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a b s t r a c t

Over successive stages, the visual system develops neurons that respond with view, size and position
invariance to objects or faces. A number of computational models have been developed to explain how
transform-invariant cells could develop in the visual system. However, a major limitation of computer
modelling studies to date has been that the visual stimuli are typically presented one at a time to
the network during training. In this paper, we investigate how vision models may self-organize when
multiple stimuli are presented together within each visual image during training. We show that as
the number of independent stimuli grows large enough, standard competitive neural networks can
suddenly switch from learning representations of the multi-stimulus input patterns to representing
the individual stimuli. Furthermore, the competitive networks can learn transform (e.g. position or
view) invariant representations of the individual stimuli if the network is presented with input patterns
containingmultiple transforming stimuli during training. Finally, we extend these results to amulti-layer
hierarchical networkmodel (VisNet) of the ventral visual system. The network is trained on input images
containing multiple rotating 3D objects. We show that the network is able to develop view-invariant
representations of the individual objects.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

An important problem in understanding natural vision is
how the brain can build invariant representations of individual
objects even when multiple objects are present in a scene. What
mechanisms enable the learning to proceed without the different
objects interacting with each other to interfere with the learning
of individual object representations? In this paper we describe and
analyze an approach to this which relies on the statistics of natural
environments. The approach takes account of the statistics that any
object can be present with any one of a number of other objects or
backgrounds during learning, with some statistical independence
of any one object from other objects in the scene.

Over successive stages, the visual system develops neurons that
respond with view, size and position (translation) invariance to
objects or faces (Desimone, 1991; Perrett & Oram, 1993; Rolls,
1992, 2000; Rolls & Deco, 2002; Tanaka, Saito, Fukada, & Moriya,
1991). For example, it has been shown that the inferior temporal
visual cortex has neurons that respond to faces and objects
with translation (Ito, Tamura, Fujita, & Tanaka, 1995; Kobotake
& Tanaka, 1994; Op de Beeck & Vogels, 2000; Tovee, Rolls, &
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Azzopardi, 1994), size (Ito et al., 1995; Rolls & Baylis, 1986),
and view (Booth & Rolls, 1998; Hasselmo, Rolls, Baylis, & Nalwa,
1989) invariance. Such invariant representations, once learned by
viewing a number of the transforms of the object, are then useful
in the visual system for allowing one-trial learning of, for example,
the stimulus–reward association of the object, to generalize to
other transforms of the same object (Rolls, 2005; Rolls & Deco,
2002).

A number of computational models have been developed to
explain how transform-invariant cells could develop in the visual
system (Fukushima, 1980; Riesenhuber & Poggio, 1999; Rolls,
2008;Wallis & Rolls, 1997). Twomajor theories which have sought
to explain how transform-invariant representations could arise
through unsupervised training with real-world visual input are
trace learning (Földiák, 1991; Rolls & Milward, 2000; Wallis &
Rolls, 1997), and Continuous Transformation (CT) learning (Perry,
Rolls, & Stringer, 2006; Stringer, Perry, Rolls, & Proske, 2006). Trace
learning relies on the temporal continuity of visual objects in the
real world (as does slow feature analysis (Wiskott & Sejnowski,
2002)), while in contrast, CT learning relies on spatial continuity.

In most previous studies, however, of invariance learning in
hierarchical networks that model the ventral visual stream, only
one stimulus is presented at a time during training (Rolls &
Milward, 2000; Rolls & Stringer, 2006; Stringer et al., 2006; Wallis
& Rolls, 1997). In this paper we investigate whether, and if so
how, models of this type can self-organize during training when
multiple stimuli are presented together within each visual image.
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In Section 3 we show how a standard 1-layer competitive
network responds when trained on input patterns containing
multiple, e.g. pairs of, independent stimuli. As the number of
stimuli N increases, the number of possible input patterns which
are composed of pairs of stimuli N(N − 1)/2 grows quadratically.
For small numbers of stimuli N, the output neurons still represent
the paired-stimulus input patterns. However, for large enough N,
the output neurons begin to learn to respond to the individual
stimuli instead of the multi-stimulus input patterns used during
training. In thisway,we show that a standard competitive network
may suddenly switch from learning representations of the multi-
stimulus input patterns to representing the individual stimuli as
the number of independent stimuli grows large enough.

In Section 4 we continue to investigate how a 1-layer competi-
tive networkmay learn to process input patterns containingmulti-
ple stimuli. However, we now extend the simulations by allowing
the independent stimuli to transform, e.g. translate across the in-
put space, during training.We show that, evenwhen thenetwork is
trained on input patterns containing pairs of transforming stimuli,
a standard 1-layer competitive network is able to learn invariant
representations of the individual stimuli.

In Section 5 we extend these results to a full 4-layer
hierarchical feedforward network model (VisNet) of the ventral
visual processing stream. The visual input stimuli are rotating 3D
objects created using the OpenGL 3D image generation software.
We train the network on input images containingmultiple rotating
objects. We demonstrate that the network is able to develop view-
invariant representations of the individual objects.

2. A hypothesis on how learning can occur about single objects
even when multiple objects are present

We consider how learning about individual objects can occur
even when a number of objects are present. Consider a situation
that might occur in the real world in which an individual object
is present, but is accompanied by one other object from a set of
other objects. A possible series of trials might have (where each
number refers to an individual object) all possible pairs of objects.
For the case of N = 4 stimuli, there are a total of 6 paired-stimulus
training patterns used on different trials as follows: 1 + 2, 1 +

3, 1 + 4, 2 + 3, 2 + 4 and 3 + 4. We approach the categorization
that would occur using a competitive network, as this type of
network performs categorization, is biologically plausible, and is
the prototypical network involved in hierarchical models of object
recognition (Hertz, Krogh, & Palmer, 1991; Rolls & Deco, 2002).We
are interested in whether the network forms representations of
the object pairs actually shown during training, or whether it can
form, as desired for this application, separate representations of
each individual object.

Consider the associations between the activity of the input
neurons for each stimulus. For stimulus 1, the set of neurons that
provide the representation of stimulus 1 have high correlations
with each other.Moreover, these are higher correlations than those
between the neurons representing different stimuli. (This occurs
because on different trials the neurons representing stimulus 1 are
sometimes paired with those representing stimulus 2, sometimes
with those representing stimulus 3, etc.) We can calculate the
number of times that the neurons within a stimulus are active
simultaneously during one training epoch in which all pairs are
presented, and with N stimuli, this is N − 1. In contrast, the
neurons from different stimuli are co-active on only one occasion
in a training epoch. The ratio of the within-stimulus to between-
stimulus co-occurrences is thus N − 1 : 1. This increases with
the number of stimuli. Given that competitive networks effectively
build categories based on correlations between sets of afferents
to the network, we propose that as N increases, a stage will
Fig. 1. The architecture of a competitive neural network. There is an input layer
of cells with feedforward associatively modifiable synaptic connections onto an
output layer of cells. At each timestep during learning, an input pattern is applied
to the layer of input cells. Next, activity from the input layer is propagated through
the feedforward connections to activate a winning set of cells in the output layer.
Within the output layer there is feedback inhibition implemented by inhibitory
neurons not shown in the figure, which ensures that only a small subset of output
cells remains active. Next, the synaptic weights between the active input cells
and the active output cells are strengthened. In this way, the output cells become
associated with particular patterns of activity in the input layer.

be reached where instead of representing the pairs of stimuli
actually presented during training, the network will instead form
representations of the individual stimuli.We examinewhether this
transition occurs in Section 3.

3. Training a 1-layer competitive network with input patterns
which contain multiple independent stimuli

In this section we show how the mechanism described in
Section 2 operates in a 1-layer competitive network.

