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Learning movement sequences with a delayed reward signal in a hierarchical
model of motor function
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Abstract

A key problem in reinforcement learning is how an animal is able to learn a sequence of movements when the reward signal only occurs at the
end of the sequence. We describe how a hierarchical dynamical model of motor function is able to solve the problem of delayed reward in learning
movement sequences using associative (Hebbian) learning. At the lowest level, the motor system encodes simple movements or primitives, while
at higher levels the system encodes sequences of primitives. During training, the network is able to learn a high level motor program composed of a
specific temporal sequence of motor primitives. The network is able to achieve this despite the fact that the reward signal, which indicates whether
or not the desired motor program has been performed correctly, is received only at the end of each trial during learning. Use of a continuous
attractor network in the architecture enables the network to generate the motor outputs required to produce the continuous movements necessary
to implement the motor sequence.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

A key problem in reinforcement learning is how an animal
can learn a sequence of movements when the reward signal,
which indicates whether the sequence was performed correctly,
only occurs at the end of the sequence. A standard solution
to the problem of delayed rewards is temporal difference
learning, which is a learning algorithm that learns to predict
future rewards (Sutton, 1988; Sutton & Barto, 1998). Temporal
difference learning has been applied to the problem of learning
sequential movements with a dopamine-like reinforcement
signal (Suri & Schultz, 1998). However, temporal difference
learning requires that the algorithm makes use of an error term
in the synaptic weight updates that is based on the difference
between the future rewards predicted by the algorithm at
successive timesteps. This may be complicated biologically, for
it requires successive predictions of expected reward value to be
available during a learning trial, for differences between these
predictions to be calculated, and for the resulting error term to
be used to influence synaptic weight modifications.
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One approach to solving the problem of delayed reward in
reinforcement learning with biologically plausible, associative
learning rules may be through a hierarchical organization of the
motor system. Motor systems in humans have a hierarchical
structure, with higher levels specifying increasingly complex
motor actions (Ghez & Krakauer, 2000, chap. 3; Hughlings
Jackson, 1878). This hierarchy may be divided into three
distinct brain regions: the motor areas of the cerebral cortex, the
brain stem, and the spinal cord. The highest level in the motor
hierarchy is the collection of motor areas in the cortex, which
specify complex voluntary motor programs. The motor areas
in the cortex send connections to the brain stem and the spinal
cord. The brain stem is the next layer in the motor hierarchy, and
governs posture and goal directed movements. The brain stem
also sends connections to the spinal cord. The spinal cord is the
lowest level in the motor hierarchy, and encodes a variety of
low level reflexes. The hierarchical structure underlying motor
control in humans permits the motor systems to form complex
motor programs from elemental motor primitives that have
stereotyped spatial and temporal characteristics (Lacquaniti,
Terzuolo, & Viviani, 1983). An additional feature of motor
control in humans is that each level of the motor hierarchy relies
on sensory input which is appropriate to that level, with more
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complex sensory information extracted at each level from the
spinal cord to the cortex (Ghez & Krakauer, 2000, chap. 3).
These sensory representations may provide an important basis
from which motor sequences at each level are regulated.

In this paper we describe how a hierarchical dynamical
model of motor function is able to solve the problem of delayed
reward in learning movement sequences using associative
(Hebbian) learning. The model uses just the reward information
at the end of the trial, and does not need, during learning,
to keep track of expected value during a trial, and to
calculate errors based on differences between expected values
at different times in order to determine how to adjust the
synaptic weights and what to do next, as in temporal difference
learning. Moreover, the network does not just produce an
abstract sequence, but instead implements the full continuously
changing set of motor outputs required to perform all the
movements throughout the whole sequence.

The hierarchical model of motor function investigated here
builds on a model of motor function proposed by Stringer,
Rolls, Trappenberg, and De Araujo (2003), and extended
to hierarchical motor function by Stringer and Rolls (in
preparation). The models proposed by these authors are able
to learn arbitrary dynamical motor sequences, execute such
motor sequences at arbitrary speed, and perform the motor
sequences in the absence of external visual or proprioceptive
cues. These are important properties for models of motor
control in biological agents (Bizzi & Polit, 1979; Laszlo, 1966,
1967; Polit & Bizzi, 1978; Schmidt, 1987, 1988). The model
described in this paper introduces rewards delivered at the end
of a trial that enable a set of motor primitives to be performed
later in the correct sequence. The model thus shows how
reinforcement learning can be used to enable whole sequences
of continually evolving motor commands to be learned.

