
ARTICLE IN PRESS
0925-2312/$ - se

doi:10.1016/j.ne

�Correspond
E-mail addr

URL: http:/
Neurocomputing 70 (2007) 975–990

www.elsevier.com/locate/neucom
Hierarchical dynamical models of motor function

S.M. Stringer, E.T. Rolls�

Department of Experimental Psychology, Centre for Computational Neuroscience, Oxford University, South Parks Road, Oxford OX1 3UD, UK

Received 29 June 2005; received in revised form 13 January 2006; accepted 21 March 2006

Communicated by K. Fukushima

Available online 23 September 2006
Abstract

Hierarchical models of motor function are described in which the motor system encodes a hierarchy of dynamical motor primitives.

The models are based on continuous attractor neural networks, in which the packet of neural activity representing the position (in the

state space) is moved by path integration using a motor efference copy after training with a traced associative learning rule. Sequences of

movements can be learned because the state space modulates the effects of an intermediate level motor command. A high-level motor

command selects a set of intermediate level motor commands, and the whole movement sequence evolves with the correct order because

the state space representation effectively selects the next possible intermediate level command. Thus a single high-level motor command

can select whole movement trajectories composed of a set of motor primitives. It is further shown that the network can perform

completely novel motor sequences, and thus provides one solution to Lashley’s ‘problem of serial order in behaviour’.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Motor systems in humans have a hierarchical structure,
with higher levels specifying increasingly complex motor
actions [5,4]. This hierarchy may be divided into three
distinct brain regions: the motor areas of the cortex, the
brain stem, and the spinal cord. The highest level in the
motor hierarchy is the collection of motor areas in the
cortex, which specify complex voluntary motor programs.
The motor areas in the cortex send connections to the brain
stem and the spinal cord. The brain stem is the next layer in
the motor hierarchy, and governs posture and goal directed
movements. The brain stem also sends connections to the
spinal cord. The spinal cord is the lowest level in the motor
hierarchy, and encodes a variety of low level reflexes. The
hierarchical structure underlying motor control in humans
permits the motor systems to form complex motor
programs from elemental motor primitives that have
stereotyped spatial and temporal characteristics [7]. An
e front matter r 2006 Elsevier B.V. All rights reserved.

ucom.2006.03.012

ing author. Tel.: +441865 271348; fax: +44 1865 310447.

ess: Edmund.Rolls@psy.ox.ac.uk (E.T. Rolls).

/www.cns.ox.ac.uk.
additional feature of motor control in humans is that each
level of the motor hierarchy relies on sensory input which is
appropriate to that level, with more complex sensory
information extracted at each level from the spinal cord to
the cortex [4]. These sensory representations provide a
necessary basis from which motor sequences at each level
are regulated.
A key aspect of hierarchical motor control in animals is

its dynamical nature. That is, the motor primitives at all
levels in the hierarchy take the form of continuous
dynamical motions. This is a challenge for computational
models of motor control. In current models the motor
program seeks to minimise the distance or error between
the current state of the agent and a particular target state
(or desired trajectory), where the distance is either
determined by external visual or proprioceptive feedback,
or estimated with internal models [11,26,25]. In this paper
we develop an alternative approach which is inspired from
a dynamical system perspective, rather than classical
control theory. The hierarchical models of motor function
developed here build on a single command layer (SCL)
model of motor function proposed by Stringer et al. [22].
That model is based on continuous attractor neural
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1The scaling factor ðf0=CSÞ controls the overall strength of the

recurrent inputs to the layer of state cells, where f0 is a constant and

CS is the number of presynaptic connections received by each state cell

from the other state cells. The scaling factor f1=CS�M controls the overall

strength of the motor inputs, where f1 is a constant, and CS�M is the

number of Sigma–Pi connections received by each state cell.
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networks, which can maintain a set of neurons firing to
represent a position in a continuous space. We showed in
the model how the packet of neural activity representing
the position can be moved by a movement selector (MS)
input [23,21]. The network self-organises during training by
using a local associative synaptic modification rule with a
short term memory trace between the continuous attractor
neurons to associate the trajectory through which the
continuous attractor is moving with each MS input. The
network enables neural activity to progress dynamically at
arbitrary speeds which depend on the magnitude of
the MS input, and so allow an agent to control the
speed of its movement [22]. The use of ‘trace’ learning
rules which incorporate a form of temporal average of
recent cell activity underlies the ability of the network to
learn temporal sequences of behaviour. The model [22]
is able to learn arbitrary dynamical motor sequences,
execute such motor sequences at arbitrary speed, and
perform the motor sequences in the absence of external
visual or proprioceptive cues. These are important proper-
ties for models of motor control in biological agents
[17,18,2,13,9,10].