3.1. Model

The neural network architecture is shown in Fig. 1. The fully
connected 1-layer model has the architecture of a standard
competitive network (Hertz et al., 1991; Rolls & Deco, 2002). There
is an input layer of cells with feedforward associatively modifiable
synaptic connections onto an output layer of cells. At each timestep
during learning, an input pattern is applied to the layer of input
cells. Next, activity from the input layer is propagated through the
feedforward connections to activate a set of cells in the output
layer. Within the output layer there is competition implemented
by feedback inhibition and the threshold nonlinearity of neurons.
Next, the synaptic weights between the active input cells and
the active output cells are strengthened by associative (Hebbian)
learning. The output cells self-organize to represent and thus
categorize different patterns of activity in the input layer.

The competitive network contained 100 input cells, 100 output
cells, and was fully connected. Each simulation experiment used
a set number N of independent stimuli. The stimulus patterns
are represented by the activation of non-overlapping contiguous
blocks of 100/N cells. Stimulus 1 is represented by cells 1 to
100/N, stimulus 2 by the next block of 100/N cells, and so on up
to N stimuli. For the case N = 4, Fig. 2 (left) shows the input
representations of the 4 independent stimuli. (In this paper, by
‘independent stimuli’ we refer to stimuli of the type labelled as 1–4
in Fig. 2 left, and note that each such stimulus is paired with each
of the other stimuli equally often during the training.) Fig. 2 (right)
shows the 6 paired-stimulus input patterns that were used to train
the 1-layer competitive network for the case N = 4, in which the
training patterns are: 1 + 2, 1 + 3, 1 + 4, 2 + 3, 2 + 4 and 3 + 4.

During training, the agent is presented in turn with each of
the possible N(N − 1)/2 paired-stimulus input patterns. At the
presentation of each training pattern, the input cells are set to fire
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Fig. 2. The input representations of the independent stimuli and the paired-
stimulus input patterns used to respectively test and train the 1-layer competitive
network. The competitive network has 100 input cells arranged in a vertical line.
Each simulation experiment uses a set number of independent stimuli N. The
stimulus patterns are represented by the activation of non-overlapping contiguous
blocks of 100/N cells. Stimulus 1 is represented by cells 1 to 100/N, stimulus 2 by
the next block of 100/N cells, and so on up to N stimuli. The case of N = 4 stimuli
is represented in the figure. Also shown are the corresponding 6 paired-stimulus
training patterns. For the case of N = 4 stimuli, there are a total of 6 paired-stimulus
training patterns as follows: 1+ 2, 1+ 3, 1+ 4, 2+ 3, 2+ 4 and 3+ 4. The cells that
are active in each pattern are shown as black.

according to the paired-stimulus activity training patterns shown
in Fig. 2 (right). The activity from the input layer is then propagated
through the feedforward synaptic connections to activate a set of
cells in the output layer. (The synaptic weights from the input
to output cells are initially set to random values from a uniform
distribution in the range 0–1, and then normalized to a vector
length of 1. This is standard in competitive networks, and ensures
that some firing of output cells will be produced by the inputs,
with each output cell likely to fire at a different rate for any one
input stimulus.) The activations of the cells in the output layer are
calculated according to

hi =
∑
j

wijrj, (1)

where hi is the activation of output cell i, rj is the firing rate of
input cell j, andwij is the synaptic weight from input cell j to output
cell i.

The activation hi of each neuron was converted to the firing
rate ri of each neuron using a threshold linear activation, and
adjusting the threshold to achieve a prescribed sparseness of
the representation in the output cells. (This represents a process
by which mutual inhibition between the output cells through
inhibitory interneurons implements competition to ensure that
there is only a small winning set of output cells left active.) The
sparseness a of the representation thatwas prescribedwas defined,
by extending the binary notion of the proportion of neurons that
are firing, as follows

a =

(
M∑
i=1

ri/M
)2

M∑
i=1

r2i /M

, (2)

where ri is the firing rate of the ith neuron in the set of M neurons
(Rolls & Treves, 1990, 1998). In the simulations, the competition
was achieved in an iterative cycle by feedback adjustment of the
threshold for the firing of neurons until the desired sparseness
was reached. The threshold was the same for all neurons. With
the graded firing rates of the neurons, the result was that typically
the proportion of neurons with non-zero firing rates after the
competitionwas numerically somewhat larger than the sparseness
value given as a parameter to the network.
Next, the synaptic weights between the active input cells
and the active output cells are strengthened according to the
associative Hebb learning rule

δwij = krirj (3)

where δwij is the change of synaptic weight, and k is the learning
rate constant which was set to 0.001 unless otherwise stated.
To prevent the same few neurons from always winning the
competition, the synaptic weight vectors are set to unit length
after each learning update for each training pattern. To implement
weight normalization the synapticweightswere rescaled to ensure
that for each output cell i we have√∑

j

(wij)2 = 1, (4)

where the sum is over all input cells j. Such a renormalization pro-
cess may be achieved in biological systems through heterosynap-
tic long-term depression that depends on the existing value of the
synaptic weight (Oja, 1982; Rolls & Deco, 2002; Rolls & Treves,
1998). (Heterosynaptic long-term depression in the brain was de-
scribed by Levy (1985) and Levy and Desmond (1985); see Brown,
Kairiss, and Keenan (1990)).

The presentation of all possible N(N − 1)/2 stimulus-pair
training patterns corresponded to one training epoch. For each
experiment with fixed N, there were 10,000 training epochs to
ensure convergence of the synaptic weights.

For each experiment, after training, the network was tested
with N single-stimulus input patterns, each of which contained a
different one of the independent stimuli as illustrated at the left
of Fig. 2. During this testing, for each output cell we recorded how
many of the N stimuli the cell responded to. The output neurons
tended to be binary, that is to either be firingwith a high rate or not
at all for a given stimulus (as will be evident when Figs. 3 and 4 are
described). An output cell was classed as responsive to a particular
input stimulus if presentation of the input stimulus elicited a firing
rate in the output cell which was greater than 50% of the maximal
firing rate of any output cell to any stimulus.

3.2. Simulation results

The results described next showed that if N ≤ 5 the network
represented every one of the N(N − 1)/2 paired-stimulus input
patterns, and generally none of the N single-stimulus input
patterns. If N ≥ 6 the network represented generally none of the
N(N − 1)/2 paired-stimulus input patterns, and all of the N single-
stimulus input patterns. These results are shown in Table 1. We
remind the reader that the network was in all cases trained on the
N(N − 1)/2 paired-stimulus input patterns.

Table 1 summarizes the results obtained from simulation
experiments, which show how the output cells of the 1-layer
competitive network learn to represent the input data when
different numbers of independent stimuli N are used to generate
multi-stimulus training patterns. For the experimental results
shown in Table 1, the population sparseness of the output firing
rates awas always set to 0.05, and the average results obtainedover
6 separate simulation experiments for a particular fixed value of N
are shown. In all of the simulation experiments, after training, the
output cellswere found to be responsive to either 0 stimuli, a single
stimulus, or 2 stimuli. No cells were ever found which responded
to 3 or more stimuli. The standard errors of the means shown in
Table 1 were in most cases less than 1. In all these simulations
approximately equal numbers of cells learned to respond to each
of the single stimuli for N ≥ 6 or paired stimuli if N ≤ 5 (as will be
made evident in Fig. 4).