2. Model overview

The model described in this paper utilizes a hierarchical
structure. At the lowest level, the model encodes motor
primitives that consist of unidirectional movements with a
given starting and finishing position. These are implemented
in the model by a continuous attractor network that allows
continuous movement through the state space. In the model,
this is implemented by the postural state continuous attractor
x which interacts with the motor output network y shown in
Fig. 1 in a way that will be detailed below and was described
by Stringer et al. (2003). In the new model described here, this
coupled pair of networks that implement the motor primitives is
controlled by the movement selector cells rMS, which activate
simultaneously all the motor primitives that will be required for
the full movement sequence. The order in which the primitives
are executed is determined by the state/motor networks x and
y, which, given an initial postural starting position, can only
evolve through their state space in one way, in that there is only
one way that the primitives given their start and end positions
can evolve continuously through the state space. In particular,
although all of the motor primitives that will be required for
the full movement sequence are activated simultaneously, the
different motor primitives are only performed when the agent
is in the correct part of its state space, because the outputs
from the movement selector cells are modulated by the state
of the agent before reaching the motor cells themselves. This is
one concept that is important to the operation of the system.
The second new concept to the system is that reward given
at the end of the trial facilitates the learning of connections
from the high level movement selector cells in such a way
that one high level movement selector command is associated
with the set of primitives that are active in a successful trial
in the movement selector cells rMS. For the reward signal to
operate effectively at the end of the trial, the movement selector
cells must still be firing at the end of the trial (perhaps held
on during training by the movement selector signal tMS), and
the high level movement selector cells rHMS must also still be
firing at the end of the trial when the reward is given. This then
enables the reward signal to facilitate associative learning at the
synapses w4 in Fig. 1.

Thus, the delayed reward signal is used to teach the high
level movement selector command cells rHMS for the high level
motor programme only which movement selector cells rMS

need to be activated at some point throughout the entire high
level motor program sequence. Once the movement selector
command cells rMS for the low level motor primitives are
activated, the motor primitives themselves encode the mappings
from the state space of the agent to the motor output, because
the outputs from the movement selector cells rMS onto the
motor cells rM are modulated by the postural state rS of
the agent. This ensures that the motor primitives are actually
performed in their correct temporal order. We emphasize that
the model implements the full trajectory through all the motor
commands needed within every part of the sequence, so that this
is a full motor controller, and is not just a system that can learn
abstract sequences, which is what temporal difference learning
can implement.

3. The network model

The network is trained in two stages. First, in Section 3.1
we describe how the network learns the low level motor
primitives. The motor primitives are learned using associative
learning rules, but with no reward signals used during this
process. Second, in Section 3.2 we describe how the network
is able to learn two high level motor programs, each of which
is composed of specific temporal sequences of the motor
primitives, using an associative learning rule that uses the
delayed reward signal at the end of each trial to learn to perform
the desired high level motor program.

3.1. Learning the motor primitives

The network of state cells (with firing rate rS
i for state

cell i) represents the current positional (or postural) state of
the agent. The state cells are recurrently connected and form
a continuous attractor neural network (the generic details of
which are described by Amari (1977), Rolls and Deco (2002),
Stringer, Rolls, Trappenberg, and De Araujo (2002), Stringer,
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Fig. 1. Network architecture of the hierarchical dynamical model of motor function. There is a network of state (S) cells that represent the postural state of the agent,
a network of motor (M) cells that represent the motor activity, a network of movement selector (MS) cells that represent the command to perform a motor primitive,
and a network of high level movement selector (HMS) cells that represent the high level motor programs, which are composed of sequences of the motor primitives.
The forward model is implemented by the synaptic connections w2 from Sigma–Pi couplings of state cells and motor cells to the state cells. The connections w2

are able to update the representation in the network of state cells given the current patterns of firing in both the network of state cells and the network of motor cells.
The inverse model is implemented by the synaptic connections w3 from Sigma–Pi couplings of state cells and movement selector cells to the motor cells. Given
a motor primitive represented by the firing of the movement selector cells, the connections w3 are able to drive the motor cells to perform the appropriate motor
actions. The movement selector (MS) cells are driven by the network of high level movement selector (HMS) cells through the synapses w4. While the movement
selector cells represent the motor primitives, the high level movement selector cells represent the high level motor programs which are composed of sequences of
the motor primitives.
Trappenberg, Rolls, and De Araujo (2002) and Taylor (1999)).
The activation hS

i of state cell i is governed by

τ
dhS

i (t)
dt

= −hS
i (t) +

φ0

CS

∑
j

(w1
i j − wINH)rS

j (t) + ei

+
φ1

CS×M

∑
j,k

w2
i jkrS

j rM
k (1)

where w1
i j is the excitatory (positive) synaptic weight from state

cell j to state cell i , and wINH is a global constant describing the
effect of inhibitory interneurons within the layer of state cells.1

