses from each cell.
Ideally, we would like to calculate

I (S, R) =
∑
s∈S

P(s)I (s, R). (2.6)

However, the information cannot be measured directly from the probabil-
ity table P(r, s) embodying the relationship between a stimulus s and the
response rate vector r provided by the firing of the set of neurons to a
presentation of that stimulus. (Note that “stimulus” refers to an individual
object that can occur with different transforms, e.g., translation or size; see
Wallis & Rolls, 1997.) This is because the dimensionality of the response vec-
tors is too large to be adequately sampled by trials. Therefore, a decoding
procedure is used, in which the stimulus s ′ that gave rise to the particu-
lar firing-rate response vector on each trial is estimated. This involves, for
example, maximum likelihood estimation or dot product decoding. For ex-
ample, given a response vector r to a single presentation of a stimulus, its
similarity to the average response vector of each neuron to each stimulus
is used to estimate using a dot product comparison which stimulus was
shown. The probabilities of it being each of the stimuli can be estimated in
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this way. Details are provided by Rolls et al. (1997). A probability table is
then constructed of the real stimuli s and the decoded stimuli s ′. From this
probability table, the mutual information is calculated as

I (S, S′) =
∑
s,s ′

P(s, s ′) log2
P(s, s ′)

P(s)P(s ′)
. (2.7)

The multiple cell information was calculated using the five cells for each
stimulus with high information values for that stimulus. Thus, in this letter,
10 cells were used in the multiple cell information analysis.

3 Simulation Results

We now describe simulations with the neural network model described in
section 2 that enabled us to test this theory.

3.1 Experiment 1: Global Planar Motion. Motion-sensitive neurons in
V1 have small receptive fields (in the range 1–2 deg at the fovea) and there-
fore cannot detect global motion, and this is part of the aperture problem
(Wurtz & Kandel, 2000). As described in section 1, neurons in MT have
larger receptive fields and are able to respond to planar global motion
(Movshon et al., 1985; Newsome et al., 1989). Here we show that the hier-
archical feature network we propose can solve this global planar motion
problem and, moreover, that the performance is improved by using a trace
rather than a purely associative synaptic modification rule. Invariance is
addressed in later simulations.

The network was trained on two 100 × 100 stimuli representing noisy
left and right global planar motion (see Figure 3a). During the training, cells
developed that responded to either left or right global motion but not to both
(see Figure 3), with 1 bit of information representing perfect discrimination
of left from right. The untrained network with initial random synaptic
weights tested as a control showed much poorer performance, as shown in
Figure 3.

It might be expected that some global planar motion sensitivity would
be developed by a purely Hebbian learning rule, and indeed this has been
demonstrated (under somewhat different training conditions) by Sereno
(1989) and Sereno and Sereno (1991). This occurs because on any single
trial with one average direction of global motion, neurons at intermedi-
ate layers will tend to receive on average inputs that reflect the current
average global planar motion and will thus learn to respond optimally
to the current inputs that represent that motion direction. We showed
that the trace learning rule used here performed better than a Hebb rule
(which produced only neurons with 0.0 bits given that the motion stimulus
patches presented in our simulations were in nonoverlapping locations, as
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Figure 3: Experiment 1. (a) The two motion stimuli used in experiment 1 were
noisy global planar motion left (left) and noisy global planar motion right (right),
present throughout the 128 × 128 retina. Each arrow in this and subsequent
figures represents the local direction of optic flow. The size of the optic flow
pattern was 100 × 100 pixels, not the 2 × 4 shown in the diagram. The noise
was introduced into each image stimulus by inverting the direction of optic
flow at a random set of 45% of the image nodes. This meant that it would not
be possible to determine the directional bias of the flow field by examining
the optic flow over local regions of the retina. Instead, the overall directional
bias could be determined only by analyzing the whole image. (b) When trained
with the trace rule, equation 2.1, some single cells in layer 4 conveyed 1 bit
of information about whether the global motion was left or right, and this
is perfect performance. (The single cell information is shown for the 50 most
selective cells.) (c) The multiple cell information measures, used to show that
different neurons are tuned to different stimuli (see section 2.4), indicate that
over a set of neurons, information about the whole stimulus set was present.
(The information values for one cell are the average of 10 cells selected from the
50 most selective cells, and hence the value is not exactly 1 bit.)
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illustrated in Figure 1). A further reason for the better performance of
the trace rule is that on successive trials, the average global motion iden-
tifiable by a single intermediate-layer neuron from the probabilistic inputs
will be a better estimate (a temporal average) of the true global motion, and
this will be utilized in the learning.