The ability of the network to learn to represent the independent
component stimuli when N is large is quite robust with respect
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Fig. 3. The firing rate responses of a selection of 10 output cells to N = 10 independent stimuli, after the network has been trained on all possible stimulus-pair patterns
constructed from the stimuli. The sparseness of the output firing rates was set to 0.2 during training and testing. For this test case, all 100 output cells learned to respond to
a single stimulus, with disjoint subsets of approximately 10 output cells having learned to respond to each of the independent stimuli. This figure shows the responses of a
selection of 10 output cells, each of which had learned to respond to a different one of the 10 stimuli.
to the sparseness of the output firing rates a, as shown by the
results obtained for different values of the sparseness and N =

10 in Table 2. For the wide range of sparseness values tested,
there were always mainly cells that responded only to a single
independent stimulus, and rarely more than a few cells that
learned to respond to the paired-stimulus training patterns. As
before, the average values for 6 runs are shown, and the standard
errors were small. With small values of the sparseness parameter
a, only a few neurons were activated by a given stimulus, andmost
of the neurons therefore remained unallocated to any stimulus,
retaining their initial random synaptic weights. With a = 0.2
approximately 20 of the 100 output cells were activated by each
input stimulus-pair pattern during training. This corresponds to
each single stimulus activating approximately 10 cells, and this is
why as shown in Table 2 all 100 output cells became responsive
to only a single stimulus after training, with a different set of
10 output cells associated with each of the 10 stimuli. Moreover,
the number of output neurons is not the factor that determines
the representations formed, for when the transition occurs to
represent individual stimuli (see Table 1), the number of stimuli
N equals 6, the number of stimulus pairs is 15, and the number of
output neurons is 100.



892 S.M. Stringer, E.T. Rolls / Neural Networks 21 (2008) 888–903
Fig. 4. The synaptic weights after the network has been trained with paired-stimulus input patterns constructed from different numbers of stimuli N. The top row shows
results for the case N = 4 stimuli with a = 0.14. On the left is shown the 6 paired-stimulus input patterns presented during training (using the same conventions as in Fig. 2),
while on the right is shown the synaptic weight matrix within the network after training. In the weight matrix plots, dark shading indicates a high weight value. In the plot
of the synaptic weights, the output cells have been ordered to reveal the underlying weight structure which developed during training. The synaptic weights show that the
output cells have typically learned to respond to pairs of stimuli, which correspond to the 6 original paired-stimulus input patterns presented during training. The bottom
row shows results for the case N = 10 stimuli with a = 0.2. On the left are shown some of the 45 paired-stimulus training patterns, while on the right is shown the synaptic
weight matrix after training. As above, the output cells have been ordered to reveal the underlying weight structure which developed during training. It can be seen that the
weight matrix has a block-diagonal structure, which clearly shows that the output cells have each learned to respond to one particular stimulus.
Table 1
A summary of how the output cells of the 1-layer competitive network learn to
represent the input data when different numbers of independent stimuli N are used
to generate multi-stimulus training patterns

Number of
stimuli N

Number of cells which
respond to 1 stimulus

Number of cells which respond to 2
stimuli

3 0.2 18.0
4 0.0 36.0
5 0.0 60.0
6 12.3 0.0
7 18.8 0.0
8 27.5 0.2
9 35.7 0.3

10 44.8 1.5

For each value of N, average results were obtained over 6 simulation runs. For these
experiments, the sparseness of the output firing rates a was always set to 0.05. It
can be seen that when there are a small number of stimuli, i.e. for N = 3 to 5,
the output cells typically learn to respond to pairs of stimuli, corresponding to the
multi-stimulus input patterns which the network was exposed to during training.
However, when the number of stimuli N is increased to 6 or more, the output cells
typically learn to respond to only a single one of the stimuli. Thus, for large numbers
of stimuli N, the output cells of the competitive network learn to represent the N
individual independent stimuli rather than the N(N − 1)/2 multi-stimulus training
patterns, which the network was exposed to during training.

Examples of the firing rates of the output neurons in these
simulations after training are shown in Fig. 3 (obtained for the case,
N = 10 stimuli and the output firing rate sparseness set to 0.2). In
each plot, the cell responds to only one of the 10 stimuli.

The behavior of the competitive network can be further
understood from the synaptic weight matrices shown in Fig. 4. The
top row shows results for the case, N = 4 stimuli with a = 0.14.
The synaptic weights show that the output cells have typically
learned to respond to pairs of stimuli, which correspond to the 6
original paired-stimulus input patterns presented during training.
The bottom row shows results for the case, N = 10 stimuli with
a = 0.2. It can be seen that the weight matrix has a block-diagonal
Table 2
A summary of how the output cells of the 1-layer competitive network learn to
represent the input datawhen the level ofmutual inhibitionwithin the output layer
is varied in order to control the sparseness of the output firing rates a

Sparseness of
output firing a

Number of cells which
respond to 1 stimulus

Number of cells which respond
to 2 stimuli

0.01 11.2 0.0
0.02 14.7 0.0
0.05 45.5 1.0
0.1 69.3 9.3
0.2 100.0 0.0
0.5 66.3 0.3

For these experiments, the number of independent stimuli N was always set to 10.
It can be seen that, with a relatively large number of N = 10 stimuli, the output
cells mostly learned to respond to only a single one of the stimuli across a wide
range of values of the sparseness of the output firing rates a. However, the number
of output cells which responded to a single stimulus was maximized when the
output sparseness a was set to 0.2, where it can be seen that all 100 output cells
are responsive to only a single stimulus.

structure, which clearly shows that the output cells have each
learned to respond to only one of the independent stimuli. Since
the blocks on the diagonal are almost square, the weight matrix
also confirms that the output cells are distributed fairly evenly
among the 10 stimuli, with disjoint subsets of approximately
10 output cells having learned to respond to each of the 10
independent stimuli.

The simulations described above were performed with 10,000
training epochs to ensure convergence during learning. However,
similar effects can still be observed after far fewer training epochs.
We repeated an experiment with N = 10 independent stimuli and
the sparseness of the output firing rates set to 0.2. However, this
time we increased the learning rate to k = 0.01 and used only
100 training epochs. This led to identical results to those shown
in row 5 of Table 2. Thus, 100 training epochs were enough to
ensure that all of the output cells learned to respond to a single
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stimulus. Further simulations showed that 5, or even as few as 1
training epoch, produced the same change of behavior with low N
producing paired-stimulus representations, and N ≥ 6 producing
single-stimulus representations. Further simulations showed that
the effects described were obtained with random order of the
training patterns as well as a fixed order of the training patterns
during each training epoch.

The reason why increasing the number of independent stimuli
causes the competitive network to switch from learning to
represent the paired-stimulus training patterns to representing the
independent stimuli may be understood by examining how often
individual input neurons are co-active during training. The number
of times that the neurons within a stimulus are simultaneously
active during one training epoch in which all stimulus pairs
are presented is N − 1. In contrast, the neurons from different
stimuli are co-active on only one occasion in a training epoch. The
ratio of the within-stimulus to between-stimulus co-activations
of input neurons is thus (N − 1) : 1 (where N is the number of
stimuli or objects). Given that competitive networks effectively
build categories based on correlations between sets of input
neurons to the network, as N increases, a stage is reached where
instead of representing the pairs of stimuli actually presented
during training, the network instead forms representations of the
individual independent stimuli. FromTable 1 it can be seen that the
switch from representing the paired-stimulus training patterns to
representing the independent stimuli occurred at N = 6 stimuli.

The mechanism of this learning is clear in relation to the
associations or correlations that are present between neurons that
are part of the same single stimulus; and between neurons that
are parts of different stimuli. With the stimulus set used, in the
case of N = 10 and one whole training epoch with the pair-stimuli
used during training, the afferent neurons for any one stimulus
will have been co-active on 9 training trials, whereas the same
afferent neurons for the same stimulus will have been co-active
on only 1 trial with any of the other neurons relating to other
stimuli. Thus for an output neuron that is activated by the first
single stimulus, there will have been 9 occasions on which the
active synapses are strengthened by associative learning, and only
1 trial on which any other set of synapses active for a different
stimulus has been strengthened by associative learning. Thus in
principle with a simple Hebbian associative synaptic modification
rule (shown in Eq. (3)) the within single-stimulus synapses will
be 9 times stronger than the synapses from the other stimuli. It
is this that results in the output neurons building much stronger
representations of each single stimulus than of the stimulus pairs
presented during training, with N = 10. Because with large N the
synapses become so much stronger onto a given output neuron
by associativity than the synapses from the other single patterns
presented during learning, the output of the system becomes
dominated by the connections between the single-stimulus co-
active afferents, and the system represents the single-stimulus
patterns, even though during training they have been presented on
all trialswith other single-stimulus patterns.We note thatwith the
weight normalization used (Eq. (4)), the smallest synaptic weights
will approach zero.