τ is the time constant of the system. ei represents an external
input to state cell i , which may be visual or proprioceptive. The
last term in Eq. (1) is a sum of coupled inputs2 from the state
and motor cells

∑
j,k w2

i jkrS
j rM

k , where rS
j is the firing rate of
1 The scaling factor (φ0/CS) controls the overall strength of the recurrent
inputs to the layer of state cells, where φ0 is a constant and CS is the number
of presynaptic connections received by each state cell from other state cells.

2 These are Sigma–Pi synapses, but these and the other Sigma–Pi synapses in
the model can, in principle, be replaced by a layer of neurons that competitively
learn combinations of the inputs, and then map these using Hebb (two term)
associative synapses to the correct output, as shown by Rolls and Stringer
(2005).
state cell j , rM
k is the firing rate of motor cell k, and w2

i jk is the
corresponding strength of connection from these cells.3

The firing rate rS
i of state cell i is determined from the

sigmoid activation function

rS
i (t) =

1

1 + e−2β(hS
i (t)−α)

, (2)

where α and β are the sigmoid threshold and slope,
respectively.

The network of motor cells (with firing rate rM
i for motor

cell i) represents the current motor output. The activation hM
i

of motor cell i is governed by

τ
dhM

i (t)
dt

= −hM
i (t) + ti +

φ2

CS×MS

∑
j,k

w3
i jkrS

j rMS
k (3)

where ti is the motor training signal for motor cell i . The last
term in Eq. (3) is produced from couplings in w3 of the state
cells (with firing rS

j ) and movement selector cells (with firing
rMS

k ), and w3
i jk is the corresponding strength of the connection
3 The scaling factor φ1
CS×M controls the overall strength of the motor inputs,

where φ1 is a constant and CS×M is the number of Sigma–Pi connections
received by each state cell.
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from these cells. This driving term initiates activity in the
network of motor neurons when the movement selector cells
are activated.4

The firing rate rM
i of motor cell i is determined from the

sigmoid activation function

rM
i (t) =

1

1 + e−2β(hM
i (t)−α)

. (4)

During training, the motor training signals ti received by
each motor cell i cause the agent to proceed through a set of
positional states. Simultaneously, each positional state cell i is
driven by external visual or proprioceptive input ei carrying
information about the state (i.e. position) of the agent. While
this happens, three different learning rules are responsible for
setting up the synaptic weights w1

i j , w2
i jk and w3

i jk within the
network.

The recurrent connections w1
i j are set up to permit the

network of state cells to operate as a continuous attractor
network and support stable patterns of firing in the absence of
external visual or proprioceptive input. The learning rule used
to update the recurrent synapses w1

i j is the Hebb rule

δw1
i j = k1rS

i rS
j . (5)

The connections w2
i jk are responsible for enabling an efference

copy of the motor signal to update, using path integration, the
positional state CANN, and thus implement a forward model
of motor function (Miall & Wolpert, 1996). These connections
are trained by a traced Sigma–Pi learning rule, which allows
a combination of the short-term memory traced activity within
the state cell network (which represents the preceding position)
and the short-term memory traced activity within the motor cell
network (which represents the preceding motor command) to
be associated with the current positional state. The learning rule
used to update the synapses w2

i jk is

δw2
i jk = k2rS

i rS
j r

M
k , (6)

where rS
j refers to a memory trace of the firing rS

j , and rM
k refers

to a memory trace of the firing of rM
k . The trace value r of the

firing rate r of a cell is calculated according to

r(t + δt) = (1 − η)r(t + δt) + ηr(t) (7)

where η is a parameter in the interval [0,1] which determines
the relative contributions of the current firing and the previous
trace. For η = 0, the trace becomes just the present firing
rate, and as η is increased the contribution of preceding firing
at times earlier than the current timestep is increased. The
short-term memory traces inherent in these operations could be
implemented by a number of biophysical processes, including
the long time constant of NMDA (N -methyl-D-aspartate)
4 The scaling factor φ2
CS×MS controls the overall strength of the inputs

from couplings of state and movement selector cells, where φ2 is a constant,
and CS×MS is the number of connections received by each motor cell from
couplings of the state and movement selector cells.
receptors (Stringer, Rolls, et al., 2002; Stringer, Trappenberg,
et al., 2002).