These results show that the network architecture is able to develop global
motion representations of the noisy local motion patterns. Indeed, it is
emphasized that neurons in the input to VisNet had only local but not
global motion information, as shown by the fact that the average amount of
information the 50 most selective input cells had about the global motion
was 0.0 bits.

3.2 Experiment 2: Rotating Wheel. Neurons in MST, but not MT, are
responsive to rotation with considerable translation invariance (Graziano
et al., 1994). The aim of this simulation was to determine whether layer 4
cells in our network develop position-invariant representations of wheels
rotating clockwise (as shown in Figure 4a) versus anticlockwise. The stimuli
consist only of optic flow fields around the rim of a geometric circle with
radius 16 unless otherwise stated. The local motion inputs from the wheel
in the two positions shown are ambiguous where the wheels are close to
each other in Figure 4a. The network was expected to solve the problem as
illustrated in Figure 4a.

The results in Figures 4b to 4d show perfect performance on position
invariance when trained with the trace rule but not when untrained. The
perfect performance is shown by the neurons that responded to, for exam-
ple, clockwise but not anticlockwise rotation, and did this for each of the
nine training positions.

Figure 4e shows perfect size invariance for some layer 4 cells when the
network was trained with the trace rule with three different radii of the
wheels: 10, 16, and 22.

These results show that the network architecture is able to develop
location- and size-invariant representations of the global, rotating wheel,
motion patterns even though the neurons in the input layer receive infor-
mation from only a small local region of the retina.

We note that the position-invariant global motion results shown in
Figure 4 were not due to chance mappings of the two stimuli through
the network and were a result of the training, in that the position-invariant
information about whether the global motion was clockwise or anticlock-
wise was 0.0 bits for both the single and the multiple cell information in
the untrained (“random”) network. Corresponding differences between the
trained and the untrained networks were found in all the other experiments
described in this article.

3.3 Experiment 3: Looming. Neurons in macaque dorsal stream vi-
sual area MSTd respond to looming stimuli with considerable translation
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invariance (Graziano et al., 1994; Geesaman & Andersen, 1996). We tested
whether the network could learn to respond to small patches of looming
versus contracting motion typically generated by objects as they are seen
successively on different locations on the retina. The network was trained
on two circular flow patterns representing looming toward and looming
away, as shown in Figure 5a. The stimuli are circular optic flow fields, with
the direction of flow either away from (left) or toward (right) the center of
the circle and with radius 16 unless otherwise stated.

The results shown in Figures 5b to 5d show perfect performance on po-
sition invariance when trained with the trace rule but not when untrained.
The perfect performance is shown by the neurons that responded to, for
example, looming toward but not movement away, and did this for each of
the nine training positions.