The SCL model of motor function developed in [22] did
not include a hierarchical pyramid of motor primitives. In
this paper, we extend the basic SCL model to develop
hierarchical command layer (HCL) network models of
motor function. HCL models support hierarchical motor
control, in which the motor system encodes a hierarchy of
dynamical motor primitives. At the lowest level, the motor
system encodes the most simple motor sequences, while at
higher levels the motor system encodes more complex
motor sequences composed of sequences of the lower level
motor primitives.

A key issue addressed is how such hierarchical models of
motor function may solve the ‘problem of serial order in
behaviour’ [8]. This is the problem of how animals are able
to perform completely novel motor sequences. An example
of such a novel motor sequence is how a person may
perform a novel reaching movement to grasp an object
when there is a unique spatial arrangement of obstacles in
the way. We show how the second of the two hierarchical
models of motor function described here may give rise to
new motor sequences that have not been performed during
training.

In Section 2 we present a movement control network
with a hierarchy of command layers, and show how it
enables hierarchical motor control. In Section 3 the model
is extended to allow it to produce new motor sequences
that have not been performed during training. In Section 4
we develop these ideas further and show that it is possible
to have both the state and motor representations in a single
recurrent network, and for all the computations to be
performed in a single network. This is of considerable
interest, for networks with recurrent connections are a
feature of the cerebral cortex, and different neurons which
respond to sensory events, or to motor events, are
frequently found in the same cortical area [16,3].
2. A model of hierarchical motor control

In this section we present a model of hierarchical motor
function, which is an extension of the architecture
described by Stringer et al. [22]. The model presented here
introduces the concept of how one movement selection
signal can be used to drive a whole sequence of motor
primitives, which are encoded using a continuous attractor
network framework. A motor primitive is an elemental
motor sequence that may be recruited by more complex
motor programs. Each motor program may be composed
of a sequence of motor primitives.

2.1. SCL architecture for learning to perform low-level

motor primitives

The model has a continuous attractor postural or
positional state network with firing rate rSi for state cell i,
labelled as ‘Network of state cells’ in Fig. 1. (The generic
details of recurrently connected continuous attractor net-
works are described by [1,24,23,21,14].) The continuous
attractor properties of the state cells implemented by the
associatively modified recurrent collateral connections w1

maintains the firing of the state cells in the absence of
external motor, visual, or proprioceptive inputs. The
activation hS

i of state cell i is governed by

t
dhS

i ðtÞ

dt
¼ � hS

i ðtÞ þ
f0

CS

X
j

ðw1
ij � wINHÞrSj ðtÞ þ ei

þ
f1

CS�M

X
j;k

w2
ijkrSj rMk , ð1Þ

where rSj is the firing rate of state cell j, w1
ij is the excitatory

(positive) synaptic weight from state cell j to state cell i, and
wINH is a global constant describing the effect of inhibitory
interneurons within the layer of state cells.1 t is the time
constant of the system. ei represents an external input to
state cell i, which may be visual or proprioceptive.
The firing rate rSi of state cell i is determined using the

sigmoid activation function

rSi ðtÞ ¼
1

1þ e�2bðh
S
i ðtÞ�aÞ

, (2)

where a and b are the sigmoid threshold and slope,
respectively.
An implementation detail that was introduced in an

earlier paper [23] to help with noise due to irregular
training or diluted connectivity is as follows. This
implementation detail was not necessary in this paper as
there was no noise in the simulations, and though present
was shown in further simulations not to affect the results
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Fig. 1. Network architecture of the hierarchical network model. There is a network of state cells which represent the postural state of the agent, a network

of motor cells which represent the motor activity, and a network of movement selector cells which represent the decision to perform a motor sequence. The

forward model is implemented by the synaptic connections w2 from Sigma–Pi couplings of state cells and motor cells to the state cells. The connections w2

are able to update the representation in the network of state cells given the current patterns of firing in both the network of state cells and the network of

motor cells. The inverse model is implemented by the synaptic connections w3 from Sigma–Pi couplings of state cells and movement selector cells to the

motor cells. Given a desired motor task or target state represented by the firing of the movement selector cells, the connections w3 are able to drive the

motor cells to perform the appropriate motor actions. The movement selector cells (MS) are driven by an additional network of high-level movement

selector (HMS) cells through Sigma–Pi synapses w4. The movement selector cells represent the motor primitives, while the high-level movement selector

cells represent the high-level motor programs which are composed of sequences of the motor primitives. The synapses w4, which drive the low-level

movement selector cells, are Sigma–Pi synapses from combinations of state cells and high-level movement selector cells. This allows which movement

selector cells are currently activated to be dependent on: (i) the current state of the agent represented by the state cells, and (ii) the current high-level motor

program represented by the high-level movement selector cells.

