
BEHAVIORAL NEUROSCIENCE

Spatial scene representations formed by self-organizing
learning in a hippocampal extension of the ventral visual
system

Edmund T. Rolls, James M. Tromans and Simon M. Stringer
Department of Experimental Psychology, Centre for Computational Neuroscience, Oxford University, South Parks Road, Oxford
OX1 3UD, UK

Keywords: hippocampus, inferior temporal visual cortex, invariant object recognition, spatial view cells

Abstract

We show in a unifying computational approach that representations of spatial scenes can be formed by adding an additional self-
organizing layer of processing beyond the inferior temporal visual cortex in the ventral visual stream without the introduction of new
computational principles. The invariant representations of objects by neurons in the inferior temporal visual cortex can be modelled by
a multilayer feature hierarchy network with feedforward convergence from stage to stage, and an associative learning rule with a
short-term memory trace to capture the invariant statistical properties of objects as they transform over short time periods in the
world. If an additional layer is added to this architecture, training now with whole scenes that consist of a set of objects in a given fixed
spatial relation to each other results in neurons in the added layer that respond to one of the trained whole scenes but do not respond
if the objects in the scene are rearranged to make a new scene from the same objects. The formation of these scene-specific
representations in the added layer is related to the fact that in the inferior temporal cortex and, we show, in the VisNet model, the
receptive fields of inferior temporal cortex neurons shrink and become asymmetric when multiple objects are present simultaneously
in a natural scene. This reduced size and asymmetry of the receptive fields of inferior temporal cortex neurons also provides a
solution to the representation of multiple objects, and their relative spatial positions, in complex natural scenes.

Introduction

We propose and analyse a unifying hypothesis of the relation between
the ventral visual system and hippocampal spatial representations. We
show that principles that can account for the formation of neurons with
invariant responses in the inferior temporal visual cortex can also
account for the formation of neurons with responses specific to spatial
views in the hippocampus and related areas.
Over successive stages the visual system develops neurons that

respond with view-, size- and position (translation)-invariance to
objects or faces (Desimone, 1991; Tanaka et al., 1991; Rolls, 1992,
2000; Rolls & Deco, 2002). The inferior temporal visual cortex has
neurons that respond to faces and objects with translation- (Kobatake
& Tanaka, 1994; Tovee et al., 1994; Ito et al., 1995; Op De Beeck &
Vogels, 2000), size- (Rolls & Baylis, 1986; Ito et al., 1995), and view
(Hasselmo et al., 1989; Booth & Rolls, 1998)-invariance (Rolls,
2008b). It is crucially important that the visual system builds invariant
representations for only then can one-trial learning about an object
generalize usefully to other transforms of the same object (Rolls &
Deco, 2002; Rolls, 2005). Building invariant representations of objects
is a major computational issue, and the means by which the cerebral

cortex solves this problem is a topic of great interest (Biederman,
1987; Rolls, 1992, 2008b; Ullman, 1996; Riesenhuber & Poggio,
1999; Rolls & Deco, 2002; Wiskott & Sejnowski, 2002; Rolls &
Stringer, 2006b; Wyss et al., 2006).
The concept that recognition memory (measured for example in

delayed match-to-sample tasks with objects with overlapping feature
subsets) may be implemented in areas added to the ventral visual stream
beyond the inferior temporal visual cortex (Mishkin et al., 1997;
Bussey et al., 2002, 2003, 2005; Bussey & Saksida, 2005, 2007;
Buckley & Gaffan, 2006) has been investigated in previous work by
adding a layer corresponding to the perirhinal cortex which forms
nodes that respond to combinations of the inputs it receives by a form of
competitive learning (Cowell et al., 2006). In that connectionist model,
the nodes respond to feature combinations and thus assist performance
when this depends on objects being defined by feature combinations.
However, there is no concept or representation of space in that approach
as only features are represented, with no representation of the relative
spatial position of features or objects. In the discussion of that
connectionist model, it was suggested (Cowell et al., 2006) that ‘tasks
like repeating-items DMS (delayed matching to sample) merely
provide an additional degree of’ (object) ‘ambiguity that must be
resolved by even more complex conjunctive representations in a
hierarchy that extends throughout the ventral visual stream through
perirhinal cortex and on into other structures such as the hippocampus’.
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In contrast, the present hypotheses and model address the formation
of spatial representations such as those provided by spatial-view
neurons (Georges-François et al., 1999; Rolls & Xiang, 2006) in areas
such as the parahippocampal cortex and hippocampus, show how they
may be related to the representation of multiple objects simultaneously
in the inferior temporal visual cortex, and address the fundamental
issue of how inferior temporal cortex representations can display
considerable translation invariance yet still support the formation of
spatial representations in the hippocampus.

Materials and methods

Hypotheses on the formation of spatial representations in
cortical areas beyond the inferior temporal visual cortex

It is now possible to propose a unifying hypothesis of the relation
between the ventral visual system and hippocampal spatial represen-
tations (Rolls, 2008b). The spatial representations found in the primate
parahippocampal cortex and hippocampus include spatial-view neu-
rons. A spatial-view neuron responds when a primate looks at a part of
a spatial scene that is characterized by a set of features or objects that
are in a fixed spatial relation to each other (Rolls et al., 1997a, 1998,
2005; Robertson et al., 1998; Georges-François et al., 1999; Rolls &
Kesner, 2006; Rolls & Xiang, 2006).

Consider a computational architecture in which an additional layer
is added to a feature hierarchy model of the ventral visual system,
VisNet, as illustrated in Fig. 1. In the anterior inferior temporal visual
cortex, which corresponds to the fourth layer of VisNet, neurons
respond to objects or faces (Rolls, 2008a,b). However, in complex
natural scenes the receptive fields of these neurons decrease in size
(Trappenberg et al., 2002; Rolls et al., 2003), and several objects close
to the fovea (within approximately 10�) can be represented because
many object-tuned neurons have spatially asymmetric receptive fields