Simulations were run for various optic flow field diameters to test the
robustness of the results, and in all cases tested (which included radii of

Figure 4: Experiment 2. (a) Two rotating wheels at different locations rotating
in opposite directions. The local flow field is ambiguous. Clockwise or counter-
clockwise rotation can be diagnosed only by a global flow computation, and it
is shown how the network is expected to solve the problem to produce position-
invariant global-motion-sensitive neurons. One rotating wheel is presented at
any one time, but the need is to develop a representation of the fact that in the
case shown, the rotating flow field is always clockwise, independent of the lo-
cation of the flow field. (b) Single cell information measures showing that some
layer 4 neurons have perfect performance of 1 bit (clockwise versus anticlock-
wise) after training with the trace rule, but not with random initial synaptic
weights in the untrained control condition. (c) The multiple cell information
measures show that small groups of neurons have perfect performance. (d)
Position invariance illustrated for a single cell from layer 4, which responded
only to the clockwise rotation, and for every one of the nine positions. (e) Size
invariance illustrated for a single cell from layer 4, which after training with
three different radii of rotating wheel, responded only to anticlockwise rotation,
independent of the size of the rotating wheels. (For the position-invariant sim-
ulations, the wheel rims overlapped, but are shown slightly separated in Figure
1 for clarity.) The training grid spacing was 32 pixels, and the radii of the wheels
were 16 pixels. This ensured the rims of the wheels in adjacent training grid
locations overlapped. One wheel was shown on any one trial. On successive
trials, the wheel rotating clockwise was shown in each of the nine locations,
allowing the trace learning rule to build location-invariant representations of
the wheel rotating in one direction. In the next set of training trials, the wheel
was shown rotating in the opposite direction in each of the nine locations. For
the size-invariant simulations, the network was trained and tested with the set
of clockwise versus anticlockwise rotating wheels presented in three different
sizes.
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10 and 20 as well as intermediate values), cells developed a transform
(location) invariant representation in the output layer.

These results show that the network architecture is able to develop in-
variant representations of the global looming motion patterns, even though
the neurons in the input layer receive information from only a small local
region of the retina.

3.4 Experiment 4: Rotating Cylinder. Some neurons in the macaque
cortex in the anterior part of the superior temporal sulcus (which receives
inputs from both the dorsal and ventral visual streams; Ungerleider &
Mishkin, 1982; Seltzer & Pandya, 1978; Rolls & Deco, 2002) respond to a head
when it is rotating clockwise about its own axis but not counterclockwise,
regardless of whether it is upright or inverted (Hasselmo et al., 1989). The
result of the inversion experiment shows that these neurons are not just
responding to global flow across the visual field, but are taking into account
information about the shape and features of the object. Some neurons in the
parietal cortex may also respond to motion of an object about one of its
axes in an object-based way (Sakata et al., 1986). In experiment 4, we tested
whether the network could self-organize to form neurons that represent
global motion in an object-based coordinate frame.

The network was trained on two stimuli, with four transforms of each.
Figure 6a shows stimulus 1, which is a cylinder with shading at the top
rotating clockwise about its own (top-defined) axis. Stimulus 1 is shown in
its upright and inverted transforms. Stimulus 2 is the same cylinder with
shading at the top, but rotating anticlockwise about its own vertical axis.
The stimuli were presented in a single location, but to solve the problem,

Figure 5: Experiment 3. (a) The two motion stimuli were flow fields looming
toward (left) and looming away (right). The stimuli are circular optic flow fields,
with the direction of flow either away from (left) or toward (right) the center
of the circle. Local motion cells near, for example, the intersection of the two
stimuli cannot distinguish between the two global motion patterns. Location-
invariant representations (for nine different locations) of stimuli looming toward
or moving away from the observer were learned, as shown by the single cell
information measures (b), and multiple cell information measures (c) (using the
same conventions as in Figure 3) were formed if the network was trained with
the trace rule but not if it was untrained. (d) Position invariance illustrated for
a single cell from layer 4, which responded only to moving away, and for every
one of the nine positions. (The network was trained and tested with the stimuli
presented in a 3 × 3 grid of nine retinal locations, as in experiment 1. The training
grid spacing was 32 pixels, and the radii of the circular looming stimuli were 16
pixels. This ensured that the edges of the looming stimuli in adjacent training
grid locations overlapped, as shown in the dashed box of Figure 5a.)
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the network must form some neurons that respond to the clockwise ro-
tation of the shaded cylinder independent of the four transforms of each,
which were upright (0 degrees), 90 degrees, inverted (180 degrees) and 270
degrees. Other neurons should self-organize to respond to view invariant
counterclockwise rotation.