4. Learning transform-invariant representations of multiple
stimuli in a 1-layer competitive network

It is important for the visual system to be able to produce
transform-invariant representations of objects, so that the same
output representation can be activated by for example the different
locations or views of an object (Riesenhuber & Poggio, 1999; Rolls
& Deco, 2002). We now hypothesize that invariance learning could
be combined with the mechanism for learning about individual
objects described in Sections 2 and 3. We test this hypothesis in
this Section. If the hypothesis is supported, this proposal provides
a powerful mechanism for learning invariant representations of
objects even in cluttered scenes composed of multiple objects.

Invariance learning can be implemented using the temporal
continuity inherent in an object as it is transforming, or in the
spatial continuity that is present from transform to transform
as the object transforms continuously. In this paper, we take as
an example the learning of invariances using spatial continuity
that underlies Continuous Transformation learning (Stringer et al.,
2006). First we describe Continuous Transformation learning
(Section 4.1). Then we test whether it can be successfully
combined with the mechanism for learning about individual
objects described in Sections 2 and 3.

4.1. Continuous transformation (CT) learning

When competitive networks self-organize with spatially con-
tinuously transforming input stimuli, individual neurons can learn
to respond to the different transforms of each stimulus using a
purely associative (Hebbian) synaptic modification rule (Stringer
et al., 2006). Continuous Transformation (CT) learning has been
proposed as a way in which transform-invariant representations
may develop in the ventral visual system (Stringer et al., 2006). The
learning mechanism is quite general, and may operate in brain ar-
eas with the architecture of a competitive network that are trained
with continuous patterns.

The Continuous Transformation learning process is illustrated
in Fig. 5, and operates as follows. A stimulus is initially situated at
a first location in the input layer, and a small number of input cells
are activated. Activity is then propagated through feedforward
synaptic connections, from the input cells to the layer of output
cells. Next, a small winning set of neurons in the output layer will
modify (through associative learning) their afferent connections
from the input layer to respond well to the input cells which
represent the stimulus in its first location or transform. However,
there is spatial continuity in the way the stimulus transforms
because the stimulusmoves continuously through the input space,
one neuron at a time. Because successive stimulus transforms
overlap, many of the same input cells are still active when the
stimulus is at a nearby location. These active input neurons with
their strengthened synapses ensure that the same output neurons
will be activated because some of the active afferents are the same
as when the stimulus was in the first position. The key point is that
if these afferent connections have been strengthened sufficiently
while the stimulus is in the first location, then these connections
will be able to continue to activate the same neurons in the
output layer when the stimulus is situated in overlapping nearby
locations. Then any newly active synapses have conjunctive pre-
and post-synaptic activity because of the move of location of the
stimulus, and these synapses are increased in strength by Hebbian
associativity. As can be seen in Fig. 5, the process can be continued
for subsequent shifts, provided that a sufficient proportion of input
cells stay active between individual shifts of location. This process
can lead individual output cells to learn to respond to a particular
stimulus over all locations. A fuller description of Continuous
Transformation learning, and simulation results in the context of
invariant object recognition, is provided by Stringer et al. (2006)
and Perry et al. (2006).

4.2. Learning transform-invariant representations of multiple stimuli

The hypothesis we explore next is that a 1-layer com-
petitive network can combine the Continuous Transformation
learning mechanism for learning transform-invariant representa-
tions (Stringer et al., 2006), with the learning dynamics described
above in Sections 2 and 3 for developing separate representations
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Fig. 5. An illustration of how Continuous Transformation learning would function
in a network with a single layer of forward synaptic connections between an input
layer of neurons and an output layer. Initially the forward synaptic weights are
set to random values. The top part (a) shows the initial presentation of a stimulus
to the network in position 1. Activation from the (shaded) active input cells is
transmitted through the initially random forward connections to stimulate the cells
in the output layer. The shaded cell in the output layer wins the competition in
that layer. The representation is schematic, andmany cells might be active after the
competition. Theweights from the active input cells to the active output neuron are
then strengthened using an associative learning rule (an example ofwhich is shown
in Eqs. (3) and (4)). The bottom part (b) shows what happens after the stimulus is
shifted by a small amount to a new partially overlapping position 2. As some of
the active input cells are the same as those that were active when the stimulus
was presented in position 1, the same output cell is driven by these previously
strengthened afferents to win the competition again. The rightmost shaded input
cell activated by the stimulus in position 2, which was inactive when the stimulus
was in position 1, now has its connection to the active output cell strengthened
(denoted by the dashed line). Thus the same neuron in the output layer has learned
to respond to the two input patterns that have similar vector elements in common.
As can be seen, the process can be continued for subsequent shifts, provided
that a sufficient proportion of input cells stay active between individual shifts.
During the learning, the synaptic weight vectors are normalized as is standard in
competitive networks, so that no single neuron comes to dominate the competition,
and different neurons can encode different stimuli.

of independent stimuli even when multiple stimuli are shown si-
multaneously. That is, we show that when a 1-layer competitive
network is exposed to sequences of input patterns containingmul-
tiple transforming stimuli during training, the network is able to
develop separate representations of the different stimuli, aswell as
simultaneously developing transform-invariant representations of
those stimuli.

We consider in this section a simple example of invariance
learning with multiple objects present on every trial. Each object
can occur in a number of different transforms, with one transform
of each object presented on each trial. The goal of the self-
organizing (unsupervised) network is to map all transforms of
each object to a category of output specific for that object. This
thus provides a simple model of invariance learning. This has to
be accomplished even when multiple (in this case two) objects
are presented on every trial. Part of the difficulty of the problem
is that the inputs that represent the most distant transforms of
a given object do not overlap in the input space. We simulated
this in the simplest model that would allow these processes to be
investigated. This meant using non-overlapping representations of
each object in a 1-layer network, thoughwehave shown elsewhere
that whether the representations overlap or not is not crucial to
the type of learning with multiple objects being investigated here
(Stringer, Rolls, & Tromans, 2007). We emphasize that two sets of
afferents, one set for each object, are active on every learning trial;
and the problem to be solved is how to map these simultaneously
presented inputs to different output categories.

4.3. Model and stimuli

The neural network architecture used in this Section remains
similar to that described in Section 3 above and shown in Fig. 1.
However, the input patterns are now altered to allow the stimuli
to be presented in different transforms, as described next.

In the 1-layer competitive network simulationswith transform-
invariant representations, there are N = 10 independent stimuli,
each of which can occur in 11 transforms. (In Section 3 it was
shown that for N = 10 stimuli the network was able to develop
separate representations of the individual stimuli.) Fig. 6 shows
schematically the input representations of the 11 transforms of
each of the 10 independent stimuli.

During training, the network is presented with every possible
pair of stimuli. The network is presented with training sequences
of 11 consecutive transforms for each stimulus pair, with the two
stimuli transforming together in lockstep. That is, for each pair
of stimuli, the network is presented with a sequence of 11 input
patterns which contain the 11 consecutive transforms of each
stimulus. Examples of these stimulus-pair training sequences are
shown on the left of Fig. 8. The presentation of the 11 transforms of
all possible N(N−1)/2 stimulus pairs corresponded to one training
epoch. Therewere 10,000 training epochs to ensure convergence of
the synaptic weights. After training, the network was tested with
all 11 transforms of each of the N = 10 stimuli.

4.4. Simulation results

The results described next confirm that the network can
successfully combine the Continuous Transformation learning
mechanism for learning transform-invariant representations with
the learning dynamics described above in Sections 2 and 3 for
developing separate representations of independent stimuli. After
training the network, all of the output cells were found to be
responsive to only one of the independent stimuli. Furthermore,
each output cell responded to all of the 11 transforms of its
favoured stimulus. It was also found that approximately equal
numbers of output cells responded to each of the stimuli (as is also
evident from the weight matrix shown in Fig. 8).