with respect to the fovea (Aggelopoulos & Rolls, 2005). In complex
natural scenes, inferior temporal cortex neurons thus convey infor-
mation not only about objects but also about their spatial position. If
the additional (‘hippocampal’) layer added to the four-layer VisNet
architecture performs the same operation as previous layers, it is
predicted to form, by its self-organizing learning when trained on
scenes consisting of a fixed spatial arrangement of a set of objects,
neurons that respond to combinations of objects in the scene with the
positions of the objects relative spatially to each other incorporated
into the representation. That is, it is predicted that spatial-view neurons
will be formed in the added layer (cf. de Araujo et al., 2001). This is
tested here by investigating whether the neurons in the hippocampal
layer respond to whole spatial scenes in which the relative positions of
the objects in the scene are encoded. This is measured by comparing
the responses of neurons in the hippocampal layer to the trained scenes
with the responses of the same neurons using different scenes
comprised of exactly the same sets of objects but in different spatial
positions relative to each other. The hypothesis is also tested by
comparing the responses of the hippocampal layer neurons to single
objects, with the prediction being that the scene-specific hippocampal
layer representations should be more responsive to the whole scenes
than to the single objects that form part of the scenes.
The model also allowed us to test the prediction that the receptive

fields of inferior temporal cortex neurons become small and spatially
asymmetric in complex natural scenes because of competition
introduced when several objects were present simultaneously, and
the probabilistic diluted connectivity of the different neurons provid-
ing the potential for spatial asymmetry. In particular, the model as far
as the inferior temporal visual cortex was trained on single objects,
each shown in four different positions, to determine that many of the
neurons showed object-selective but spatially invariant receptive
fields. Then, without further training, four objects were presented
simultaneously, and we measured whether the object-selective neurons

Fig. 1. Adding a fifth layer, corresponding to the parahippocampal gyrus–hippocampal system, after the inferior temporal visual cortex (corresponding to layer 4 in
this diagram) may lead to the self-organization of spatial-view and ⁄ or place cells in layer 5 when whole scenes are presented (see text). Convergence in the visual
system is shown in the earlier layers. (Right) As it occurs in the brain. V1, visual cortex area V1; TEO, posterior inferior temporal cortex; TE, inferior temporal
cortex. (Left) In this diagram, layer 1 corresponds to V2, layer 2 to V4, layer 3 to posterior inferior temporal cortex (TEO), layer 4 to anterior inferior temporal
cortex (TE) and layer 5 to the parahippocampal–hippocampal areas. Convergence through the network is designed to provide fourth-layer neurons with information
from across the entire input retina.
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showed less spatial invariance to the object to which they were tuned
when four objects were being presented.
An important implication of the discovery that the receptive fields of

individual inferior temporal cortex neurons can be large (e.g. 70� in
diameter) when the effective object is presented against a blank
background but much smaller, and spatially asymmetric, when the
object is presented in a natural scene (Rolls et al., 2003) or a scene
with five different objects present (Aggelopoulos & Rolls, 2005) is that
several objects can be represented in a scene, together with information
about their position relative to the fovea, by the responses of inferior
temporal cortex neurons. In a complex scene, different neurons are
active to encode different objects with ensemble encoding (Rolls,
2008b), but each neuron that is active provides information about the
spatial position of the object due to the asymmetry of the receptive
fields, so that an object-selective neuron will only be firing in a
complex scene if its object is in some but not other positions with
respect to the fovea (Aggelopoulos & Rolls, 2005). This provides an
important solution to the otherwise computationally difficult problem
of representing multiple objects in a scene in a network with
distributed representations (Mozer, 1991). The hypothesis presented
for the mechanism for the reduction of the receptive field in complex
scenes, and the asymmetry of the receptive field in complex scenes, is
as follows (Rolls, 2008b). Consider that the forward connectivity from
one layer of the visual system to the next (e.g. V4 to posterior inferior
temporal cortex) has an approximately Gaussian shape as illustrated in
Fig. 1 (left), with many connections to a neuron from a corresponding
topographic position in visual space in the preceding layer and
gradually fewer connections as one moves away from the correspond-
ing position in the preceding layer. The result of this is that, when
multiple objects are presented simultaneously, there will be larger
feedback inhibition from the inhibitory neurons and this will reduce
the size of the receptive field by making only the object when close to
the centre of the receptive field produce sufficient activation to produce
neuronal firing, as analyzed elsewhere (Trappenberg et al., 2002; Deco &
Rolls, 2004). Consider further that the forward connectivity will be
sparse (or diluted), with the probability that a given neuron receives
from a particular neuron in the preceding layer, even from a
corresponding position, quite low, the order of 0.1 (Abeles, 1991;
Braitenberg & Schütz, 1991; Rolls & Deco, 2002; Rolls, 2008b). The
probabilistic nature of this connectivity will mean that by chance a
given neuron may receive more connections from some parts of the
generally Gaussian shape of the connectivity distribution than from
other parts, and the result of this when the inhibition is raised with
multiple stimuli present is that spatial asymmetries will become more
evident (Rolls, 2008b). This hypothesis has not been tested computa-
tionally by simulation in a network with the appropriate diluted
forward connectivity and, in the simulations described here, we perform
this investigation, using VisNet which has probabilistic and approxi-
mately spatially Gaussian forward connectivity, as described below.
Normally, the layers of VisNet up to the inferior temporal visual

cortex are trained sequentially, with layer one (corresponding to V2)
trained first, and the last layer (corresponding to the inferior temporal
visual cortex) trained last. The rationale for this is that there is little
point in training the inferior temporal visual cortex until the early
layers have been trained, so that their responses have become selective
and stable. The biological correspondent and, we believe, the reason
for this (Rolls, 2008b) is that there tends to be a critical period for
plasticity in early visual cortical areas while the system becomes tuned
to the environment (Hooks & Chen, 2007) whereas areas such as the
inferior temporal visual cortex remain plastic throughout life so that
the representations of new objects can be learned (Rolls et al., 1989;
Tovee et al., 1996; Dolan et al., 1997; Rolls, 2008b). This sequential

training procedure was used in the current investigation, but we
performed a check that if all the layers of VisNet as far as the inferior
temporal visual cortex were trained simultaneously, neurons with
similar properties were formed in the inferior temporal visual cortex
layer, the procedure just being less efficient for the reasons given.
It is inherent in a system that learns to form invariant representa-