The synaptic weights w3
i jk are set up by a learning rule

which associates the co-firing of the movement selector cells
and a particular cluster of state cells with the firing of the
appropriate cluster of motor cells. The synaptic connections
w3

i jk thus implement an inverse model of motor function: given
a desired movement primitive represented by the firing of the
movement selector cells, the synaptic connections w3

i jk drive
the motor cells to perform the appropriate motor actions. The
synaptic weights w3

i jk are updated according to

δw3
i jk = k3rM

i rS
j rMS

k . (8)

During the initial learning phase in which the network
learns the low level motor primitives, the agent performs
each motor primitive to be learned. As the agent performs
each motor primitive, the state cells are driven by the visual
or proprioceptive inputs ei , the motor cells are driven by
the training signal ti , and the synaptic weights w1

i j , w2
i jk

and w3
i jk are updated according to the simple learning rules

discussed above. During repeated learning cycles of each
motor primitive, the synaptic connectivity of the network self-
organizes such that, after training, the correct motor primitive
may be stimulated solely by stimulating the particular set of
movement selector cells.

3.2. Learning high level motor programs with delayed rewards

In this section we describe how the network is able to learn
two high level motor programs, each of which is composed of
a particular temporal sequence of low level motor primitives
using delayed rewards. The command to perform a high level
motor program is represented by the pattern of firing in the
network of high level movement selector (HMS) cells shown in
Fig. 1. We show how the network is able to learn the synaptic
connections w4 from the high level movement selector cells
to the movement selector (MS) cells representing the motor
primitives such that, after training, a pattern of activity within
the network of high level movement selector cells is able to
stimulate the correct temporal sequence of motor primitives.
The synaptic connections w4 are learned using a simple,
biologically plausible, associative learning rule tha uses the
delayed reward signal at the end of each attempt to perform
the desired motor program.

For consistency, the movement selector cells are modelled
dynamically. The activation of the movement selector cells is
governed by

τ
dhMS

i (t)
dt

= −hMS
i (t) + tMS

i +
φ3

CHMS

∑
j

w4
i jr

HMS
j . (9)

The term tMS
i is a training signal for movement selector cell

i , which is present only during training with a new high level
motor program. The last term in Eq. (9) is the input from the
high level movement selector cells

∑
j w4

i jr
HMS
j , where rHMS

j
is the firing rate of high level movement selector cell j , and
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w4
i j is the corresponding strength of the connection from these

cells.5

The firing rate rMS
i of movement selector cell i is determined

from the sigmoid activation function

rMS
i (t) =

1

1 + e−2β(hMS
i (t)−α)

. (10)

The network learns to perform a high level motor program
as follows. Firstly, a new set of cells in the high level movement
selector network (HMS) is activated, and it is this new set
of high level movement selector cells that learns to drive the
network through the new high level motor program composed
of a set of primitives. Then, during training, the agent makes
repeated attempts at performing the desired high level motor
program. For each attempt at performing the motor program, a
new (possibly random) set of motor primitives is chosen. These
motor primitives are then stimulated by applying a constant
training signal tMS

i to the movement selector cells that encode
those primitives. During each attempt at performing the high
level motor program, the set of motor primitives stimulated by
the training signal tMS

i during the course of that attempt does
not alter. However, although the training signal tMS

i stimulates
all of the relevant movement selector cells equally throughout
the entire attempt at the motor program, the different motor
primitives represented by these cells are only performed when
the agent is in the part of its state space relevant to each
primitive. This is because the outputs from the movement
selector cells are modulated by the state of the agent in the
Sigma–Pi synapses w3

i jk before reaching the motor cells. This
ensures that, even though all of the movement selector cells
are stimulated simultaneously, the motor primitives are still
performed by the motor cells in a strict temporal sequence.
Whenever the agent completes the high level motor program
successfully during training, the agent receives a reward signal
and the synapses w4

i j from the high level movement selector
cells to the movement selector cells are updated according to
the associative (Hebb) rule