For this experiment, additional information about surface luminance
must be fed into the first layer of the network in order for the network to be
able to distinguish between the clockwise and anticlockwise rotating cylin-
ders. Additional retinal inputs to the first layer of the network came from a
128 × 128 array of luminance-sensitive cells. The cells within the luminance
array are maximally activated for the shaded region of the cylinder image.
Elsewhere the luminance inputs are zero. The number of inputs from the
array of luminance sensitive cells to each cell in the first layer of the network
was 50.

The results shown in Figures 6b to 6c show perfect performance for
many single cells, and across multiple cells, in representing the direction of
rotation of the shaded cylinder about its own axis regardless of which of
the four transforms was shown, when trained with the trace rule but not
when untrained.

Simulations were run for various sizes of the cylinders, including
height = 40 and diameter = 20. For all simulations, cells developed a
transform (e.g., upright, inverted) invariant representation in the output
layer. That is, some cells responded to one of the stimuli in all of its four
transformations (i.e., orientations) but not to the other stimulus.

These results show that the network architecture is able to develop object-
centered view-invariant representations of the global motion patterns rep-
resenting the two rotating cylinders, even though the neurons in the input
layer receive information from only a small, local region of the retina.

Figure 6: Experiment 4. (a) Stimulus 1, which is a cylinder with shading at the
top rotating clockwise about its own (top-defined) axis. Stimulus 1 is shown in its
upright and inverted transforms. Stimulus 2 is the same cylinder with shading at
the top, but rotating anticlockwise about its own axis. Invariant representations
were formed, with some cells coding for the object rotating clockwise about its
own axis and other cells coding for the object rotating anticlockwise, invariantly
with respect to whether which of the four transforms (0 degrees = upright,
90 degrees, 180 degrees = inverted, and 270 degrees) was viewed, as shown by
the single cell information measures (b) and multiple cell information measures
(c) (using the same conventions as in Figure 3). Because only eight images in
one location form the training set, some single cells by chance with the random
untrained connectivity had some information about which stimulus was shown,
but cells performed the correct mapping only if the network was trained with
the trace rule.
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3.5 Experiment 5: Optic Flow Analysis of Real Images: Translation
Invariance. In experiments 5 and 6, we extend this research by testing
the operation of the model when the optic flow inputs to the network
are extracted by a motion analysis algorithm operating on the successive
images generated by moving objects.

The optic flow fields generated by a moving object were calculated as
described next and were used to set the firing of the motion-selective cells,
the properties of which are described in section 2.3. These optic flow algo-
rithms use an image gradient-based method, which exploits the relation-
ship between the spatial and temporal gradients of intensity, to compute the
local optic flow throughout the image. The image flow constraint equation
IxU + IyV + It = 0 is approximated at each pixel location by algebraic fi-
nite difference approximations in space and time (Horn & Schunk, 1981).
Systems of these finite difference equations are then solved for the local
image velocity (U, V) within each 4 × 4 pixel block within the image. The
images of the rotating objects were generated using OpenGL.

In experiment 5, we investigated the learning of translation-invariant
representations of the optic flow vector fields generated by clockwise versus
anticlockwise rotation of the tetrahedron stimulus illustrated in Figure 7a.
The network was trained with the two optic flow patterns generated in nine
different locations, as in experiments 2 and 3. The flow fields used to train
the network were generated by the object rotating through one degree of
angle. The single cell information measures (see Figure 7b) and multiple
cell information measures (see Figure 7c) (using the same conventions as
in Figure 3) show that the maximal information, one bit, was reached by
single cells and with the multiple cell information measure. The dashed
line shows the control condition of a network with random untrained
connectivity.

This experiment shows that the model can operate well and learn
translation-invariant representations with motion flow fields actually ex-
tracted from the successive images produced by a rotating object.