2The scaling factor f2=CS�MS controls the overall strength of the inputs

from couplings of state and MS cells, where f2 is a constant, and CS�MS is

the number of connections received by each motor cell from couplings of

the state and MS cells.
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described in this paper. It was shown [23] that the drift of
the activity packet within the continuous attractor network
of state cells due to imperfect training can be reduced by
enhancing the firing of neurons that are already firing. This
can be achieved in the numerical simulations by resetting
the sigmoid threshold ai at each timestep depending on the
firing rate of cell i at the previous timestep. That is, at each
timestep tþ dt we set

ai ¼
aHIGH if riðtÞog

aLOW if riðtÞXg;

(
(3)

where g is a firing rate threshold. This helps to reinforce the
current position of the activity packet within the contin-
uous attractor network of state cells. The sigmoid slopes
are set to a constant value, b, for all cells i.

The network of motor cells (labelled as ‘Network of
motor cells’ in Fig. 1 with firing rate rMi for motor cell i)
represents the current motor output. The activation hM

i of
motor cell i is governed by

t
dhM

i ðtÞ

dt
¼ �hM

i ðtÞ þ ti þ
f2

CS�MS

X
j;k

w3
ijkrSj rMS

k , (4)
where ti is the motor signal used during training. (The
motor signal could be available to the system described
here as a result of the behaviour being generated during the
trial and error learning stage using cortical circuitry and
feedback signals from the environment that help to guide
the movement [6].) The last term in Eq. (4) shows the
operation of Sigma–Pi synapses w3 which allow the
postural signals rSj to be gated by the MS input with firing
rMS

k for MS cell k.2

The firing rate rMi of motor cell i is determined using the
sigmoid activation function

rMi ðtÞ ¼
1

1þ e�2bðh
M
i ðtÞ�aÞ

. (5)

During the learning phase, motor input signals ti drive
each motor cell i to cause the agent to proceed through a
set of positional states, and simultaneously each positional
state cell i is driven by an external visual or proprioceptive
input ei. While this happens, the recurrent connectivity
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implemented by w1
ij is learned to allow the network of state

cells to operate as a continuous attractor network and
support stable patterns of firing in the absence of external
visual or proprioceptive input, so that the agent can
operate with incomplete sensory input or in the dark. The
learning rule used to update the recurrent synapses w1

ij is
the Hebb rule

dw1
ij ¼ k1rSi rSj . (6)

Also during training, the positional state continuous
attractor neural network (CANN) learns to modify the
synapses w2

ijk to utilise an efference copy of the motor signal
to update using path integration the positional state
CANN, and thus to implement a forward model of motor
function [11]. A traced Sigma–Pi learning rule operating at
synapses w2

ijk allows a combination of the short-term
memory traced activity within the state cell network (which
represents the preceding position) and the short-term
memory traced activity within the motor cell network
(which represents the preceding motor command) to be
associated with the current positional state. The learning
rule is

dw2
ijk ¼ k2rSi r̄Sj r̄Mk , (7)

where r̄Sj refers to a memory trace of the firing rSj , and r̄Mk
refers to a memory trace of the firing of rMk . The trace value
r̄ of the firing rate r of a cell is calculated according to

r̄ðtþ dtÞ ¼ ð1� ZÞrðtþ dtÞ þ Zr̄ðtÞ, (8)

where Z is a parameter in the interval [0,1] which
determines the relative contributions of the current firing
and the previous trace. For Z ¼ 0 the trace becomes just the
present firing rate, and as Z is increased the contribution of
preceding firing at times earlier than the current timestep is
increased. The concepts involved in this implementation of
path integration, and the short-term memory traces
inherent in these operations using for example the long
time constant of NMDA (N-methyl-D-aspartate) recep-
tors, are described by [23,21].

The motor cells are trained to operate without their
motor training input t by using their Sigma–Pi synapses
w3

ijk using the state cell and movement selector inputs
together with the firing rates of the motor cells being set by
t during training according to

dw3
ijk ¼ k3rMi rSj rMS

k . (9)

The firing of the MS cells rMS
k represents the instruction to

perform a particular motor primitive sequence. In parti-
cular, the force, and hence the speed, of the movement may
be controlled by varying the firing rates of the MS cells [22].
The synaptic connections w3

ijk thus implement an inverse

model of motor function: given a desired movement
represented by the firing of the MS cells, the synaptic
connections w3

ijk drive the motor cells to perform the
appropriate motor actions.