δw4
i j = k4rMS

i rHMS
j rR (11)

where rR is 1 if a reward is obtained and 0 if a reward is
not obtained. The effect of this learning rule is to associate
the pattern of firing in the network of high level movement
selector cells, which represents the command to perform the
high level motor program, with the movement selector cells
representing all of the motor primitives that were required to
perform the high level motor program. That is, the role of the
delayed rewards used to train the synapses w4

i j is to enable the
network to associate the pattern of activity in the high level
movement selector network with all of the motor primitives that
will be required at some point in the high level motor program.
5 The scaling factor φ3
CHMS controls the overall strength of the inputs from

the high level movement selector cells, where φ3 is a constant and CHMS is the
number of connections received by each movement selector cell from the high
level movement selector cells.
After training the synapses w4
i j using delayed reward signals,

the new set of high level movement selector cells is able to
drive the network through the new high level motor program
as follows. When the new set of high level movement selector
cells is activated, the outputs from these cells mediated by
the synapses w4

i j stimulate all of the movement selector cells
that represent the motor primitives required to perform the
high level motor program. All of these movement selector
cells become equally active at the beginning of the high level
motor program, and remain active until the end of the motor
program. However, although all of the relevant movement
selector cells remain equally active throughout the entire high
level motor program, each motor primitive represented by these
cells is only performed when the agent is in the correct part
of its state space, because the outputs from the movement
selector cells are modulated by the state of the agent in
the Sigma–Pi synapses w3

i jk before reaching the motor cells.
This ensures that, even though all of the movement selector
cells are stimulated simultaneously, the motor primitives are
still performed by the motor cells in the correct temporal
sequence. The high level motor program involves a mapping
from the state space of the agent to the set of motor primitives
mediated through the Sigma–Pi synapses w3

i jk , where, for each
successive state of the agent, the correct motor primitives must
be performed. However, the delayed reward signal is used to
teach the high level movement selector cells only which motor
primitives (encoded by the movement selector cells) are needed
throughout the entire high level motor program sequence, while
the motor primitives themselves encode the mappings from the
state space of the agent to the motor output.

3.3. Stabilization of activity packets in the continuous attractor
network of state cells in the presence of noise

As described by Stringer, Rolls, et al. (2002) and Stringer,
Trappenberg, et al. (2002), the recurrent synaptic weights
within the continuous attractor network of state cells may
be corrupted by a certain amount of noise from the learning
regime. This, in turn, can lead to drift of the activity packet
within the network of state cells when there is no external
visual or proprioceptive input available even when the agent
is not moving. Stringer, Trappenberg, et al. (2002) proposed
that, in real nervous systems, this problem may be solved
by enhancing the firing of neurons that are already firing
(cf. Lisman, Fellous, and Wang (1998)). This is achieved in
the numerical simulations by resetting the sigmoid threshold
αi at each timestep depending on the firing rate of cell i at the
previous timestep. That is, at each timestep t + δt we set

αi =

{
αHIGH if ri (t) < γ

αLOW if ri (t) ≥ γ
(12)

where γ is a firing rate threshold. This helps to reinforce the
current position of the activity packet within the continuous
attractor network of state cells. The sigmoid slopes are set to
a constant value, β, for all cells i .
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4. Results

We demonstrated the ability of the network model shown
in Fig. 1 to learn two high level motor programs, each of
which consists of 3 particular motor primitives (chosen from
a set of 6) which must be executed in the correct temporal
order.6 First, it is necessary to have primitives in the network
so that later learning can incorporate them into a sequence. In
Section 4.1 we describe how the network learned a total of 6
low level motor primitives. The motor primitives are learned
using associative learning rules, but with no reward signals used
during this process. Second, in Section 4.2 we demonstrate
the network learning two high level motor programs, each of
which is composed of a temporal sequence of 3 particular motor
primitives. This is accomplished using an associative learning
rule that uses the delayed reward signal at the end of each
attempt to perform the desired high level motor program.

4.1. Learning the low level motor primitives

The numerical simulation began with the learning phase in
which the synaptic weights, w1

i j , w2
i jk and w3

i jk , were self-
organized. During learning, just the state and motor cells were
moved together by their inputs e and t through the 6 motor
primitives shown in Figs. 2 and 3, while the movement selector
cells were in the fixed state shown during execution of each of
the primitives. During the training, at any one time the firing
in the networks had a gaussian profile (for details, see Stringer
et al. (2003)). What is shown in Figs. 2 and 3 is the execution
of each primitive after training when no training signals e and t
are applied, and just one movement selector signal is held active
in the position shown. It is a property of the system that any
movement selector signal only produces a movement if the state
cells S are in the correct position when a particular movement
selector signal is applied.