3.6 Experiment 6: Optic Flow Analysis of Real Images: Rotation
Invariance. In experiment 6 we investigated the learning of rotation-
invariant representations of the optic flow vector fields generated by clock-
wise versus anticlockwise rotation of the spoked wheel stimulus illustrated
in Figure 8a. (The algorithm for generating the optic flow field is described
in section 3.5.) The radius of the spoked wheel was 50 pixels on the 128 × 128
background. The rotation was in-plane, and the optic flow fields used as
an input to the network were extracted from the changing images, each
separated by one degree of the object as it rotated through 360 degrees.
The single cell information measures (see Figure 8b) and multiple cell in-
formation measures (see Figure 8c) (using the same conventions as in Fig-
ure 3) show that the maximal information, one bit, was almost reached
by single cells and by the multiple cell information measure. The dashed
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Figure 7: Experiment 5. Translation-invariant representations of the optic flow
vector fields generated by clockwise versus anticlockwise rotation of the tetra-
hedron stimulus illustrated. The optic flow field used as an input to the network
was extracted from the changing images of the object as it rotated. The single cell
information measures (b) and multiple cell information measures (c) (using the
same conventions as in Figure 3) show that the maximal information, 1 bit, was
reached by both single cells and in the multiple cell information measure. The
dashed line shows the control condition of a network with random untrained
connectivity.

line shows the control condition of a network with random untrained
connectivity.

This experiment shows that the model can operate well and learn
rotation-invariant representations with motion flow fields actually ex-
tracted from a very large number of the successive images produced by
a rotating object. Because of the large number of closely spaced training
images used in this simulation, it is likely that the crucial type of learning
was continuous transformation learning (Stringer, Perry, Rolls, & Proske,
2006). Consistent with this, the learning rate was set to the lower value of
7.2 × 10−5 for all layers for experiment 6 (cf. Stringer et al., 2006).
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Figure 8: Experiment 6. In-plane rotation-invariant representations of the optic
flow vector fields generated by a spoked wheel rotating clockwise or anticlock-
wise. The optic flow field used as an input to the network was extracted from
the changing images of the object as it rotated through 360 degrees, each sep-
arated by 1 degree. The single cell information measures (b) and multiple cell
information measures (c) (using the same conventions as in Figure 3) show that
the maximal information, 1 bit, was reached by both single cells and in the mul-
tiple cell information measure. The dashed line shows the control condition of a
network with random untrained connectivity.

3.7 Experiment 7: Generalization to Untrained Images. To investigate
whether the representations of object-based motion such as circular rota-
tion learned with the approach introduced in this article would generalize
usefully to the flow fields generated by other objects moving in the same
way, we trained the network on the optic flow vector fields generated by
clockwise versus anticlockwise rotation of the spoked wheel stimulus il-
lustrated in Figure 8. The training images rotated through 90 degrees in
1 degree steps. We then tested generalization to the new, untrained im-
age shown in Figure 9a. The single and multiple cell information plots
in Figure 9b show that information was available about the direction of
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Figure 9: Experiment 7. Generalization to untrained images. The network was
trained on the optic flow vector fields generated by the spoked wheel stimulus
illustrated in Figure 8 rotating clockwise or anticlockwise. (a) Generalization to
the new untrained image shown at the top right of the Figure was then tested.
(b) The single and multiple cell information plots show that information was
available about the direction of rotation (clockwise versus anticlockwise) of the
untrained test images. (c) The firing rate of a fourth layer cell to the clock-
wise and anticlockwise rotations of the trained image illustrated in Figure 8.
(d) The firing rate of the same fourth layer cell to the clockwise and anticlockwise
rotations of the untrained image illustrated in Figure 9a.
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rotation (clockwise versus anticlockwise) of the untrained test images. Al-
though the information was not as high as 1 bit, which would have indicated
perfect generalization, individual cells did generalize usefully to the new
images, as shown in Figures 9c and 9d. For example, Figure 9c shows the
firing rate of a fourth layer cell to the clockwise and anticlockwise rotations
of the trained image illustrated in Figure 8. Figure 9d shows the firing rate of
the same fourth-layer cell to the clockwise and anticlockwise rotations of the
untrained image illustrated in Figure 9a. The neuron responded correctly
to almost all the anticlockwise rotation shifts, and correctly to many of the
clockwise rotation shifts, though some noise was evident in the responses of
the neuron to the untrained images. Overall, the results demonstrate useful
generalization after training with one object to testing with an untrained,
different, object on the ability to represent rotation.