During the learning phase, the agent performs the motor
primitive sequence to be learned. As the agent performs the
motor primitive sequence (such as raising the arm), the
state cells are driven by the visual or proprioceptive inputs
ei, the motor cells are driven by the training signal ti, and
the synaptic weights w1

ij, w2
ijk and w3

ijk are updated according
to the simple learning rules discussed above. During
repeated learning cycles of the motor primitive sequence,
the synaptic connectivity of the network self-organises such
that, after training, the correct motor sequence may be
stimulated solely by stimulating the particular set of MS
cells.
2.2. Hierarchical command layer (HCL) architecture for

learning high-level motor programs

The MS cells (see Fig. 1) are driven by a network of high-
level movement selector (HMS) cells through Sigma–Pi
synapses w4 which allow modulation by the firing rates rS

of the postural state cells. A single pattern of HMS cell
firing can learn to drive a whole sequence of movement
selector cell firing, with the sequence being generated as a
result of the interaction between the postural state inputs to
the MS cells and the HMS inputs to the MS cells. Let us
give an example, related to riding a bicycle after training.
The HMS cells have a firing pattern which specifies
‘perform cycling’, where the cycling is the high-level motor
program being specified. The MS cells might then represent
different stages of a single revolution (each a separate
motor primitive), and would be gated into successive stages
by the postural input. The MS cells drive the motor (M)
cells which might represent forces being specified for the
muscles. The postural state reached, which is reflected in
the postural state (S) cell firing, modulates the firing of the
motor cells as described for the SHC model to generate the
next muscle command.
As the agent performs a high-level motor program, the

behaviour of the MS cells must be modelled dynamically to
represent the continuously changing firing rates of these
cells as they are driven by the HMS cells. Therefore, the
equation governing the activation of the MS cells is

t
dhMS

i ðtÞ

dt
¼ �hMS

i ðtÞ þ tMS
i þ

f3

CS�HMS

X
j;k

w4
ijkrSj rHMS

k , (10)

where the activation hMS
i is driven by the following terms.

The first term driving the activations of the MS cells in
Eq. (10) is the training signal tMS

i for each MS cell i. This
term is present only during training with a new high-level
motor program. The training signal tMS

i for the MS cells
operates in a similar manner to the training signal ti for the
motor cells. The term tMS

i models a mechanism used during
learning to stimulate the MS cells associated with the new
high-level motor program being learned. After the training
phase with a new high-level motor program is completed,
the input terms tMS

i are set to zero for the subsequent
testing phase with the motor program. The second term
driving the activations of the MS cells in Eq. (10) is the
input from couplings of the postural state (S) cells and the
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4For Experiment 1 we used the following parameter values. The

parameters governing the learning were: Z ¼ 0:9, k1
¼ 0:001, k2

¼ 0:001,
k3
¼ 0:001, and k4

¼ 0:001. The parameters governing the ‘leaky-

integrator’ dynamical equations (1) and (4) were: t ¼ 1, f0 ¼ 3� 105,

f1 ¼ 1:75� 107, f2 ¼ 1:25� 106, and wINH ¼ 0:011. The parameters
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HMS cells
P

j;kw4
ijkrSj rHMS

k , where rSj is the firing rate of

state cell j, rHMS
k is the firing rate of HMS cell k, and w4

ijk is

the corresponding strength of the connection from these

cells. The driving term
P

j;kw4
ijkrSj rHMS

k initiates activity in

the network of MS cells, and then drives the activity
through the network.3 The synapse connecting the state
and HMS cells to the MS cells has a Sigma–Pi form in that
it computes a weighted sum of the products of the firing
rates of the state cells and HMS cells.This ensures that the
activity within the network of MS cells is driven by the
state cells if and only if the HMS cells are also active.

The firing rate rMS
i of MS cell i is determined from the

activation hMS
i and the sigmoid activation function

rMS
i ðtÞ ¼

1

1þ e�2bðh
MS
i ðtÞ�aÞ

, (11)

where a and b are the sigmoid threshold and slope,
respectively.

As the agent learns to perform the high-level motor
program, the synaptic weights w4

ijk are set up by a learning
rule which associates the co-firing of the HMS cells rHMS

k

and a particular cluster of state cells rSj , with the firing of
the appropriate cluster of MS cells rMS

i produced during the
training by an external motor signal tMS

i (see Fig. 1). The
synaptic weights w4

ijk from the state cells and HMS cells to
the MS cells are updated during learning according to

dw4
ijk ¼ k4rMS

i rSj rHMS
k . (12)

During the learning of a new high-level motor program
the agent performs the appropriate lower level motor
primitives that are needed to compose the new high-level
motor program. Specifically, during learning of a new high-
level motor program, the agent stimulates the MS cells
corresponding to the appropriate (pre-learned) low-level
motor primitives in the correct temporal order. This drives
the network through the low-level motor primitives. At the
same time, however, a new set of cells in the HMS network
is activated, and this new set of HMS cells learns the new
temporal sequence of activity in the MS network corre-
sponding to the new high-level motor program. After
learning, the new set of HMS cells is able to stimulate the
new high-level motor program. However, the new set of
HMS cells, which encodes the higher level motor program,
learns to drive the MS cells associated with the motor
primitives, rather than driving the motor cells directly.
governing the sigmoid activation functions were as follows. For the state

cells we used: aHIGH ¼ 0:0, aLOW ¼ �20:0, g ¼ 0:5, and b ¼ 0:1: For the

motor cells we used: aHIGH ¼ 10:0, aLOW ¼ 10:0, g ¼ 0:5, and b ¼ 0:3:
Since we set aHIGH ¼ aLOW for the motor cells, there was no enhancement

of the firing rates of motor neurons with already high firing rates, and the

parameter g was redundant. Finally, for the numerical simulations of the

leaky-integrator dynamical equations (1), (4) we employed a Forward

Euler finite difference method with the timestep set to 0.2.
2.3. Simulation results