Fig. 7 shows the firing rate responses of two typical output cells,
after the network has been trained on pairs of N = 10 stimuli,
each of which was shifted continuously through 11 transforms
(i.e. locations) during learning. The sparseness of the output firing
rates was set to 0.2 during training and testing. For this test case,
each of the 100 output cells learned to respond to all transforms
of one particular stimulus, but did not respond to any of the
transforms of the other stimuli. In this way, each of the output
cells developed a transform-invariant representation of one of the
stimuli. Furthermore, disjoint subsets of approximately 10 output
cells learned to respond in a transform-invariant way to each of
the independent stimuli. Thus, the N = 10 input stimuli were all
equally well represented by the output layer of the network. The
upper two rows show the response of output cell 9 to each of the
N = 10 stimuli in each of their 11 transforms. It can be seen that
output cell 9 responds to stimulus 3 over all 11 transforms, but does
not respond to any of the other stimuli in any location. The lower
two rows show the response of output cell 8 to each of the N = 10
stimuli in each of their 11 transforms. It can be seen that output
cell 8 responds to stimulus 7 over all 11 transforms, but does not
respond to any of the other stimuli in any location.

Fig. 8 shows the synaptic weights after the training. On the left
are shown some of the paired-stimulus training patterns. On the
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Fig. 6. In the 1-layer competitive network simulations with transform-invariant representations, there are N = 10 independent stimuli, each of which can occur in 11
transforms. Here we show the input representations of the 11 transforms of each of the 10 independent stimuli (using the same conventions as in Fig. 2). (The diagram
explicitly shows the 11 transforms of stimuli 1, 2 and 10. The intervening stimuli 3 to 9 transform similarly.) The 10 stimulus patterns are each represented by the activation
of a contiguous block of 10 cells. Each stimulus undergoes transformation by continuously shifting the location of the stimulus by one input neuron at a time. During training,
each stimulus is shifted through 11 overlapping locations. Given that each stimulus is 10 neurons long, this means that the 11 transforms of each stimulus cover 20 input
neurons. This ensures that the first and last transforms of each 10-neuron stimulus do not overlap. In order to ensure that none of the input representations of the 10 different
stimuli overlap, the 11 transforms of each stimulus cover a unique disjoint block of 20 input neurons. The input layer is thus set to contain 200 neurons in order to be able
to represent all of the transforms of all of the stimuli.
right is shown the synaptic weight matrix after training. For the
weightmatrix plot, the output cells have been ordered to reveal the
underlying weight structure which developed during training. It
can be seen that the weight matrix has a block-diagonal structure,
which clearly shows that each of the output cells has learned to
respond to all 11 transforms of one particular stimulus, but has not
learned to respond to any of the other stimuli. Since the blocks on
the diagonal are almost square, the weight matrix also confirms
that the output cells are distributed fairly evenly among the 10
stimuli, with disjoint subsets of approximately 10 output cells
having learned to respond in a transform-invariant way to each of
the 10 independent stimuli.

Although the above simulation used 10,000 training epochs,
similar results were also obtained with only 5 training epochs
as long as the learning rate was increased to k = 0.01. Over
six simulation runs with 5 training epochs, an average of 61.0
output cells (with standard error 2.4) still learned to respond to all
transforms of one particular stimulus, but did not respond to any
of the transforms of the other stimuli.

During invariance learning, the presentation of one object in
the real world might be interrupted by another stimulus, and it is
of interest to discover whether transform-invariant learning can
operate when objects are interleaved during training. This is a
property of continuous transformation learning (Stringer et al.,
2006), but has not been investigated before when there is more
than one object present during training. In further simulations, on
any one training epoch the networkwas firstly trainedwith images
containing the first transforms of every possible pair of objects,
then with images containing the second transforms of every
possible pair of objects. A learning similar to that already described
was found, with the synaptic weight matrix almost identical to
that shown in Fig. 8. Six simulation runs in total were performed
with different initial random synaptic weights. For all six of the
simulations, each of the 100 output cells learned to respond to
all transforms of one particular object, but did not respond to any
of the transforms of the other objects. In this way, each of the
output cells developed a transform-invariant representation of one
of the objects. Furthermore, in all simulations, disjoint subsets of
approximately 10 output cells learned to respond in a transform-
invariant way to each of the independent objects. Thus, the N = 10
input stimuli were all equally well represented by the output layer
of the network. Although these simulations used 1,000 training
epochs, similar results were also obtained with only 5 training
epochs. Over six simulation runswith 5 training epochs, an average
of 83.0 output cells out of 100 (with standard error 1.6) learned
to respond to all transforms of one particular object, but did not
respond to any of the transforms of the other objects. Also, in three
of the simulations there were no output cells which responded to
more than one object, while in the other three simulations there
was only one cell in each simulation which responded to more
than one object over all transforms. This experiment establishes
that even when different objects are interleaved during training,
the network can learn perfect invariant representations of objects
when trained with an associative (Hebb) rule with pairs of objects
present on every training trial in the scene.

During invariance learning, some of the transforms of an
individual object might not overlap at all in terms of the neurons
that are activated by each transform of the same object. Therefore,
an important question is whether continuous transformation
learning with a purely associative learning rule (which cannot
take advantage of the temporal proximity of non-overlapping
transforms of the same object) can still operate effectively
when the order of stimulus transforms is randomized. In this
case, spatially similar transforms of an individual object do not
necessarily occur close together in the training sequence. In further
simulations we showed that even when the order of stimulus
transforms is randomized so that spatially similar transforms of
an individual object do not occur close together, the system can
nevertheless use the spatial continuity present across the whole
set of transforms of an object to learn an invariant representation of
that object. This can occur evenwhen pairs of objects are presented
in a scene on each trial. The performance of the network was



896 S.M. Stringer, E.T. Rolls / Neural Networks 21 (2008) 888–903
Fig. 7. The firing rate responses of two typical output cells, after the network has been trained on pairs of N = 10 stimuli, each of which was shifted continuously through
11 transforms (i.e. locations) during learning (see the text).
Fig. 8. The synaptic weights after the network has been trained on pairs of N = 10 stimuli, each of which was shifted continuously through 11 transforms (i.e. locations)
during learning. The sparseness of the output firing rates was set to 0.2 during training and testing. On the left are shown some of the paired-stimulus training patterns
(using the same conventions as in Fig. 2). As an example, we have shown 11 transforms of stimulus pair 1+2 and 11 transforms of stimulus pair 1+3. On the right is shown
the synaptic weight matrix after training, where dark shading indicates a high weight value. For the weight matrix plot, the output cells have been ordered to reveal the
underlying weight structure which developed during training.
similar to that described above with interleaved object transforms
during training, with the synaptic weight matrix almost identical
to that shown in Fig. 8. In each of six simulations, it was found
that an average of 96.8 output cells (with standard error 0.83)
still learned to respond to all transforms of one particular object,
but did not respond to any of the transforms of the other stimuli.
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It was also found that approximately equal numbers of output
cells responded to each of the objects. Similar results were also
obtained with only 5 training epochs. Over six simulation runs
with 5 training epochs, an average of 61.8 output cells out of
100 (with standard error 3.9) learned to respond to all transforms
of one particular object, but did not respond to any of the
transforms of the other objects. No output cells were found in
any of the six simulations which responded to more than one
object. This experiment thus shows that in the situation described
in this paper of multiple stimuli always present in a scene during
training, the competitive network can nevertheless learn invariant
representations of each object, even when the transforms are
presented in random order, and the extreme transforms do not
overlap.

The results in this Section thus show that invariant represen-
tations of a stimulus can be learned even when there are multi-
ple stimuli simultaneously present during training. The network
learns separate representations of the different stimuli because
the set of inputs that characterize each object are more frequently
present with each other than they are with the active inputs that
represent different stimuli, even when different transforms of the
objects are occurring as part of the training.