tions of objects that considerable training must be given, for it is only
by being provided with different exemplars of the different objects
(e.g. different positions, views, etc) that the system can learn to
separate from the exemplars the inputs that correspond to one object in
its different transforms from the inputs that correspond to different
objects in their different transforms. Many trials of training are thus
given to VisNet up to the stage of the inferior temporal visual cortex.
However, hippocampal representations of new scenes and potentially
of episodic memories must be capable of being formed quickly, in one
or a few trials, as this is a property of the learning of new spatial
scenes and episodic memories (Dere et al., 2009; Rolls, 2009). We
therefore tested whether, once VisNet had been trained to the inferior
temporal cortex level on individual objects, the new learning of spatial
scene representations in the hippocampal layer comprising of a
particular arrangement of these objects could be learned in a small
number of training trials.
Some of the crucial points we were able to show in relation to these

hypotheses were the following. First, once a hierarchical architecture
of the type described has been trained on single objects to form
invariant representations of them, one can then obtain spatial scene
representations by training the next layer on scenes consisting of
particular spatial arrangements of the objects. Second, this spatial
scene learning by the added layer can be fast. Third, when multiple
objects are present in the scene, this produces shrinkage and
asymmetry of the receptive field sizes in the object layer, which
helps spatially specific scene representations to be formed. Fourth, the
shrinkage and asymmetry of the receptive fields of the object layer
neurons when multiple objects are present simultaneously provides a
computational solution to the problem of how multiple objects can be
represented simultaneously in the inferior temporal visual cortex, with
the correct spatial positions of the objects encoded.

Experimental design

In this paper we describe a simulation to test the predictions of the
hypothesis described in the preceding section, with VisNet simulations
with conceptually a fifth layer added and appropriate fixed-object
combinations in the training set to represent spatial views. In related
work, a more artificial network trained by gradient ascent with a goal
function that included forming relatively time-invariant representa-
tions and decorrelating the responses of neurons in the multilayer
network, place-like cells were formed at the end of the network when
the system was trained with a real or simulated robot moving through
spatial environments (Wyss et al., 2006), and view cells were formed
when training on video sequences from a virtual-reality environment
(Franzius et al., 2007). In this paper we test whether spatial-view cells
develop in the equivalent of a VisNet fifth layer if trained with spatial
scenes. The utility of testing this with a VisNet-like architecture is that
this architecture embodies a biologically plausible implementation
based on neuronally plausible competitive learning and a short-term
memory trace associative local learning rule.

The VisNet architecture

The model architecture (VisNet) implemented by Wallis & Rolls
(1997) and Rolls & Milward (2000) that is used to investigate the
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properties of object and scene learning in this paper is based on the
following. (i) A series of hierarchical competitive networks with local
graded lateral inhibition. (ii) Convergent connections to each neuron
from a topologically corresponding region of the preceding layer,
leading to an increase in the receptive field size of neurons through the
visual processing areas. (iii) Synaptic plasticity based on a Hebb-like
learning rule. Model simulations which incorporated these hypotheses
with a modified associative learning rule to incorporate a short-term
memory trace of previous neuronal activity were shown to be capable
of producing stimulus-selective but translation- and view-invariant
representations (Wallis & Rolls, 1997; Rolls & Milward, 2000; Rolls
& Stringer, 2001, 2006b; Elliffe et al., 2002; Stringer et al., 2007).

The model used here consists of a hierarchical series of four layers
of competitive networks, corresponding to V2, V4, the inferior
temporal cortex, and the parahippocampal areas and hippocampus. In
the diagram shown in Fig. 1, layer 5, the parahippocampal–hippo-
campal layer, corresponds to layer 4 of the actual network simulated.
The inferior temporal cortex corresponds to layer 3 of the network
simulated. This is a little different from usual simulations with this
architecture, in which layer 3 can be thought to correspond to the
posterior inferior temporal visual cortex and layer 4 to the anterior
inferior temporal cortex (Wallis & Rolls, 1997; Rolls & Stringer,
2006b). For these simulations, the posterior and anterior inferior
temporal visual cortex were combined into a single inferior temporal
visual cortex layer. The change was made for computational
efficiency. When we refer to layer 3 in this paper, that indicates the
inferior temporal visual cortex layer of the simulation. When we refer
to layer 4 in the remainder of this paper, that indicates the
parahippocampal–hippocampal layer of the simulation. The forward
connections to individual cells are derived from a topologically
corresponding region of the preceding layer, using a Gaussian
distribution of connection probabilities. These distributions are defined
by a radius which will contain �67% of the connections from the
preceding layer. The values used are given in Table 1. This diluted
(incomplete, and probabilistically set up) feed-forward connectivity is
important in some of the effects on the asymmetry of the receptive
fields described in this paper that occur when inhibition is high in
crowded scenes.

Before stimuli are presented to the network’s input layer they are
pre-processed by a set of input filters that accord with the general
tuning profiles of simple cells in V1. The input filters used are
computed by weighting the difference of two Gaussians by a third
orthogonal Gaussian according to the following:
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where f is the filter spatial frequency, h is the filter orientation and q is
the sign of the filter, i.e. ± 1. Individual filters are tuned to spatial

frequency (0.0625 to 0.5 cycles per pixel); orientation (0� to 135� in
steps of 45�); and sign (± 1). The number of layer 1 connections to
each spatial frequency filter group is given in Table 2.
The activation hi of each neuron i in the network is set equal to a

linear sum of the inputs yj from afferent neurons j weighted by the
synaptic weights wij. That is,

hi ¼
X

j

wijyj ð2Þ

where yj is the firing rate of neuron j and wij is the strength of the
synapse from neuron j to neuron i.
Within each layer, competition is graded rather than winner-take-all,

and is implemented in two stages. First, to implement lateral inhibition
the activations h of neurons within a layer are convolved with a spatial
filter, I, where d controls the contrast and r controls the width, and a
and b index the distance away from the centre of the filter

Ia;b ¼
�d e�

a2þb2

r2 if a 6¼ 0 or b 6¼ 0;
1�

P
a 6¼ 0
b 6¼ 0

Ia;b if a ¼ 0 and b ¼ 0

8>>><
>>>:

ð3Þ

The lateral inhibition parameters are given in Table 3. We note that
lateral inhibition is a property of cortical, including visual, processing,
and is implemented in the brain by inhibitory interneurons that operate
within a localized area of the cortex (Rolls & Deco, 2002; Rolls,
2008b).
Next, contrast enhancement is applied by means of a sigmoid

activation function

y ¼ f sigmoidðrÞ ¼ 1

1þ e�2bðr�aÞ ð4Þ

where r is the activation (or firing rate) after lateral inhibition, y is the
firing rate after contrast enhancement, and a and b are the sigmoid
threshold and slope respectively. The parameters a and b are constant
within each layer, although a is adjusted to control the sparseness of
the firing rates. For example, to set the sparseness to, say, 5%, the
threshold is set to the value of the 95th percentile point of the
activations within the layer. The parameters for the sigmoid activation
function are shown in Table 4. We note that a nonlinear sigmoid
activation function captures the threshold nonlinearity of real neurons,
and the fact that their firing rates saturate at values that are typically in