In Experiment 1 we demonstrate the ability of the model
to learn two high-level motor programs each of which
consists of three particular motor primitives (chosen from a
3The scaling factor f3=CS�HMS controls the overall strength of the

inputs from couplings of state and HMS cells, where f3 is a constant, and

CS�HMS is the number of connections received by each MS cell from

couplings of the state and HMS cells.
set of six) which must be executed in the correct temporal
order.4 The network architecture is as shown in Fig. 1.
In this experiment, we assumed that the state space x of

the agent was a finite one-dimensional space from x ¼ 0 to
x ¼ 1. That is, the state of the agent was defined by the
parameter x 2 ½0; 1�. There were 200 state cells, which were
mapped onto a regular grid of different states, where for
each state cell i there was a unique preferred state xi of the
agent for which the cell was stimulated maximally by the
visual and proprioceptive cues. The current motor activity
of the agent was defined by the current state x of the agent
and which direction the agent was moving in. The motor
cells were mapped onto a regular grid of different
instantaneous motor activities, where for each motor cell
i there was a unique preferred instantaneous motor activity
defined by the current state and direction of movement, for
which the cell was stimulated maximally. The motor
network contained 400 cells, with cells 1–200 representing
movement in the positive x-direction, and cells 201–400
representing movement in the negative x-direction. Finally,
the MS network and HMS network each contained 200
cells.
Experiment 1 took place in two stages. During the first

stage of the experiment the network was taught six low-
level motor primitives. Then, during the second stage the
network learned to perform two new high-level motor
programs, each of which was composed of a temporal
sequence of three particular low-level motor primitives.
The incorporation of two high-level motor programs in the
simulation was to test whether a single network can learn
multiple programs each selected by a different HMS
command.

Stage 1: learning to perform the low-level motor

primitives. The numerical simulation began with the
learning phase for the six low-level motor primitives in
which the synaptic weights, w1

ij, w2
ijk and w3

ijk, were self-
organised.5 At the start of the learning, the synaptic
weights are initialized to zero. Then learning proceeds with
the agent running through the motor training sequence for
each motor primitive in turn.
5In the model, each of the state and motor cells was set to have a

Gaussian tuning profile with a standard deviation of 0.02 where the state

space x 2 ½0; 1�, and the cells were evenly distributed through the space,

and the weights between the neurons were set according to the learning

rules (6), (7) and (9).
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Fig. 2. Numerical results from the first stage of Experiment 1, in which the network is trained to perform the low-level motor primitives. This figure shows

the motor primitives 1, 2 and 3, which encode small movements of the state of the agent in the positive x direction. The first column shows the network

performing the first low-level motor primitive, the second column shows the network performing the second low-level motor primitive, and the third

column shows the network performing the third low-level motor primitive. Within each column, we show the firing rate profiles within the movement

selector network, the motor network and the state network through time as the agent performs the learned motor primitive in the absence of the motor

training signals ti, and without the external (visual or proprioceptive) inputs ei. In all plots, high cell firing rates are indicated by black.

S.M. Stringer, E.T. Rolls / Neurocomputing 70 (2007) 975–990980
At the start of the training with each primitive the trace
values of the neuronal firing rates were initialised to zero.
Motor primitives 1, 2 and 3 involved small movements
through the state space in the positive x-direction. These
primitives were represented by motor cells 1–200. As is
evident from Figs. 2 and 3, for the first low-level motor
primitive, the network was trained with the agent
performing a motor sequence, with the postural state x of
the agent and current motor activity running in lock-step
from x ¼ 0:1 to 0.37. During the training, the selection of
this movement was represented by setting the firing rates
rMS of MS cells 1–10 to 1, with the firing rates of the
remaining MS cells 11–200 set to 0. For the second low-
level motor primitive, the network was trained with the
state x of the agent and motor activity running in lock-step
from x ¼ 0:37 to 0.63. This movement was represented by
setting the firing rates rMS of MS cells from 31–40 to 1. For
the third low-level motor primitive, the network was
trained with the state x of the agent and motor activity
running in lock-step from x ¼ 0:63 to 0.9. This movement
was represented by setting the firing rates rMS of MS cells
from 61–70 to 1. Motor primitives 4, 5 and 6 were similarly
encoded, except that they involved small movements
through the state space in the negative x-direction. These
primitives were represented by motor cells 201–400.
In the testing phase the agent performed the motor