4.2. Learning to perform a high level motor program

In stage 2 of the simulation, the network was trained to
perform two high level motor programs. The high level motor
program shown on the left of Fig. 4 was to move the state
of the agent from that represented at state cell 20 to that
represented at state cell 180, and to do this the system needed
to sequence appropriately the primitives 1, 2 and 3 shown
in Fig. 2. During each learning trial of the high level motor
6 The following parameter values were used. The parameters governing the
learning were: η = 0.9, k1

= 0.001, k2
= 0.001, k3

= 0.001 and k4
= 0.001.

The parameters governing the ‘leaky-integrator’ dynamical Eqs. (1), (3) and (9)
were: τ = 1, φ0 = 1.5 × 105, φ1 = 1 × 107, φ2 = 1.25 × 106, φ3 = 2.5 × 106

and wINH
= 0.011. The parameters governing the sigmoid activation functions

were as follows. For the state cells, we used: αHIGH
= 0.0, αLOW

= −20.0,
γ = 0.5, and β = 0.1. For the motor cells and movement selector cells, we
used: αHIGH

= 10.0, αLOW
= 10.0, γ = 0.5, and β = 0.3. Since we set

αHIGH
= αLOW for the motor cells and movement selector cells, there was no

enhancement of the firing rates of these types of cells with already high firing
rates, and the parameter γ was redundant. Finally, for the numerical simulations
of the leaky-integrator dynamical Eqs. (1), (3) and (9), we employed a Forward
Euler finite difference method with the timestep set to 0.2.
program shown on the left of Fig. 4, cells 1–10 in the high level
movement selector (HMS) network were active to represent
the high level movement command. On each of 10 learning
trials, 3 of the 6 motor primitives were selected at random
and the related movement selector cells were then set firing
by applying a constant training signal tMS

i to these cells. The
set of movement selector cells MS representing the 3 motor
primitives was maintained active throughout each trial by the
training signals tMS

i . Inputs e and t were not applied during
this phase of the training. Whenever the agent completed the
high level motor program successfully during training, the
agent received a reward signal and the synapses w4

i j from the
high level movement selector cells (HMS) to the movement
selector cells (MS) were updated according to Eq. (11). No
other synapses were modified during this stage of the training.
Similar training was performed for the motor program shown
on the right of Fig. 4 which was to move the state of the agent
from that represented at state cell 180 to that represented at state
cell 20.

For each program, there were 10 training trials, only one of
which performed the sequence correctly (e.g. for the program
on the left from position 20 to position 180 in the state space x)
and received a reward rR

= 1. For program 1, the training phase
led to strong synaptic weights w4

i j from the high level move-
ment selector cells (HMS) 1–10 to the movement selector cells
(MS) representing the 3 correct motor primitives 1, 2 and 3.

After the learning phase for the high level motor programs
was completed, the network was tested to see if it could perform
the high level motor programs when only the appropriate high
level movement selector cells were activated. For program
1, before the start of the experiment, an activity packet was
initiated at position 20 in the state space x . In Fig. 4 (left)
we show the firing rate profiles within the four networks
through time as the agent performs the learned high level
motor program. It is shown that applying steady activity to
the relevant high level movement selector cells 1–10 during
timesteps 81–790 drives the network through the high level
motor program composed of a temporal sequence of the 3
motor primitives 1, 2 and 3. It is made clear in the state cell
part of the Fig. 4 (left) that the state cells do pass through
the sequence defined by the primitives 1, 2 and 3 shown in
Fig. 2 and performed in that order. From Fig. 4 (left) it can
be seen that the high level movement selector cells stimulate
firing in all of the movement selector cells required for the
high level motor program. All of these movement selector cells
become equally active at the beginning of the motor program,
and remain active until the end of the motor program. However,
although all of the relevant movement selector cells remain
equally active throughout the entire motor program, each motor
primitive represented by these cells is only performed when
the agent is in the correct part of its state space, because the
outputs from the movement selector cells are modulated by
the state of the agent in the Sigma–Pi synapses w3

i jk before
reaching the motor cells. This ensures that, even though all of
the movement selector cells are stimulated simultaneously, the
motor primitives are still performed by the motor cells in the
correct temporal sequence. As the movement selector cells fire,
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Fig. 2. Numerical results from the first stage of the simulation, in which the network is trained to perform the low level motor primitives. This figure shows the
motor primitives 1, 2 and 3, which encode small movements of the state of the agent in the positive x direction. The first column shows the network performing
the first low level motor primitive, the second column shows the network performing the second low level motor primitive, and the third column shows the network
performing the third low level motor primitive. Within each column, we show the firing rate profiles within the movement selector network, the motor network and
the state network through time as the agent performs the learned motor primitive in the absence of the motor training signals ti , and without the external (visual or
proprioceptive) inputs ei . In all plots, high cell firing rates are indicated by black.