Table 1. Network dimensions showing the number of connections per neuron
and the radius in the preceding layer from which 67% are received

Dimensions Number of connections Radius

Layer 4 32 · 32 100 12
Layer 3 32 · 32 100 9
Layer 2 32 · 32 100 6
Layer 1 32 · 32 272 6
Retina 128 · 128 · 32 – –

Table 2. Layer 1 connectivity

Frequency 0.5 0.25 0.125 0.0625
Number of connections 201 50 13 8

The numbers of connections from each spatial frequency set of filters are
shown. The spatial frequency is in cycles per pixel.

Table 3. Lateral inhibition parameters

Layer

1 2 3 4

Radius, r 1.38 2.7 4.0 6.0
Contrast, d 1.5 1.5 1.6 1.4
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the order of 100 spikes ⁄ s in the visual system (Rolls & Deco, 2002;
Rolls, 2008b).

Trace learning

We summarize next the trace-learning procedure developed and
analyzed previously (Földiák, 1991; Rolls, 1992; Wallis & Rolls,
1997; Rolls & Milward, 2000; Rolls & Stringer, 2001). Trace learning
utilizes the temporal continuity of objects in the world (over short time
periods) to help the learning of invariant representations. The concept
here is that on the short time scale, of e.g. a few seconds, the visual
input is more likely to be from different transforms of the same object,
rather than from a different object. A theory used to account for the
development of view-invariant representations in the ventral visual
system uses this temporal continuity in a ‘trace-learning rule’ (Wallis
& Rolls, 1997; Rolls & Milward, 2000; Rolls & Stringer, 2001). The
trace-learning mechanism relies on associative learning rules, which
utilize a temporal trace of activity in the postsynaptic neuron (Földiák,
1991; Rolls, 1992). Trace learning encourages neurons to respond to
input patterns which occur close together in time, which are likely to
represent different transforms (views) of the same object.
The trace-learning rule (Földiák, 1991; Rolls, 1992; Wallis & Rolls,

1997; Rolls & Milward, 2000) encourages neurons to develop
invariant responses to input patterns that tend to occur close together
in time, because these are likely to be from the same object. The
particular rule used (see Rolls & Milward, 2000) was

dwj ¼ a �ys�1 xs
j ð5Þ

where the trace �ys is updated according to

�ys ¼ ð1� gÞys þ g �ys�1 ð6Þ

and we have the following definitions: xj, j
th input to the neuron; y,

output from the neuron; �ys, trace value of the output of the neuron at
time step s; a, learning rate (annealed to zero); wj, synaptic weight
between jth input and the neuron; g, trace value (the optimal value
varies with presentation sequence length). The parameter g may be set
anywhere in the interval [0, 1], and for the simulations described here
g was set to 0.8. A discussion of the good performance of this rule,
and its relation to other versions of trace-learning rules, are provided
by Rolls & Milward (2000) and Rolls & Stringer (2001).

Simulations: stimuli

The stimuli used to train the networks were computer-generated
images of 3-D objects. The objects were created using OpenGL, which
gives a maximum of control over all stimulus parameters and
positions. OpenGL builds a 3-D representation of the objects and then
is able to project different views onto a 2-D image. Lighting was
mainly ambient with a diffuse light source added to allow different
surfaces to be shown with different intensities as illustrated in Fig. 2,

which illustrates the four objects used: (top left) a chair, (top right) a
piano, (bottom left) a cabinet and (bottom right) a table.

Simulations: training and test procedure

For the purposes of the simulations described in this paper, layers 1–3
were used to simulate the ventral visual stream, with the layers
corresponding to V2, V4 and the inferior temporal visual cortex. The
connectivity of the architecture is such that, by layer 3, the connec-
tivity allows information from most of the retina to influence any
neuron in layer 3. We used objects placed in one of four quadrants of
the input, and trained for invariant representation in layer 3 using the
trace rule. For this training, one object was presented on a trial and the
different transforms of each object were presented in permuted
sequence so that the trace rule could use the temporal continuity to
build invariant representations of the object, then another object was
selected for training. One epoch was complete when each object had
been selected once for training in all of its transforms. At each
presentation the activation of individual neurons is calculated, then
their firing rates are calculated, and then the synaptic weights are
updated. In this manner the network is trained one layer at a time,
starting with layer 1 and finishing with layer 3. The numbers of
training epochs for layers 1–3 were 50, 100 and 100 respectively (and
in each epoch there were four objects each presented in four locations
sequentially). After training layers 1–3 in this way, we tested and
confirmed that many neurons in layer 3 had translation-invariant
representations of the objects, with many neurons responding when
one object was presented during testing to one of the objects in all of
its transforms.
Layer 4 of the network was treated here as the additional layer

added to test processing beyond the inferior temporal visual cortex,
and to represent processing in the hippocampus or cortical areas that
precede the hippocampus such as the parahippocampal gyrus. It was
trained after layers 1–3 had been trained. The training of layer 4
consisted of presenting spatial scenes, and allowing the same self-
organizing learning principles to operate as for the earlier layers. Each
spatial scene consisted of a particular arrangement of the four objects
presented simultaneously. The training stimulus appeared for example
as illustrated in Fig. 2. Each of the four spatial scenes was trained for
75 presentations. The training of layer 4 acts as a competitive network
(Rolls & Deco, 2002; Rolls, 2008b). Testing was performed by testing
whether different layer 4 neurons responded to one of the four
different spatial scenes. The design of the scenes allowed for a
rigorous test of the hypothesis about the formation of spatial scenes,
for each spatial scene contained the identical set of features or objects,
but these were arranged spatially differently in the different scenes. In
real life, different spatial views might include some of the same
features or landmarks, but would probably not overlap totally in the set
of features or landmarks that define each spatial scene.
Two information-theoretic measures of performance were used to

assess the ability of the layer 3 neurons of the network to respond with
view-invariance to individual stimuli or objects (see Rolls & Milward,
2000). A single-cell information measure was applied to individual
cells in layer 3 and measures how much information is available from
the response of a single cell about which stimulus was shown,
independently of view. A multiple-cell information measure, the
average amount of information that is obtained about which stimulus
was shown from a single presentation of a stimulus from the responses
of all the cells, enabled measurement of whether across a population of
cells information about every object in the set was provided.
Procedures for calculating the multiple-cell information measure are
given in Rolls et al. (1997b) and Rolls & Milward (2000). In the

Table 4. Sigmoid parameters

Layer

1 2 3 4

Percentile 99.2 98 98 91
Slope b 190 40 75 26
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experiments presented later, the multiple-cell information was calcu-
lated from only a small subset of the output cells. There were five cells
selected for each stimulus, and these were the five cells which gave the
highest single-cell information values for that stimulus.