primitives without the motor training signal ti, and without
the visual and proprioceptive inputs ei. The aim was to
show that the population of movement selector cells could
produce the desired motor primitives once the relevant MS
cells were activated. For the testing phase, the full ‘leaky-
integrator’ dynamical equations (1), (2), (4) and (5) were
implemented. Before the MS cells were activated, the
network was set into a state of firing which represented the
starting point of one of the motor primitives (by applying
visual inputs for a short period).
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Fig. 3. Numerical results from the first stage of Experiment 1, in which the network is trained to perform the low-level motor primitives. This figure shows

the motor primitives 4, 5 and 6, which encode small movements of the state of the agent in the negative x direction. Conventions as in Fig. 2.

S.M. Stringer, E.T. Rolls / Neurocomputing 70 (2007) 975–990 981
In Figs. 2 and 3 we show numerical results from the first
stage of Experiment 1. Fig. 2 shows the network perform-
ing motor primitives 1, 2 and 3. The first column in Fig. 2
shows the network performing the first low-level motor
primitive, the second column shows the network perform-
ing the second low-level motor primitive, and the third
column shows the network performing the third low-level
motor primitive. Within each column, we show the firing
rate profiles within the movement selector network, motor
network and state network through time as the agent
performed the learned low-level motor primitive in the
absence (in this testing phase) of the motor training signal
ti, and without the external (visual or proprioceptive) input
ei. Fig. 3 shows similar results for motor primitives 4, 5
and 6.

For each motor primitive, it is shown that applying
steady activity to the relevant MS cells during timesteps
81–430 first activates (through the synapses w3) the motor
cells, the firing of which alters the state being represented
by the network of state cells via connections w2, which in
turn shifts the motor state represented by the motor cells
through synapses w3. The results produced are continu-
ously moving motor and postural states. In this way, the
activity packets in the state and motor networks move
together, with the network firing patterns running through
the learned motor primitive. During timesteps 431–510 the
MS cells stopped firing, and all the motor cells became
quiescent (while the state cells continued firing representing
the state reached).

Stage 2: learning to perform the high-level motor

programs. In stage 2 of Experiment 1 the network learned
to perform two high-level motor programs, each of which
was composed of a temporal sequence of three particular
primitives. Motor program 1 involved the agent moving in
the positive x-direction, from x ¼ 0:1 to 0.9. To do this the
system needed to sequence appropriately primitives 1, 2
and 3 shown in Fig. 2. Motor program 2 involved the agent
moving in the negative x-direction, from x ¼ 0:9 to 0.1. To
do this the system needed to sequence appropriately
primitives 4, 5 and 6 shown in Fig. 3.
During this learning stage, the full ‘leaky-integrator’

dynamical equations (1), (2), (4) and (5) were implemented
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for the state cells and motor cells. To learn the first high-
level motor program, the agent ran sequentially through
the motor primitives 1, 2 and 3 in order. For this learning
phase, the three motor primitives were initiated by firing
the MS cells that had already learned to represent the
motor primitives. In addition, a new set of HMS cells,
1–10, was activated. This set of HMS cells was used to
represent the first high-level motor program being selected.
As the agent performed the first high-level motor program,
the synaptic weights w4 of the connections from the set of
active HMS cells, 1–10, onto the MS cells were updated
according to Eq. (12). Training the network on the second
high-level motor program was performed in a similar
manner, except that the agent ran sequentially through the
motor primitives 4, 5 and 6 in order. In addition, a different
set of HMS cells, 31–40, was activated. This set of HMS
cells was used to represent the second high-level motor
program being selected.

After the learning phases for both of the high-level
motor programs were completed, the network was tested to
determine whether it could perform the two high-level
motor programs when the relevant HMS cells were
activated. For the testing phase, the full ‘leaky-integrator’
dynamical equations (1), (2), (4), (5), (10) and (11) were
implemented. Fig. 4 shows numerical results from the
second stage of Experiment 1, after the network has been
trained to perform the two high-level motor programs. On
the left are results for the first high-level motor program.
At the start, an activity packet was initiated at position
x ¼ 0:1 (by application of a short visual input). It is shown
that applying steady activity to the relevant HMS cells
1–10 during timesteps 81–900 drives the network through
Fig. 4. This figure shows numerical results from the second stage of