5. Training a multi-layer feedforward network (VisNet) with
multiple 3D rotating stimuli

We now show how the learning mechanisms described above
can operate in a more biologically realistic model of transform
(e.g. view) invariant object recognition in the ventral visual
processing stream, VisNet (Wallis & Rolls, 1997). To do this, we
trained on a view invariance problem, inwhich each stimuluswas a
3D object shown in 90 views, and the aim was to test whether the
network could form view-invariant representations of individual
objects. What was different from any previous training attempted
with VisNet was that whenever one object was presented in
its sequence of rotations, another object was also presented
simultaneously, and also rotating in the same way. This enabled
us to test whether VisNet could form invariant representations of
each object. The nature of the object pairing was of the same form
described above, that is each objectwas pairedduring trainingwith
every other object.

The model architecture (VisNet) (Wallis & Rolls, 1997) is based
on the following: (i) A series of hierarchical competitive networks
with local graded inhibition. (ii) Convergent connections to each
neuron from a topologically corresponding region of the preceding
layer, leading to an increase in the receptive field size of neurons
through the visual processing areas. (iii) Synaptic plasticity based
on a Hebb-like learning rule to allow CT invariance learning.
In previous work, model simulations which incorporated these
hypotheses were shown to be capable of producing stimulus-
selective but translation and view-invariant representations of the
trained stimuli (Stringer et al., 2006). However, in these earlier
simulations, the stimuli were always presented one at a time
during learning. We now show how the VisNet architecture is able
to learn view-invariant representations of individual stimuli when
multiple stimuli are presented together during training.

The model consists of a hierarchical series of four layers of
competitive networks, corresponding to V2, V4, the posterior
inferior temporal cortex, and the anterior inferior temporal cortex,
as shown in Fig. 9. The forward connections to individual cells are
derived from a topologically corresponding region of the preceding
layer, using a Gaussian distribution of connection probabilities.
These distributions are defined by a radius which will contain
approximately 67% of the connections from the preceding layer.
The values used are given in Table 3.
Fig. 9. Left: Stylized image of the 4-layer network. Convergence through the
network is designed to provide 4th layer neurons with information from across the
entire input retina. Right: Convergence in the visual system V1: visual cortex area
V1; TEO: posterior inferior temporal cortex; TE: inferior temporal cortex (IT).

Table 3
Network dimensions showing the number of connections per neuron and the radius
in the preceding layer from which 67% are received

Dimensions Number of connections Radius

Layer 4 32 × 32 100 12
Layer 3 32 × 32 100 9
Layer 2 32 × 32 100 6
Layer 1 32 × 32 272 6
Retina 128 × 128 × 32 – –

Table 4
Layer 1 connectivity

Frequency 0.5 0.25 0.125 0.0625
Number of connections 201 50 13 8

The numbers of connections from each spatial frequency set of filters are shown.
The spatial frequency is in cycles per pixel.

Before stimuli are presented to the network’s input layer they
are pre-processed by a set of input filters which accord with the
general tuning profiles of simple cells in V1. The input filters used
are computed by weighting the difference of two Gaussians by a
third orthogonal Gaussian according to the following:
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where f is the filter spatial frequency, θ is the filter orientation,
and ρ is the sign of the filter, i.e. ±1. Individual filters are tuned
to spatial frequency (0.0625 to 0.5 cycles/pixel); orientation (0◦

to 135◦ in steps of 45◦); and sign (±1). The number of layer
1 connections to each spatial frequency filter group is given in
Table 4.

The activation hi of each neuron i in the network is set equal to
a linear sum of the inputs yj from afferent neurons j weighted by
the synaptic weights wij. That is,

hi =
∑
j

wijyj, (6)

where yj is the firing rate of neuron j, and wij is the strength of the
synapse from neuron j to neuron i.

Within each layer competition is graded rather than winner-
takes-all, and is implemented in two stages. First, to implement
lateral inhibition the activation h of neurons within a layer is
converted to firing rates r using a linear activation function
followed by convolutionwith a spatial filter, I, where δ controls the
contrast and σ controls the width, and a and b index the distance
away from the centre of the filter in orthogonal directions

Ia,b =


−δe−

a2+b2

σ2 if a 6= 0 or b 6= 0,
1 −

∑
a6=0
b6=0

Ia,b if a = 0 and b = 0. (7)
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Table 5
Lateral inhibition parameters

Layer 1 2 3 4

Radius, σ 1.38 2.7 4.0 6.0
Contrast, δ 1.5 1.5 1.6 1.4

Table 6
Sigmoid parameters

Layer 1 2 3 4

Percentile 99.2 98 88 91
Slope β 190 40 75 26

The lateral inhibition parameters are given in Table 5.
The modelling of lateral inhibition incorporates also contrast

enhancement (related to nonlinearity in the neurons) which is
applied by means of a sigmoid activation function

y = f sigmoid(r) =
1

1 + e−2β(r−α)
, (8)

where r is the firing rate after the lateral inhibition filter defined
above, y is the firing rate after contrast enhancement, and α and β
are the sigmoid threshold and slope respectively. The parameters
α and β are constant within each layer, although α is adjusted to
control the sparseness of the firing rates. For example, to set the
sparseness to, say, 5%, the threshold is set to the value of the 95th
percentile point of the activationswithin the layer. The parameters
for the sigmoid activation function are shown in Table 6.

At each timestep, the activity due to the stimulus on the retina
is propagated in a feedforward fashion through the network,
stimulating patterns of activity in the later layers. Once the
activity patterns have been computed in the various layers
including competitive lateral inhibition as described above, the
synaptic weights of the forward connections between the layers
are updated by an associative learning rule which enhances the
synaptic weight between two neurons when they are co-firing.
There are a variety of associative rules that could be used. In
the simulations described in this paper with VisNet we used
CT learning (see Section 4.1) and therefore the Hebb associative
learning rule

δwij = αyixj, (9)

where δwij is the increment in the synapticweightwij, yi is the firing
rate of the post-synaptic neuron i, xj is the firing rate of the pre-
synaptic neuron j, and α is the learning rate. To bound the growth
of each neuron’s synaptic weight vector, wi for the ith neuron, its
length is normalized at the end of each timestep during training as
in usual competitive learning (Hertz et al., 1991).

5.1. Stimuli

The stimuli used to train the network were images of N = 9
continuously rotating 3D objects. OpenGL was used to build a 3D
representation of the objects, and then to project different views
onto a 2D image. There was ambient lighting with a diffuse light
source added to allow different surfaces to be shownwith different
intensities. The nine stimuli are shown in Fig. 10. Each of the
stimuli was presented in the locations shown. In the experiments
described here, nine stimuli were used because this was found to
be sufficient in Section 3 above to allow a competitive network to
develop representations of individual stimuli when the network
was trained on stimulus pairs.

Given nine stimuli, there are 36 possible pairs of stimuli to
train the network on. Therefore, during training, the network
was presented with 36 image sequences, where each image
sequence corresponded to one of the 36 possible pairs of stimuli.
Fig. 10. The nine stimuli used to train the VisNet network. The stimuli were 3D
objects, each shown from 90 different views in a test of view-invariant recognition.
The effect of the ambient lighting and a single diffuse light source to allow
different surfaces to be shown with different intensities is illustrated. In rows
from left to right the stimuli were a cube, tetrahedron, octahedron, torus, cone,
pyramid, dodecahedron, icosahedron and a teapot. During training, the network
was presented with every possible pair of stimuli simultaneously rotating round
their vertical axis over a range of 90◦ , with a step size of 1◦ between successive
views. After training, the network was tested with image sequences of the nine
individual stimuli rotating through 90◦ .