The maximum single-cell information measure is

Maximum single cell information ¼ log2ðNumber of stimuliÞ; ð7Þ

where in this case the number of objects is four. This gives a
maximum single-cell information measure of 2 bits.

Results

Layers 1–3 were trained with single objects using a trace-learning
rule to build invariant representations in layer 3 across the four
training locations for each object. Figure 3 shows that the represen-
tations, when tested with one object present at a time, were invariant.
This is shown in Fig. 3a by the fact that a typical layer 3 cell with
invariant representations responded to one of the objects (the chair) in
all four locations, and to none of the other three objects in any
location. Figure 3c shows that many single cells in layer 3 reached

Fig. 2. The four objects used in the simulations: (top left) a chair, (top right) a piano, (bottom left) a cabinet and (bottom right) a table. A spatial scene would consist
of all objects present simultaneously, as in this Figure. A different spatial scene might consist of the same four objects presented simultaneously, but in a different
spatial arrangement.

Spatial scene representations 2121

ª The Authors (2008). Journal Compilation ª Federation of European Neuroscience Societies and Blackwell Publishing Ltd
European Journal of Neuroscience, 28, 2116–2127



the maximum level of invariance for a cell trained with four stimuli,
namely 2 bits, indicating that these cells responded to only one object
but in every location, and to no other objects in any location.
Figure 3d shows the multiple-cell information for layer 3 cells and
indicates that, for every object, some cells were tuned to have
invariant representations of that object. The results in Fig. 3c and d
were obtained with one object present during testing. As noted in the
‘Hypotheses’ section, the above training was performed with
successive training of layers 1–3. However, we reran the simulations
with simultaneous training of layers 1–3 and obtained results that
were very similar and, indeed, indistinguishable from those shown in
Fig. 3d, showing that successive vs. simultaneous training of the
layers of VisNet involved in invariant object recognition is not an
important factor in its success.
After this training of layers 1–3, four spatial-view scenes were

presented to the network and layer 4 was trained. Each spatial-view

scene consisted of every object that had been trained previously
present simultaneously in one spatial arrangement, as illustrated in
Fig. 2. After the training, some layer 4 cells were activated by one of
the trained spatial-view scenes and much less by the other spatial-
view scenes. Figure 4 shows for each spatial scene the responses of
the 36 neurons in layer 4 that were most responsive to that scene.
For these neurons, the activations produced by the other scenes were
33% of those produced by the scene to which the neuron responded
best (P > 0.001, Mann–Whitney U test). Thus the responses of
these neurons were selective for a particular scene. For these
neurons, the activations produced by the objects presented individ-
ually were 42% of those produced by the scene to which the neuron
responded best (P > 0.001, Mann–Whitney U test). Thus the
responses of these neurons were selective for a particular scene
and their responses could not be accounted for by responses to
individual objects.

Fig. 3. (a) Firing rate for one layer 3 neuron with position invariant responses across four locations when tested with one object present in the scene at a time. The
neuron responded to the chair in all four locations, and to none of the other three objects in any location. (b) Firing rate for the same layer 3 neuron with position
invariant responses across two locations when tested with four objects present in the scene. The neuron responded to the chair in two of the four locations. (c) Single-
cell information for layer 3 neurons when tested with one object present at a time. (d) Multiple-cell information for layer 3 neurons when tested with one object
present at a time.
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The layer 3 to layer 4 connectivity (as the other layers) was a
competitive network and, for the results illustrated in Fig. 4, the
scene was trained for 75 epochs (where each epoch consists of a
single presentation of each of the training stimuli). However, the
hypothesis is that this stage of training could be fast, to match with
the fact that new spatial representations in the hippocampus, and
even more a new episodic memory, can be formed fast (see the
section on ‘Hypotheses’). Accordingly, we reran the training of the
layer 3 to layer 4 connectivity with just four epochs and found that
the results were very similar to those already described and
illustrated in Fig. 4. In particular, the mean activation for the
untrained scenes with a different spatial arrangement of the same
objects was 40.7 ± 0.8% of that to the trained scenes, and the mean
activation to individual objects was 42.9 ± 0.5% of that to the
trained scenes (P > 0.001 in both cases; Mann–Whitney U test),
which can be compared with the data shown in Fig. 4. To
compensate for the small number of epochs, the learning rate was
increased by a factor of 10. (Four was the minimum number of
epochs that could easily be run, and might correspond to one 4-s
look at a scene or four 1-s glances at a scene, so this is fast
learning.) We note that this training of the hippocampal layer can be
fast computationally, because the aim is to build a conjunctive
representation based on the neurons that are active in the inferior
temporal visual cortex, layer 3 of this simulation, when a single
scene is presented. In contrast, the training of invariant representa-
tions themselves in layers 1–3 of the network is inherently much
slower computationally, because representations have to be extracted
from the statistics provided by the exemplars of each object to form
a representation of that object that is distinct from the representation
formed of other objects from their exemplars by other neurons.
However, the important point made in this paper is that, despite
these facts, the same type of architecture and learning process can be
used to learn the invariant representations of objects up to the
inferior temporal visual cortex, and the spatial scene representations
in the hippocampal ⁄ parahippocampal hippocampal areas, though the
synaptic learning rate for the episodic or spatial learning is likely to
benefit from being larger than that in the earlier, ventral visual
stream layers, to help produce fast ‘one-shot’ learning vs. the slow
incremental learning of invariant representations.