Experiment 1, after the network has been trained to perform two different

high-level motor programs. On the left are results for the first high-level

motor program. It is shown that applying steady activity to the relevant

high-level movement selector cells 1–10 during timesteps 81–900 drives the

network through the high-level motor program composed of a temporal

sequence of the three motor primitives 1, 2 and 3. The high-level

movement selector cells drive the movement selector cells through the

correct temporal sequence for the high-level motor program. As the

movement selector cells fire, the signals from the movement selector cells

drive the activity packets in the postural state and motor networks to run

through the learned motor primitives. Because activity in the movement

selector network is gated by the w4 connections from the state cells (shown

in Fig. 1), the movement selector cells for each motor primitive switch on

automatically when the agent reaches the beginning state for that motor

primitive, and switch off automatically when the agent reaches the end

state for that primitive. Thus, there is no need for any further top-down

input signal to guide the timing of the firing of the movement selector cells

which represent the component motor primitives of the overall high-level

motor program. The high-level motor program is performed without the

training signal tMS
i driving the movement selector cells which represent the

selection of the motor primitives, without the motor training signal ti , and

without the external (visual or proprioceptive) input ei. On the right are

results for the second high-level motor program, in which the agent moves

in the negative x-direction as a consequence of stimulating high-level

movement selector cells 31–40.
the high-level motor program composed of a temporal
sequence of the three motor primitives 1, 2 and 3. From
Fig. 4 it can be seen that the HMS cells drive the MS cells
through the correct temporal sequence for the high-level
motor program. Then as the MS cells fire, the signals from
the MS cells drive the activity packets in the postural state
and motor networks to run through the learned motor
primitives. Further, because activity in the MS network is
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gated by the w4 connections from the state cells (shown in
Fig. 1), the MS cells for each motor primitive switch on
automatically when the agent reaches the beginning state
for that motor primitive, and switch off automatically
when the agent reaches the end state for that primitive.
That is, there is no need for any further top-down
input signal to guide the timing of the firing of the MS
cells which represent the component motor primitives of
the overall high-level motor program. The high-level motor
program is performed without the training signal tMS

i

driving the MS cells which represent the selection of the
motor primitives, without the motor training signal ti, and
without the external (visual or proprioceptive) input ei. On
the right of Fig. 4 are results for the second high-level
motor program, in which the agent moves in the negative
x-direction as a consequence of stimulating HMS cells
31–40.

In the above experiment we demonstrated how the HCL
network model is able to learn and select different high-
level motor programs which are composed of a temporal
sequence of motor primitives. In further experiments (not
illustrated) we demonstrated that the HCL network model
is able to learn high-level motor programs which involve
the parallel execution of a number of motor primitives.
Thus, the HCL network model is able to learn high-level
motor programs which are composed of complex sequences
of many motor primitives blended together through time,
such as might be needed to coordinate the two legs when
walking.
3. Extension of the model to allow execution of the high-

level motor program to be modulated by context

We now extend the model to allow the motor primitives
represented by the MS cell firing to be modulated by context
states. For example, if we consider the problem of an agent
reaching to a target object in the environment, then a
context state may be the location of an obstacle near the
object. The augmented network architecture is shown in
Fig. 5. The network architecture is similar to that used
in Experiment 1, except for the addition of context cells
which are used to represent the context in which the motor
actions are performed, and which exert their effect via
the Sigma–Pi synapses w3. These Sigma–Pi synapses w3

driving the motor cells reflect combinations of postural state
cell firing, MS cell firing and context cell firing. This allows
the context to modulate the motor primitive. In this case
Eq. (4) governing the activation of the motor cells becomes

t
dhM

i ðtÞ

dt
¼ � hM

i ðtÞ þ ti þ
f2

CS�MS�C

�
X
j;k;l

w3
ijklr

S
j rMS

k rCl , ð13Þ
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where rCl is the firing rate of a context cell l representing
some additional state of the agent or its environment.6

During learning the synaptic weights w3
ijkl are updated

according to

dw3
ijkl ¼ k3rMi rSj rMS

k rCl . (14)
3.1. Simulation results

We demonstrate the operation of this context augmented
model in Experiment 2, which takes place in two stages.7

During the first stage of the experiment the network was
taught three motor primitives. The network was trained to
perform each of the three motor primitives as represented
in the MS cells under two contexts. In the simulation
performed, each primitive produced the same sequence of
postural states regardless of the context, but the motor cell
firing required to do this in the different contexts was
different. (A real-life example might be loading a limb in
one of the contexts.) Therefore, for Experiment 2 the motor
network contained 400 cells, where the three motor
primitives were performed by motor cells 1–200 for the
first context state, and performed by motor cells 201–400
for the second context state. (In this scenario, the motor
primitives are different for the two contexts but the
movements through the state space are the same. Context
1 might correspond to heavy loading, with one set of motor
cells needed to achieve a particular movement. Context 2
might correspond to light loading, in which a different set
of motor cells is required to achieve the same movement.)
During the second stage of the experiment the network
learns to perform a new high-level motor program which is
composed of a temporal sequence of the three low-level
motor primitives. However, during the second stage, the
network needs to be trained on the high-level motor
program for only one of the possible context states. The
network model is then able to generalise the performance
of the high-level motor program to the other context states
with which the motor primitives were learned.