4 Discussion

We have presented a hierarchical feature analysis theory of the operation of
parts of the dorsal visual system, which provides a computational account
for how transform-invariant representations of the flow fields generated by
moving objects could be formed in the cerebral cortex. The theory uses a
modified Hebb rule with a short-term temporal trace of preceding activity to
enable whatever is invariant at any stage of the dorsal motion system across
short time intervals to be associated together. The theory can account for
many types of invariance and has been tested by simulation for position and
size invariance. The simulations show that the network can develop global
planar representations from noisy local motion inputs (experiment 1), in-
variant representations of rotating optic flow fields (experiment 2), invariant
representations of looming optic flow fields (experiment 3), and invariant
representations of asymmetrical objects rotating about one of their axes (ex-
periment 4). These are fundamental problems in motion analysis, and they
have all been studied neurophysiologically, including local versus planar
motion (Movshon et al., 1985; Newsome et al., 1989); position-invariant rep-
resentation of rotating flow fields and looming (Lagae, Maes, Raiguel, Xiao,
& Orban, 1994); and object-based rotation (Hasselmo et al., 1989; Sakata
et al., 1986). The model thus shows principles by which the different types
of motion-related invariant neuronal responses in the dorsal cortical visual
system could be produced.

The theory is unifying in the sense that the same theory, but with different
inputs, can account for invariant representations of objects in the ventral
visual system (Rolls, 1992; Wallis & Rolls, 1997; Elliffe, Rolls, & Stringer,
2002; Rolls & Deco, 2002). It is a strength of the unifying concept introduced
in this article that the same hierarchical network that can perform compu-
tations of the type important in the ventral visual system can also perform
computations of a type important in the dorsal visual system.
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Our simulations support the hypothesis that the different response prop-
erties of MT and MST neurons from V1 neurons are determined in part by
the sizes of their receptive fields, with a larger receptive field needed to an-
alyze some global motion patterns. Similar conclusions were drawn from
simulation experiments performed by Sereno (1989) and Sereno and Sereno
(1991). This type of self-organization can occur with a Hebbian associative
learning rule operating on the feedforward connections to a competitive
network. However, experiment 1 showed that even for the computation
of planar global motion in intermediate layers such as MT, a trace-based
associative learning rule is better than a purely associative Hebbian rule
with noisy (probabilistic) local motion inputs, because the trace rule allows
temporal averaging to contribute to the learning. In experiments 2 and 3, the
trace rule is crucial to the success of the learning, in that the stimuli when
presented in different training locations did not overlap, so that the only
process by which the different transforms can be linked is by the temporal
trace learning rule implemented in the model (Rolls & Milward, 2000; Rolls
& Stringer, 2001). (We note that in a new development, it has been shown
that if different transforms of the training stimuli do overlap continuously
in space, then this overlap can provide a useful learning principle for in-
variant representations to be formed and requires only associative synaptic
modification; Stringer et al., 2006. It would be of interest to extend this
concept, which has been applied to the ventral visual system, to the dorsal
visual system.)