We now analyse how the scene-specific ‘spatial-view cells’ in
layer 4 may be produced, given that there is considerable invariance in

layer 3 cells for every object, as illustrated in Fig. 3. The hypothesis
we tested was based on the discovery that although inferior temporal
cortex neurons typically have large receptive fields, up to 70� in
diameter, when tested with a single object presented against a blank
background, the receptive fields of the same neurons shrink and
become asymmetric when tested with several objects presented
simultaneously within �10� of the fovea (Aggelopoulos & Rolls,
2005). These neurons may for example respond to the effective object
for the neuron when the object is at the fovea or to the upper left or
upper right of the fovea, but not when it is to the lower left or lower
right of the fovea. The implication of this neurophysiology is that the
lateral inhibition is stronger when several objects are presented than
when one object is being presented, and that this reduces the receptive
field size and reveals underlying asymmetries in the probabilistic
forward connections received by each neuron, as illustrated in Fig. 1,
and also in the probabilistic connectivity implemented through the
inhibitory interneurons.
We tested this hypothesis in these simulations with VisNet by

comparing the number of neurons that had complete invariance in that
they responded to their effective object in all four locations, with the
numbers that responded to fewer locations, when one object was
present during testing compared with when all four objects were
present during testing. Figure 3b shows an example of a layer 3 cell
that responded to its effective stimulus, a chair, in two of four
locations when four objects were present simultaneously, though it
responded to its effective object in all four locations when only one
object was present, as shown in Fig. 3a. Figure 5 shows that, when
tested with one object present at a time, all the layer 3 neurons with
best responses to a particular object responded to all four possible
positions of the object. There were for each object, on average, 169
completely position-invariant neurons, as shown in Fig. 5. Figure 5
shows that, when tested with four objects present simultaneously, the
same neurons with best responses to a particular object responded
overall to fewer locations of the effective stimulus for the neuron.
Reasonable numbers of neurons responded to their effective stimulus
in two or three locations (on average 60 of the 169 neurons as shown
in Fig. 5), but only one neuron on average responded to the effective
stimulus in all four locations. This indicates that the receptive fields of
VisNet neurons do shrink, and show somewhat less translation
invariance, when several objects are presented simultaneously in a
whole scene. It is this reduced translation invariance that will facilitate
the ability of the layer 4 neurons to be able to learn to respond to one
arrangement of the simultaneously presented objects but to have
smaller responses to another scene with a different arrangement of the
same four objects.
Figure 5 shows that, even when tested on whole scenes, for which

scene-specific spatial-view neurons can be formed in layer 4
(corresponding to hippocampal areas), the layer 3 neurons (corre-
sponding in these simulations to the inferior temporal visual cortex)
show some invariant responsiveness. The degree of invariance shown
may be useful for invariant object recognition, with neurons often
responding to an object in more than one location. On the other hand,
there is sufficient spatial asymmetry that the layer 3 neurons can
provide sufficient spatial information when several objects are
simultaneously present for layer 4 of the network to learn scene
representations that are specific to the spatial arrangement of the
objects in the scene.

Discussion

The results described here show that when the same self-organizing
principles that can account for the formation of neurons with invariant

Fig. 4. Scene-specific responses of layer 4 neurons. For the 36 neurons most
responsive to each scene, the activations produced in these neurons by the other
scenes was 33%, and by single objects was 42%. The values shown are the
means and standard errors across the different scene-specific neurons when
tested with other scenes, and with the four objects presented one at a time in
every position.
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responses in the inferior temporal visual cortex are applied in a further
layer of computation trained by the same principles, but now including
spatial scenes in the training data, then neurons with spatial-view-
specific responses develop in the new added layer. This is thus a
unifying computational hypothesis, for it shows that not only invariant
representations can be developed with the functional architecture, but
that spatial-view neurons can be formed by the same computational
principles operating in a further layer or layers. Part of the
attractiveness of this unifying computational hypothesis is that it
makes the design of the brain by evolutionary processes relatively
tractable in that adding another layer, rather than inventing new
computational principles, is what is required.
The last layer in the conceptual design (layer 5 in the network

illustrated in Fig. 1, and layer 4 in the network as simulated) is taken
to correspond to systems such as the hippocampus and parahippo-
campal gyrus in which spatial-view cells are found. In fact, spatial-
view cells are found in the primate (macaque) parahippocampal gyrus
as well as the hippocampus, fields CA3 and CA1 (Rolls et al., 1997a,
1998, 2005; Robertson et al., 1998; Georges-François et al., 1999;
Rolls & Kesner, 2006; Rolls & Xiang, 2006). Given that there are
connections from the temporal cortical visual areas to the cortical areas
that overlie the hippocampus and in turn send projections to the
hippocampus via the entorhinal cortex (Van Hoesen, 1982; Suzuki &
Amaral, 1994; Lavenex & Amaral, 2000; Witter et al., 2000; Lavenex
et al., 2004), it is possible that spatial-view cells are formed in these
cortical areas that overlie the hippocampus. These representations may
then be passed on to the entorhinal cortex, and thus into the
hippocampus via the dentate granule cells. The dentate granule cells
may by competitive learning help to make the representation more
sparse (Rolls & Kesner, 2006; Rolls et al., 2006; Rolls, 2008b). As the
animal navigates through the environment and looks at different
spatial views, different spatial-view cells would be formed.
Because of the overlapping fields of adjacent spatial-view neurons,

and hence their coactivity as the animal navigates, recurrent collateral
associative connections at the next stage of the system, CA3, could
form a continuous attractor representation of the environment. Part of
the utility of forming a continuous spatial attractor representation in
CA3 is that if it operates as a single network due to its widespread
recurrent collateral connections (Rolls, 1996, 2008b; Rolls & Treves,
1998; Rolls & Kesner, 2006) then any pair of different landmarks that
happened to be close in a spatial environment could be associated
together by coactivity in the recurrent collateral connections, even if
quite different neurons in the network represented the different
landmarks. This type of associatively might be harder to build in the
neocortex where the recurrent collateral connections are short-range.
We thus have a hypothesis for how the spatial representations are

formed as a natural extension of the hierarchically organised
competitive networks in the ventral visual system. The expression of
such spatial representations in CA3 may be particularly useful for
associating those spatial representations with other inputs, such as
objects or rewards, and thus in episodic memory (Rolls & Xiang,
2005, 2006; Rolls et al., 2005; Rolls & Kesner, 2006; Rolls, 2008b).
Part of the mechanism by which layer 3 neurons can support the