Fig. 3. Numerical results from the first stage of the simulation, in which the network is trained to perform the low level motor primitives. This figure shows the
motor primitives 4, 5 and 6, which encode small movements of the state of the agent in the negative x direction. Conventions as in Fig. 2.
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Fig. 4. Numerical results from the second stage of the simulation, after the
network has been trained to perform two different high level motor programs.
The motor program on the left starts at state cell 20 and moves to state cell 180,
as a consequence of external selection of high level movement selector cells
1–10. These high level movement selector cells in turn select the 3 populations
of movement selector cells shown. These in turn select the motor primitives
1, 2 and 3 (shown in Fig. 2) in the correct order, because activity in the
motor network is gated by the w3 connections from the state cells (shown
in Fig. 1). We show the firing rate profiles within the high level movement
selector network, the movement selector network, the motor network and the
state network through time as the agent performs the learned high level motor
program. The high level motor program is performed without the training
signals tMS

i for the movement selector cells, without the motor training signals
ti , and without the external (visual or proprioceptive) inputs ei . The motor
program on the right starts at state cell 180 and moves to state cell 20, as a
consequence of external selection of high level movement selector cells 31–40.

the signals from the movement selector cells drive the activity
packets in the postural state and motor networks to run through
the learned motor primitives in the correct temporal sequence
1, 2, 3. The high level motor program is performed without
the training signals tMS

i driving the movement selector cells
which represent the selection of the motor primitives, without
the motor training signals ti , and without the external (visual or
proprioceptive) inputs ei .

For motor program 2 shown on the right of Fig. 4 the correct
motor sequence is performed in an analogous way. The fact
that two different sequences were trained into the network, and
each could be initiated by its appropriate high level movement
selector command cells, shows that rewards delayed until the
end of a whole movement sequence can be used to correctly
train different motor sequences in this network architecture.
We performed a further simulation to show that different
sequences starting even from the same initial position can be
trained into the network. This simulation is illustrated in Fig. 5.
On the left, the motor program starts at state cell 100, and
moves to state cell 180. The training was analogous to that
used for the simulations shown in Fig. 4, except that two
motor primitives were learned for each sequence. In this case,
high level movement selector cells 61–70 select the movement
selector cells shown. These in turn select motor primitives 2
and 3 (shown in Fig. 2) in the correct order, because activity
in the motor network is gated by the w3 connections from the
state cells (shown in Fig. 1). On the right, the motor program
starts at state cell 100, and moves to state cell 20. In this case,
high level movement selector cells 91–100 select the movement
selector cells shown. These in turn select motor primitives 5
and 6 (shown in Fig. 3) in the correct order, because activity
in the motor network is gated by the w3 connections from the
state cells (shown in Fig. 1). This simulation thus shows that
delayed rewards can be used to train the network architecture in
such a way that, depending on the high level movement selector
command cells, a choice of different sequences can be selected
even from the same starting position.

5. Discussion

In this paper, we have demonstrated how a hierarchical
dynamical model of motor function is able to provide a possible
solution to the problem of reinforcement learning with delayed
rewards (or punishments) using associative learning rules.

It is an interesting feature of the system that it uses
associative learning rules rather than temporal difference (TD)
learning. TD learning requires ongoing representations of
predicted reward at each timestep, and calculating errors by a
subtraction process at each timestep by which to correct the
synaptic weights. In this respect, the model of reinforcement
learning described here is simpler, by not requiring these
calculations throughout each trial in order to learn the correct
sequence. Instead, the model described here uses the reward
signal at the end of the trial just to associate the high level
movement selector (HMS) command with the set of movement
selector output patterns (each one of which activates a motor
primitive) that are active throughout the trial.