One type of perceptual analysis that can be understood with the the-
ory and simulations described here is how neurons can self-organize to
respond to the motion inputs produced by small objects when they are
seen on different parts of the retina. This is achieved by using memory-
trace-based synaptic modification in the type of architecture illustrated in
Figure 4a. The crucial stage for this learning is the top layer in Figure 4a
labeled Layer 2/3. The forward connections to the neurons in this layer
can form the required representation if they use a trace or similar learn-
ing rule, and the object motion occurs with some temporospatial continu-
ity. (Temporospatial continuity has been shown to be important in human
face invariance learning [Wallis & Bulthoff, 2001], and spatial continuity
over continuous transforms may be a useful learning principle [Stringer
et al., 2006].) This aspect of the architecture is what is formally similar
to the architecture of the ventral visual system, which can learn invariant
representations of stationary objects. The only difference required of the
networks is that the ventral visual stream network should receive inputs
from neurons that respond to stationary features such as lines or edges
and that the dorsal visual stream network should receive inputs from neu-
rons that respond to local motion cues. It is this concept that allows us
to propose that there is a unifying hypothesis that applies to some of
the computations performed by both the ventral and the dorsal visual
streams.
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The way in which position-invariant representations in the model de-
velop is illustrated in Figure 4a, where, in the top layer labeled layer 3, in-
dividual neurons receive information from different parts of layer 2, where
different neurons can represent the same object motion but in different
parts of visual space. In the model, layer 2 can thus be thought of as cor-
responding to some neurons in area MT, in which direction selectivity for
elementary optic flow components such as rotation, deformation, and ex-
pansion and contraction is not position invariant (Lagae et al., 1994). Layer
3 in the model can in the same way be thought of as corresponding to area
MST, in which direction selectivity for elementary optic flow components
such as rotation, deformation, and expansion and contraction is position
invariant for 40% of neurons (Lagae et al., 1994). A further correspondence
between the model and the brain is that neurons that respond to global
planar motion are found in the brain in area MT (Movshon et al., 1985;
Newsome et al., 1989) and in the model in layer 1, whereas neurons in V1
and V2 do not respond to global motion (Movshon et al., 1985; Newsome
et al., 1989), and correspond in the model to the input layer of Figure 4a.

Another type of perceptual analysis that can be understood with the the-
ory and simulations described here is the object-based view-independent
representation of objects, exemplified by the ability to see that an “ended”
object is rotating clockwise about one of its axes. It was shown in experi-
ment 4 that these representations can be formed by combining information
from both the dorsal visual stream (about global motion) and the ventral
visual stream (about object shape and/or luminance features). For these
representations to be learned, a trace associative or similar learning rule
must be used while the object transforms from one view to another (e.g.,
from upright to inverted).

A hierarchical network with the general architecture shown in Figure 2
with separate analyses of form and motion that are combined at a final stage
(as in experiment 4) is also useful for biological motion, such as representing
a person walking (Giese & Poggio, 2003). However, the network described
by Giese and Poggio is not very biologically plausible, in that it performs
MAX functions to help with the computational issue of transform invariance
and does not self-organize on the basis of the inputs so that it must be
largely hand-wired. The issue here is that Giese and Poggio suppose that
a MAX function is performed to select the maximally active afferent to
a neuron, but there is no account of how afferents of just one type (e.g.,
a bar with a particular orientation and contrast) are being received by
a given neuron. Not only is no principle suggested by which this could
be achieved, but also no learning algorithm is given to achieve this. We
suggest therefore that it would be of interest to investigate whether the
more biologically plausible self-organizing type of network described in
this article can learn on the basis of the inputs being received to respond to
biological motion. To do this, some form of sequence sensitivity would be
useful.
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The theory described here is appropriate for the global motion analy-
sis required to analyze the flow fields of objects as they translate, rotate,
expand (loom), or contract, as shown in experiments 1 to 3. The theory
thus provides a model of some of the computations that appear to occur
along the pathway V1–V2–MT–MST, as neurons of these types are gener-
ated along this pathway (see section 1). The theory described here can also
account for global motion in an object-based coordinate frame as shown in
experiment 4. Neurons with these properties have been found in the cor-
tex in the anterior part of the macaque superior temporal sulcus, in which
neurons respond to a head when it is rotating clockwise about its own axis
but not counterclockwise, regardless of whether it is upright or inverted
(Hasselmo et al., 1989). The result of the inversion experiment shows that
these neurons are not just responding to global flow across the visual field,
but are taking into account information about the shape and features of
the object. Area STPa (the cortex in the anterior part of the macaque su-
perior temporal sulcus) contains neurons that respond to a rotating sphere
(Anderson & Siegel, 2005), and as shown in experiment 4, the present theory
could account for such neurons. Whether the present model could account
for the structure from motion also observed for these neurons is not yet
known. The theory could also account for neurons in area 7a of the parietal
cortex that may also respond to motion of an object about one of its axes
in an object-based way (Sakata et al., 1986). Neurons have also been found
in the primary motor cortex (M1) that respond similarly to neurons in area
7a when a monkey is solving a visually presented maze (Crowe, Chafee,
Averbeck, & Georgopoulos, 2004), but their visual properties are not suffi-
ciently understood to know whether the present model might apply. Area
LIP contains neurons that perform processing related to saccadic eye move-
ments to visual targets (Andersen, 1997), and the present theory may not
apply to this type of processing.