formation of scene-specific neurons in layer 4 is that the receptive
fields of the layer 3 neurons, though in many cases large and fully
position invariant when tested with one object, become smaller,
responding to fewer locations of the effective object, when tested with
simultaneously presented objects, as in natural scenes (see Fig. 5). At
the same time, Fig. 5 shows that, even when tested on whole scenes
with four objects present simultaneously, the layer 3 neurons show
some invariant responsiveness, which may be useful for invariant
object recognition, yet sufficient spatial asymmetry that they can
provide sufficient spatial information when several objects are
simultaneously present for layer 4 of the network to learn scene
representations that are specific to the spatial arrangement of the
objects or landmarks in the scene. Part of the concept described in this
paper (which is consistent with the neurophysiological evidence of
Aggelopoulos & Rolls, 2005) is that the last layer of the unimodal
ventral visual system corresponding with the inferior temporal visual
cortex has receptive fields that, due to competition and the sparseness
of the representation, decrease in size and become asymmetric with
respect to the fovea, in a complex spatial scene when more than one
object is present simultaneously. For this reason, the inferior temporal
cortex cannot support spatial scene representations in which several
objects in the correct spatial position must be represented. It is partly
for this reason that an additional layer to the hierarchy, identified with
the parahippocampal gyrus–hippocampus, with additional conver-
gence and an appropriate level of competition, is needed to provide a
conjunctive, scene, representation of what is represented in the inferior
temporal visual cortex.
The simulations described here provide a computational account of

the mechanism by which the receptive fields of inferior temporal
cortex neurons become smaller in crowded scenes. The simulations
show that this is related to the diluted, probabilistic, feedforward
connectivity which has an approximately Gaussian spatial distribution
from neurons in the preceding layer (see Materials and methods and
Fig. 1). If the inhibition in such a layer of neurons is increased because
other neurons become active due to different objects being presented
simultaneously then the Gaussian spatial profile will tend to make the
receptive field shrink, and the fact that the connectivity is incomplete
will mean that there may be more connections present from neurons in
the preceding layer in one direction with respect to another, with this

Fig. 5. Smaller receptive fields of layer 3 neurons
when tested with all four objects presented simul-
taneously during testing compared to when one
object is present during testing. When tested with
one object present at a time, all the neurons with
best responses to a particular object responded to
all four possible positions of the object. There were
for each object, on average, 169 completely
position-invariant neurons, as shown in the plot
labelled ‘one object during testing’. The neurons
did not respond to other objects. When tested with
four objects present simultaneously, the same
neurons with best responses to a particular object
responded to overall fewer locations of the
effective stimulus for the neuron.
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producing asymmetry in the receptive field shape that becomes
particularly evident when the competitive inhibition is strong. With
less competitive inhibition, when one object is present at a time, the
smaller number of connections in a given direction are nevertheless
sufficient to produce receptive fields that respond to the effective
object for a neuron in all positions of the object, as illustrated in Fig. 5.
In this context, recent neurophysiology shows how there is some
spatial information in object-tuned neurons in the ventral visual
system in scenes with multiple objects present simultaneously
(Aggelopoulos & Rolls, 2005), and the results described here indicate
how this could arise computationally.

The findings described here complement and are supported by
results obtained with a more artificial network trained by gradient
ascent with a goal function that included forming relatively time-
invariant representations and decorrelating the responses of neurons in
the multilayer hierarchical network (Wyss et al., 2006; Franzius et al.,
2007). In their simulations, place-like cells were formed at the end of
the network when the system was trained with a real or simulated
robot moving through spatial environments (Wyss et al., 2006), and
view cells were formed when training on video sequences from a
virtual-reality environment (Franzius et al., 2007). The functional
architecture of these studies was more abstract, in that the goal
function was prescribed, and gradient ascent to optimize the goal
function was used. The approach taken in this paper is different in that
it starts with the details of the architecture, including convergent
probabilistic feedforward connectivity as illustrated in Fig. 1 and
competitive learning implemented by a local associative (Hebbian)
synaptic modification rule with a short-term memory trace component
and mutual inhibition between neurons, and shows that by adding an
additional (fifth) layer with the same architecture, and then training it
on whole scenes, scene-specific spatial-view cells can be produced.
The test for spatial-view neurons is particularly rigorous in the present
work because the same objects, features and ⁄ or landmarks are present
in the different scenes, and each scene is formed by a particular
arrangement of the relevant objects, features and ⁄ or landmarks. In the
work with more abstract training (Wyss et al., 2006; Franzius et al.,
2007), the visual inputs were derived from a robot moving in the
world or from images of the world, and so different spatial scenes
might be composed of different objects or landmarks, which is an
easier problem more like that of object recognition in which the
objects differ from each other by having at least largely nonoverlap-
ping sets of features. The present approach also shows how invariant
representations in the inferior temporal visual cortex are related to the
need for some spatial information to be represented if they are to
provide the basis for spatial scene learning, for the present results
show that the spatial selectivity of inferior temporal cortex neurons
becomes more evident in complex natural scenes with several objects
or landmarks present simultaneously.

The present results are also relevant to understanding the finding
that areas beyond the inferior temporal cortex may be especially
important when the different objects to be discriminated have many
overlapping features (Bussey et al., 2002, 2003, 2005; Bussey &
Saksida, 2005, 2007; Buckley & Gaffan, 2006). Objects as represented
in the inferior temporal visual cortex are everyday objects (such as
those illustrated in Fig. 2 and in Rolls, 2008b, fig. 2.11) which
typically overlap in relatively few features (Rolls, 2008b). It is
proposed that part of the solution to learning to discriminate difficult
objects, in which there are many features in the different objects that
are in common, is that by adding an additional layer of processing to
the inferior temporal visual cortex, such as perirhinal and ⁄ or
parahippocampal areas, combinations of the features with their
relative spatial position encoded by the inferior temporal visual cortex

neurons (because of the asymmetry of their receptive fields described
here and by Aggelopoulos & Rolls, 2005) can allow neurons to be
formed in the added layer that depend on new combinations of
features in which the relative spatial position is part of the new
representation formed (Rolls, 2008b). Thus the present hypothesis
provides a computational account for how a cortical area beyond the
inferior temporal visual cortex can be important for perceptual
discrimination when the objects consist of overlapping sets of features,
and also how the spatial arrangement of the features can be
incorporated into the representation that may be required for the
discrimination, which has not been accounted for by previous models.
We note that in a review paper by Bussey & Saksida (2007) they