The actual sequencing between the primitives in the model
is not performed by learned pairwise associations between each
primitive in the sequence. Instead, the model learns which
motor primitives are required, where each motor primitive
represents a mapping from the postural state space of the agent
to the motor output space. In particular, although all of the
motor primitives that will be required for the full movement
sequence are activated simultaneously, the different motor
primitives are only performed when the agent is in the correct
part of its state space, because the outputs from the movement
selector cells are modulated by the state of the agent before
reaching the motor cells themselves. In the model described,
the actual sequence in which the primitives enabled for a trial
are executed depends on the starting position within the state
space x , and on maintaining continuity of movement in the state
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Fig. 5. Simulation of a choice of two previously trained sequences. On the
left, the motor program starts at state cell 100, and moves to state cell 180.
In this case, high level movement selector cells 61–70 select the movement
selector cells shown. These in turn select motor primitives 2 and 3 (shown
in Fig. 2) in the correct order, because activity in the motor network is gated
by the w3 connections from the state cells (shown in Fig. 1). On the right,
the motor program starts at state cell 100, and moves to state cell 20. In this
case, high level movement selector cells 91–100 select the movement selector
cells shown. These in turn select motor primitives 5 and 6 (shown in Fig. 3)
in the correct order, because activity in the motor network is gated by the w3

connections from the state cells (shown in Fig. 1). Conventions as in previous
Figures. These high level motor programs are performed without the training
signals tMS

i for the movement selector cells, without the motor training signals
ti , and without the external (visual or proprioceptive) inputs ei .

space, which is provided for by the properties of the continuous
attractor network x , which naturally moves continuously
throughout its space. This constraint, of continuous movement
throughout its space, thus determines the order in which the
enabled primitives are performed. In contrast, with TD learning
of motor sequences, pairwise associations are learned between
state and action pairs, and the only sense in which a sequence
is performed is that one action leads to the next state, with
no order information learned by the network, but instead
being inherent in the environment (Suri & Schultz, 1998). In
contrast, the system that we describe includes a model of the
state space in its continuous attractor, and it is the constraints
within this continuous attractor that lead to the selected set
of primitives being performed in the correct order. The states
in the continuous attractor are updated during the execution
of the movement by the motor efference copy using a path
integration mechanism (see Stringer, Rolls, et al. (2002) and
Stringer, Trappenberg, et al. (2002)).
We note that the architecture as described at present has
the following constraints. The movements that are learned are
being performed in a continuous space, without breaks. This is,
of course, inherent in the physical properties of the agent being
modelled. A property of the architecture as simulated is that,
for any given high level motor program, each state of the agent
(represented in the network of state cells) can be associated with
only one action or motor output (represented in the network of
motor cells). The same states can be associated with different
actions in different high level motor programs. Although this
is limiting in one dimension, in higher dimensions the network
can learn arbitrary paths, as long as the above conditions hold.
We note that complex paths that break these conditions (such
as drawing the number ‘8’) could, in any case, be broken into
a number of high level motor programs. We further note that,
in the current formulation of the model, the state cells represent
the location of the agent. However, the state cells could also
include additional information about, for example, the current
motion of the agent. This would allow the agent to move
forwards and backwards in one dimension, or perform a figure
8 in two dimensions. The architecture could thus, in principle,
implement tasks such as the Corsi block-tapping task (Kolb &
Whishaw, 2003), subject to the above discussion.

Although we do not propose that the framework we describe
here operates in exactly this way in the brain, we do believe
that the approach that we describe does provide a possible basis
for what could be implemented with different implementation
details in the brain. The network described above does capture
some of what seems to be needed, and which may be
difficult to provide with other approaches, namely a continuous
unfolding in time of an arbitrary set of motor movements,
hierarchical motor control, and a way to learn the sequence
with a delayed reward. In addition, and in the direction
of biological plausibility, we have described elsewhere how
Sigma–Pi neurons can be replaced with neurons that self-
organize using competitive learning to represent combinations
of the input signals that can then be correctly mapped using
pattern association learning (Rolls & Stringer, 2005).

There has been little previous work in applying self-
organizing activity packet based continuous attractor networks,
in which the activity packet moves round the network, to
the problem of learning arbitrary motor programmes. Stringer
et al. (2003) provided the design of a network based on the
interactions of a continuous attractor network to represent
postural state with a motor (M) cell network, which used trace
rule learning in order to enable the system to learn to unfold
a single motor primitive. In this paper we have shown how,
with a hierarchical design, and with a reward signal that is
delayed until the end of the trial and which reinforces the
set of primitives used during the task, the whole sequence of
actions can then be performed as the network moves through
its continuous internal model of the state space.
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