The model of processing utilized here in a series of hierarchically orga-
nized competitive networks with convergence at each stage (as illustrated
in Figure 2) is intended to capture some of the main anatomical and physi-
ological characteristics of the ventral visual stream of visual cortical areas,
and is intended to provide a model for how processing in these areas could
operate, as described in detail elsewhere (Rolls & Deco, 2002; Rolls & Treves,
1998). To enable learning along this pathway to result by self-organization
in the correct representations being formed, associative learning using a
short-term memory trace has been proposed (Rolls, 1992; Wallis & Rolls,
1997; Rolls & Milward, 2000; Rolls & Stringer, 2001; Rolls & Deco, 2002).
Another approach used in continuous transformation learning utilizes as-
sociative learning without a temporal trace and relies on close exemplars
of stimuli being provided during the training (Stringer et al., 2006). What
we propose here is that similar connectivity and learning processes in the
series of cortical pathways in the dorsal visual stream that includes V1–V2–
MT–MST and onward connections to the cortex in the superior temporal



166 E. Rolls and S. Stringer

sulcus and area 7a could account for the invariant representations of the
flow fields produced by moving objects.

In relation to the number of stimuli that could be learned by the system,
we note that the network simulated is relatively small and was designed to
illustrate the new computational hypotheses introduced here rather than
to analyze the capacity of such feature hierarchical systems. We note in
particular that the network simulated has 1024 neurons in each layer and
100 inputs to each neuron in layers 2 to 4. In contrast, it has been estimated
that perhaps half of the macaque brain is involved in visual processing, and
typically each neuron has on the order of 104 inputs. It will be of interest
using much larger simulations in the future to address capacity issues of
this class of network. However, we note that because the network can
generalize to rotational flow fields generated by untrained stimuli, as shown
in experiment 7, separate representations for the flow fields generated by
every object may not be required, and this helps to reduce the number of
separate representations that the network may be required to learn.

In contrast to some other theories, the theory developed here utilizes a
single unified approach to self-organization in the dorsal and ventral visual
systems. Predictions of the theory described here include the following.
First, use of a trace rule in the dorsal as well as ventral visual system is
predicted. (Thus, differences in, for example, the time constants of NMDA
receptors, or persistent poststimulus firing, either of which could implement
a temporal trace, would not be expected.) Second, a feature hierarchy is a
useful way for understanding details of the operation of the ventral visual
system, but can now be used as a clarifying concept for how the details of
representations in the dorsal visual system may be built. Third, the theory
predicts that neurons specialized for motion detection by using differences
in the arrival times of sensory inputs from different retinal locations need
occur at only one stage of the system (e.g., in V1) and need not occur
elsewhere in the dorsal visual system. These are labeled as local motion
neurons in Figure 4a.
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