refer to the concept that the hippocampus is an extension of the ventral
visual system (Squire, 1992; Mishkin et al., 1997) useful for solving
‘object ambiguity’ when objects are repeated in for example a
repeating-items Delayed Match-to-sample task, and that they summa-
rize their view as follows: ‘‘Thus perirhinal cortex, which contains
complex conjunctive representations specifying unique objects, pro-
tects…from interfering feature ambiguity. In the case of repeating
items, however, not only are the features repeatedly presented, the
objects are repeatedly presented. As a result, the representations in
perirhinal cortex are not enough to protect…from interference. One
might say that an additional level of ambiguity, ‘object ambiguity’, has
been created. Now, the resolution of ambiguity at this level would
require an additional, more rostral layer, containing conjunctive
representations of an even higher degree of complexity than those
found in perirhinal cortex.’’ They suggest that this functionality,
the resolution of object ambiguity when objects are repeated, may be
provided by the hippocampus. However, they do not address the
central theme of the present paper, that the parahippocampal gyrus–
hippocampus may actually form spatial-view representations, by
combining representations of objects that include some information
about the positions of the objects due to the spatially asymmetric
receptive fields of inferior temporal cortex neurons in crowded scenes.
Moreover, part of the central theme of the present paper is that the
computations that allow these conjunctive representations to be
formed require no more than adding a further layer of feed-forward
competitive learning to the existing hierarchy, and this added layer we
identify generically with the parahippocampal gyrus–hippocampus.
Although we have modelled this further conjunctive learning provided
by the parahippocampal cortex–hippocampus in this paper by
competitive learning, which is a type of computation that can be
implemented by cortical areas and by the dentate gyrus (Rolls &
Treves, 1998; Rolls & Deco, 2002; Rolls et al., 2006; Rolls, 2008b),
we note that the CA3 recurrent collateral system of the hippocampus
could also contribute to the same functionality, as it includes
competition and associative learning, as well as to associations
between objects and places (Rolls & Treves, 1998; Rolls & Kesner,
2006; Rolls & Xiang, 2006; Rolls, 2008b).
The fact that the receptive fields of inferior temporal cortex neurons

become smaller and asymmetric with respect to the fovea in scenes
with several objects situated close to the fovea (Aggelopoulos & Rolls,
2005) provides a solution to the representation of multiple objects in a
scene, which is an important issue in hierarchically convergent object
recognition systems with distributed representations (Mozer, 1991).
By having object-selective neurons with different spatial asymmetries,
the representation provided by a population of neurons provides
information not just about what objects are present in a scene but also
about their relative spatial position with respect to the fovea
(Aggelopoulos & Rolls, 2005). Indeed, this type of encoding could
account not only for how we can see several objects in a scene in their
correct spatial position with respect to the fovea, but also for how we
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are able to see two versions of the same object at different positions in
a scene (Aggelopoulos & Rolls, 2005). The contribution of the present
paper to this issue is that it shows that these asymmetries can arise in a
hierarchical feedforward network with probabilistic forward connec-
tivity, which provides the basis for asymmetries in the receptive fields
to emerge when several objects are sufficiently close so that inhibition
through inhibitory neurons (themselves with probabilistic connectiv-
ity) can reveal the underlying asymmetry produced by the probabilistic
connectivity.
It is an interesting part of the hypothesis described that, because

spatial views and places are defined by the relative spatial positions of
fixed landmarks (such a buildings), slow learning of such represen-
tations over a number of trials might be useful, so that the neurons
come to represent spatial views or places and do not learn to represent
a random collection of moveable objects seen once in conjunction.
This enables us to make a clear distinction between representations of
objects and representations of scenes. Objects are typically moveable,
and can appear in different places in a spatial environment. The
features within an object are associated with each other to form a
representation of the object, but strong associations are not made
between those features and scenes (or other objects) because
statistically the associations are stronger between features within an
object than between the features in a spatial scene or in another object
(Stringer et al., 2007; Stringer & Rolls, 2008). In contrast, the
landmarks, features or objects that are part of a spatial scene are seen
in the same overall spatial relationship to each other because of the
fixed nature of a scene. An example is that when looking at a scene in
a room the floor, walls and ceiling are always in a fixed relationship to
each other, and the walls are not sometimes seen below the floor. It is
this type of scene-learning that we have shown could be implemented
by adding an additional layer to the ventral visual stream architecture.
In conclusion, we believe that it is an interesting and unifying

hypothesis that an effect of adding an additional layer to VisNet-like
ventral stream visual cortical processing might with training in a
natural environment lead to the self-organization, using the same
principles as in the ventral visual stream, of spatial-view representa-
tions in parahippocampal or hippocampal areas. This hypothesis helps
to bring together in a unifying framework (Rolls, 2008b) neurophys-
iological studies on invariant object and face representations at the end
of the unimodal ventral visual stream in the inferior temporal visual
cortex (Rolls, 1984, 2000, 2007; Baylis et al., 1985, 1987; Rolls &
Baylis, 1986; Hasselmo et al., 1989; Tovee et al., 1994, 1996; Rolls
et al., 1997b,c, 2003; Booth & Rolls, 1998; Hölscher et al., 2003;
Aggelopoulos & Rolls, 2005; Aggelopoulos et al., 2005; Franco et al.,
2007) and how they may be formed computationally (Rolls, 1992;
Wallis & Rolls, 1997; Rolls & Milward, 2000; Stringer & Rolls, 2000;
Rolls & Stringer, 2001; Elliffe et al., 2002; Rolls & Deco, 2002;
Stringer & Rolls, 2002; Trappenberg et al., 2002; Deco & Rolls, 2004;
Perry et al., 2006; Rolls & Deco, 2006; Rolls and Stringer, 2006a,b;
Stringer et al., 2006, 2007), with neurophysiological studies on the
representation of space in the primate hippocampus (Rolls & O’Mara,
1995; Rolls et al., 1997a, 1998, 2005; Robertson et al., 1998;
Georges-François et al., 1999; Rolls, 1999; Rolls & Xiang, 2005,
2006) and how this may be formed computationally (Rolls, 1996;
Rolls & Treves, 1998; de Araujo et al., 2001; Rolls et al., 2002, 2006;
Stringer et al., 2004, 2005; Rolls & Stringer, 2005; Rolls & Kesner,
2006).
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