For each image sequence during training, the two stimuli were
simultaneously rotated about their vertical axis over a range of
90◦, with a step size of 1◦ between successive views. The small
step size is necessary to allow CT learning to operate. Fig. 11 shows
three example frames selected from the 90-frame training image
sequence of the cube and the pyramid rotating through 90 degrees
in 1◦ steps. The selected frames shown in Fig. 11 are for 30◦, 60◦

and 90◦. In total, there are 36 such image sequences used during
training, with each image sequence corresponding to one of the 36
possible pairs of stimuli rotating through 90◦ in 1◦ steps.

After training the network, we tested it by recording the firing
rates of the neurons in the 4th (output) layer of the network as
the network was presented with image sequences of the nine
individual stimuli rotating through 90◦.

5.2. Training and test procedure

To train the network each pair of stimuli is presented to the
network in a sequence of different transforms (i.e. views). At each
presentation the activation of individual neurons is calculated,
then their firing rates are calculated, and then the synaptic weights
are updated. The presentation of all the stimulus pairs across all
transforms constitutes 1 epoch of training. In this manner the
network is trained one layer at a time starting with layer 1 and
finishing with layer 4. In the investigation described here, the
numbers of training epochs for layers 1–4 were 50, 100, 100 and
75 respectively. The learning rate α in Eq. (9) was 0.0018 for layer
1, and was 0.005 for layers 2–4.

An information theoretic measure of performance was used to
assess the ability of the output layer of the network to develop
neurons that are able to respondwith view invariance to individual
stimuli or objects (see Rolls and Milward (2000)). This single cell
information measure was applied to individual cells in layer 4 and
measures howmuch information is available from the response of
a single cell aboutwhich stimuluswas shown independently of the
view. For each cell the single cell information measure used was
the maximum amount of information a cell conveyed about any
one stimulus. This is computed using the following formula with



S.M. Stringer, E.T. Rolls / Neural Networks 21 (2008) 888–903 899
Fig. 11. Three example frames selected from the 90-frame training image sequence of the cube and the pyramid rotating through 90◦ in 1◦ steps. The selected frames
shown are for 30◦, 60◦ and 90◦ . In total, there are 36 such image sequences used during training, with each image sequence corresponding to one of the 36 possible pairs
of stimuli rotating through 90◦ in 1◦ steps.
details given by Rolls, Treves, Tovee, and Panzeri (1997) and Rolls
and Milward (2000). The stimulus-specific information or surprise
I(s, R) is the amount of information the set of responses R has about
a specific stimulus s, and is given by

I(s, R) =
∑
r∈R

P(r|s) log2
P(r|s)

P(r)
, (10)

where r is an individual response from the set of responses R. The
maximum single cell information measure is

Maximum single cell information = log2(Number of stimuli),
(11)

where in this case the number of stimuli is 9. This gives amaximum
single cell information measure of 3.17 bits, and is achieved when
all the responses to the different views of a stimulus are similar,
that is when the representation is invariant, and when the neuron
does respond to any other stimulus.

5.3. VisNet simulation results

After the network had been trained on the 36 pairs of stimuli
each rotating over a range of 90◦, many cells in the 4th (output)
layer were found to have learned to respond to one of the nine
stimuli over all views, but did not respond to any of the other
stimuli fromanyview, as describednext. In particular, neurons that
responded to a particular stimulus after training had no response
to any of the other stimuli, even though the other stimuli had
beenpresented simultaneouslywith the particular stimulus during
training.

Fig. 12 shows the firing rate responses of cell (10, 13) in the
4th (output) layer to all views of the nine individual stimuli before
and after training. The top nine plots show the responses of cell
(10, 13) to each of the nine stimuli as they are rotated through
90◦ in 1◦ steps before training. It can be seen that before training
the cell responds randomly to a number of the stimuli over small
regions of the view space of different stimuli. The bottomnine plots
show the responses of cell (10, 13) to each of the nine stimuli after
training with the 36 possible pairs of stimuli rotating through 90◦.
It is evident that after training, the cell has learned to respond to the
cube over all views, but does not respond to any of the other stimuli
in any views. The cell has thus learned to respond view invariantly
to the cube, even though during training the cube was presented
on different trialswith othermembers of the training set of stimuli.

Complementary learning by a different cell (17, 12) is illustrated
in Fig. 13. It is evident that after training, the cell has learned to
respond to the pyramid over all views, but does not respond to
any of the other stimuli in any views. The cell has thus learned to
respond view invariantly to the pyramid. Thus different cells learn
to respond to different stimuli.
These two cells thus learned separate invariant representations
of the cube and pyramid, which had been presented together
within single training images (of object pairs) as shown in Fig. 11.

Fig. 14 shows the information results obtainedwhenVisNetwas
tested with the nine individual stimuli rotating through 90◦ in 1◦

steps. Results are presented after training the network with image
sequences of all 36 possible stimulus pairs (unbroken line), and
with a random untrained network (dashed line). The single cell
information measures for all top (fourth) layer neurons ranked in
order of their invariance to the stimuli are shown. It can be seen
that training the network on the stimulus pairs has led tomany top
layer neurons attaining themaximal level of single cell information
of 3.17 bits. This corresponds to a neuron responding to only one
of the 9 stimuli, and indeed producing a similar response to every
view of that stimulus. If a neuron had responded to only some of
the views of that stimulus, or had responded to any of the views
of another stimulus, the single cell information would have been
less than 3.17 bits. Thus the information theory analysis shown
in Fig. 14 shows that many of the top layer neurons have learned
to respond to all views of one stimulus, and to no views of any
other stimulus, even though each stimuluswas being trained in the
presence of one other stimulus in the scene (permuted from the
other stimuli in the set). Moreover, the multiple cell information
result reached 3.17 bits, showing that the neurons in the output
layer had learned perfect invariant discrimination between the
stimuli. The correct learning to objects in this hierarchical network
model of the ventral visual stream occurs because during training
of any one object, the features of that object always co-occur,
and this leads the competitive networks in the hierarchy to form
representations of these co-active inputs. The neurons do not learn
to respond to the other stimuli being presented simultaneously,
because there are 8 other stimuli, each of which is only sometimes
presented with the first object, so that the features of these other
objects are not presented very frequently with the features of the
first object. These results show that training the network on the
stimulus pairs has led to over half of the total number of output
neurons each learning to respond to one of the nine stimuli over
all possible 90 views.

6. Discussion

In natural vision an important problem is how the brain can
build invariant representations of individual objects even when
multiple objects are present in a scene. What processes enable
the learning to proceed for individual objects rather than for the
combinations of objects that may be present during training?
In this paper we have described and analyzed an approach to
this that relies on the statistics of natural environments. In
particular, the features of a given object tend to co-occur with
high probability with each other during training, whereas because
during training this object may be seen with different objects
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Fig. 12. The firing rate responses of cell (10, 13) in the 4th (output) layer to all views of the nine individual stimuli before and after training. The top nine plots show the
responses of cell (10, 13) to each of the nine stimuli as they are rotated through 90◦ in 1◦ steps before training. It can be seen that before training the cell responds randomly
to a number of the stimuli over small regions of the view space. The bottom nine plots show the responses of cell (10, 13) to each of the nine stimuli after training with the
36 possible pairs of stimuli rotating through 90◦ . It is evident that after training, the cell has learned to respond to the cube over all views, but does not respond to any of
the other stimuli in any views. The cell has thus learned to respond view invariantly to the cube.
on different occasions, the features of the first object are seen
with lower probability with the features of each of these other
objects. In this paper we have shown that competitive networks
operate usefully in this scenario, in that these networks learn
primarily to form representations that reflect the high probability
of co-occurrence of features from one object and do not reflect
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Fig. 13. The firing rate responses of cell (17, 12) in the 4th (output) layer to all views of the nine individual stimuli before and after training. The conventions are as in Fig. 12.
After training, the cell has learned to respond to the pyramid over all views, but does not respond to any of the other stimuli in any views.
the features of other objects if the object being trained is seen
more than approximately 5 or 6 times more frequently than it is
presented with any one other object. This was shown in Section 3,
and the reasons why this occurs are described in Section 3.2. This
is not trivial, for whether the learning is of representations of each
pair of stimuli that were always present during training, or is of
representations of each of the stimuli separately, was shown to
depend on the number of stimuli in the training set. (It was not a
property related to for example the number of neurons available
in the output representation which might have been a possible
limiting factor if the number of output neurons was insufficient
to represent all possible pairwise combinations of the stimuli, as
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Fig. 14. Information results obtained when VisNet was tested with the nine
individual stimuli rotating through 90◦ in 1◦ steps. Results are presented after
training the network with image sequences of all 36 possible stimulus pairs
(unbroken line), and with a random untrained network (dashed line). The single
cell information measures for all top (fourth) layer neurons ranked in order of their
invariance to the stimuli are shown. It can be seen that training the network on
the stimulus pairs has led to many top layer neurons attaining the maximal level
of single cell information of 3.17 bits. These results show that training the network
on the stimulus pairs has led to many output neurons learning to respond to one of
the nine individual stimuli over all possible 90 views.

shown by the results in Table 2). This approach has not been taken
in previouswork on feature binding andobject representation (Mel
& Fiser, 2000). The results were obtained when pairs of objects
were present during training, and have been extended to more
than two objects (e.g. triples) present during training (Stringer
et al., 2007).

In Section 4 we show that this fundamental property of
competitive networks can be applied to invariant transform
learning, and in particular can be combined with Continuous
Transformation learning. The Continuous Transformation learning
process allows the different views of each object to activate the
same output neuron, and the fundamental property of competitive
networks related to the relative frequency of presentation of
features allows a neuron to learn the representation of any one
object with no interference produced from other objects if each
of the other objects is presented relatively infrequently with
the object being trained. In Section 5 we extended this to a
more realistic model of ventral visual stream processing with
hierarchically organized processing layers and to which different
views of 3D objects can be presented.

We propose that the effects described here could operate at
every level of a feature hierarchy network model of the ventral
cortical processing stream for object recognition. This means
that potentially every layer of a hierarchical neural network
like the ventral visual system may perform the same operations
of separating independent inputs and developing transform-
invariant representations of those inputs. The kind of stimuli
represented would depend on which stage the layer was in the
hierarchy. In the early layers of the network, invariance learning
may occur for simple visual features such as corners. In the later
layers, which receive inputs from across the retina, invariance
learning may occur for complete stimuli such as objects or faces.
The simple biologically plausible learning mechanisms described
in this paper may thus operate in every layer of the hierarchy.
This is in contrast to the model of Spratling (2005), for example,
in which stimulus separation occurred in the first layer, while
invariance learning occurred in the second layer, and to learning
in more complex networks (Hinton, Dayan, Frey, & Neal, 1995).

The fundamental property of competitive networks investi-
gated here related to the frequency of co-presentation of differ-
ent stimuli is robust with respect to the sparseness of the repre-
sentation being formed in the output layer, and this indicates that
the process does not rely on whether there are sufficient output
neurons to represent every combination of the different stimuli,
or only each stimulus. Further evidence that the number of out-
put neurons is not the factor that determines the representations
formed in these investigations is that in the results shown in Ta-
ble 1, when the transition occurs to represent individual stimuli,
the number of stimuli N equals 6, the number of stimulus pairs is
15, and the number of output neurons is 100. Further, in the Vis-
Net simulations illustrated in Section 5.3, the number of stimuli is
9, producing 36 stimulus pairs, and the number of output neurons
is 1024.

The property is also robust with respect to the number of
training trials, with similar results being obtained with few
training epochs (e.g. less than 5 presentations for each pair of
stimuli), and still being evident after 10,000 training epochs. Thus,
the learning mechanisms described here are very robust, and we
believe are likely to be present in the visual systemwhere there are
associatively modifiable feedforward connections between layers
and lateral inhibition between neurons within each layer.

Most previous investigations of transform invariance learning
in neural visionmodels have typically used the presentation of one
stimulus at a time during training (Rolls & Milward, 2000; Stringer
et al., 2006;Wallis & Rolls, 1997). Stringer and Rolls (2000) showed
that learning invariant representations of objects is difficult when
the objects are presented against a cluttered but unchanging
background during training, because the background became
associated with the stimulus representations being learned. In this
paper we show that by considering a more natural training regime
in which any one object is not always seen with a particular other
object or background, but instead is seen on different trials with
a range of different stimuli, training of invariant representations
of objects in scenes with more than one object present can occur
quite easily.

In the investigations described here, themechanism utilized for
the invariance learningwas Continuous Transformation (CT) learn-
ing (Perry et al., 2006; Stringer et al., 2006). Continuous Transfor-
mation learning utilizes spatial continuity inherent in how objects
transform in the real world, combined with associative learning of
the feedforward connection weights. We also predict that the ef-
fects described here related to the statistical independence of ob-
jects in a scene could also be usefully applied to invariance learn-
ing based on temporal continuity, using for example the tempo-
ral trace learning rule (Földiák, 1991; Rolls, 1992; Rolls & Milward,
2000; Rolls & Stringer, 2001; Wallis & Rolls, 1997). We have now
been able to confirm this prediction (Stringer et al., 2007). In addi-
tion, in the research described in this paper, we demonstrated for
clarity the ability to learn separate representations of simultane-
ously presented stimuli with the simplest type of representation of
each stimulus, in which the stimuli were non-overlapping (i.e. or-
thogonal). In the next body of researchwe have shown that similar
results can be obtainedwith similar networkswhen the stimuli are
overlapping (Stringer et al., 2007).

In the present study, the stimuli were shown in all trans-
forms during training. However, Elliffe, Rolls, and Stringer
(2002), Stringer and Rolls (2002) and Stringer et al. (2006) have
shown that if the early layers of a network are first trained on low-
level feature combinations, then the later layers of the network
may be trained on only a subset of transforms in order for the net-
work to be able to respond invariantly to stimuli over all trans-
forms, including those transforms not encountered during train-
ing. Once the transforms of features have been learned in the early
layers, this helps later layers to generalize after some training on
a new object to other transforms of the object, given that the new
object is likely to contain some of the same features that have al-
ready been learned in early layers of the network (Elliffe et al.,
2002). However, in Elliffe et al. (2002), Stringer and Rolls (2002)
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and Stringer et al. (2006), the early layers of the networks were al-
ways trained on one low-level feature combination at a time. We
predict based on the approach taken in the current paper that itwill
be possible to train the early layers even when multiple features
are present in a natural scene, allowing the network to generalize
to untrained transforms in later layers using processes described
elsewhere (Elliffe et al., 2002; Stringer et al., 2006; Stringer & Rolls,
2002).

In this paper, we have considered translation and view invari-
ance. The overall hypothesis is that the statistical continuity of ob-
jects as they transform can be used to help build representations of
objects that are invariant with respect to many types of transform
(Rolls, 1992), and indeed have shown that the principles apply not
only to translation and view invariance, but also to size (Wallis &
Rolls, 1997), lighting (Rolls & Stringer, 2006) and object motion in-
variance (Rolls & Stringer, 2007), and testing when parts of an ob-
ject are occluded (Stringer & Rolls, 2000). We predict that the ef-
fects found with training with multiple objects present simultane-
ously would apply to these other types of invariance learning too.

An extension of the present research could consider a more
complicated situation in which multiple stimuli are present in a
scene, and they partially occlude each other. We hypothesize that
the mechanisms described in this paper could make an important
contribution to learning separate representations of each stimulus
under these conditions, provided that when each stimulus is seen,
different parts of it are occluded on different trials, and each
stimulus is seen in partial occlusion with different stimuli on
different trials.

An aspect of the approach taken here is consideration of the
characteristics of the visual training environment, and in particular
the statistics of how visual features and objects occur (randomly)
together in different visual scenes encountered during learning.
We have shown that these can contribute to the learning of
invariant representations of objects even when more than one
object is present in a scene.
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