Stage 1: learning to perform the three motor primitives.
The numerical simulation begins with the learning phase
for the three motor primitives. For this experiment, the
network of context cells contained only two neurons, where
the first neuron was used to represent the first context state,
and the second neuron was used to represent the second
context state. For each context state, the firing rate of the
cell that represented that context was set to 1, while the
firing rate of the other context cell was set to 0. During
context state 1, the three motor primitives were trained
with motor neurons 1–200 producing the motor response.
During context state 2, the three motor primitives were
6The term CS�MS�C is the number of presynaptic connections received

by each motor cell from couplings of state cells, MS cells, and context

cells.
7For Experiment 2 we used the same parameter values as were used for

Experiment 1, except for f1 ¼ 1� 107 and wINH ¼ 0:0055.
trained with motor neurons 201–400 producing the motor
response. The postural states that evolved were the same in
the two contexts. As the agent performed each motor
primitive during learning, the firing rates of the state cells
and the motor cells were set for each position using
Gaussian functions as for Experiment 1, the firing rates of
the movement selector cells used to represent each motor
primitive were set to 1, and the firing rate of the relevant
context cell was set to 1. During this learning phase, the
synaptic weights, w1

ij, w2
ijk and w3

ijkl , were self-organised.
However, while the motor primitives were learned, the
HMS cells did not fire, and the synaptic weights w4

ijk were
not altered.

Stage 2: learning to perform the high-level motor program.
In stage 2 of Experiment 2 the network learned to perform
the high-level motor program, which was composed of a
temporal sequence of the three motor primitives. During
the learning phase of stage 2, the full ‘leaky-integrator’
dynamical equations (1), (2), (13) and (5) were implemen-
ted. To learn the high-level motor program, the agent ran
sequentially through the three motor primitives in order.
However, this was done only for the first context state. The
high-level motor program was not trained with the second
context state. First, the firing rate of the first context cell
was set to 1 to indicate the first context state. Then, the
three low-level motor primitives were initiated by firing the
MS cells that had already learned to represent the motor
primitives. In addition, a set of HMS cells, 1–10, was
activated. These HMS cells represented the high-level
motor program. As the agent performed the high-level
motor program, the synaptic weights w4 of the connections
from the set of HMS cells, 1–10, were updated according to
Eq. (12).
After the learning phase for the high-level motor

program was completed for the first context state, the
network was tested to see if it could perform the high-level
motor program when the HMS cells 1–10 were activated.
In particular, the network was tested for both of the
context states. For the testing phase, the full ‘leaky-
integrator’ dynamical equations (1), (2), (13), (5), (10) and
(11) were implemented. At the start of the testing phase,
one of the context states was chosen, and the firing rate of
the corresponding context cell was set to 1. Then an
activity packet was initiated at position x ¼ 0:1 (by
application of a short visual input). The activity for the
next 870 timesteps is shown in Fig. 6. The first column in
Fig. 6 shows the network performing the high-level motor
program for the first context state, and the second column
shows the network performing the high-level motor
program for the second context state. Within each column,
we show the firing rate profiles within the networks,
through time as the agent performs the learned high-level
motor program. For each context state, it is shown that
applying steady activity to HMS cells 1–10 during time-
steps 81–790 drives the network through the high-level
motor program composed of a temporal sequence of the
three motor primitives. However, for the first context state,
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Fig. 6. Experiment 2 with the context augmented network model. This

figure shows the high-level motor program learned by the network during

the second phase of training. On the left is the high-level motor program

for the first context state, and on the right is the high-level motor program

for the second context state. Within each column, we show the firing rate

profiles within the high-level movement selector network, the movement

selector network, the motor network, and the state network, through time

as the agent performs the learned high-level motor program. For each

context state, it is shown that applying steady activity to the relevant high-

level movement selector cells 1–10 during timesteps 81–790 drives the

network through the high-level motor program composed of a temporal

sequence of the three low-level motor primitives. In particular, during the

execution of the motor program, the motor primitives are performed

correctly according to the context. That is, for the first context state the

motor activity occurs in cells 1–200 of the motor network, while for the

second context state the motor activity occurs in cells 201–400 of the

motor network.
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the motor activity occurred in cells 1–200 of the motor
network, while for the second context state, the motor
activity occurred in cells 201–400 of the motor network.
Thus, the execution of the high-level motor program
depends correctly on the context state. Moreover, the high-
level motor program was performed without the training
signal tMS

i for the MS cells which represent the selection of
the motor primitives, without the motor training signal ti,
and without the external (visual or proprioceptive) input ei.
The key result demonstrated in this experiment is that

the network model is able to perform the high-level motor
program correctly for both context states, even though the
network was only trained with the high-level motor
program for the first of the two context states. This is an
extremely powerful property of the model. The model is
able to generalise the performance of the high-level motor
program to other context states with which the motor
primitives were learned, but with which the high-level
motor program is not trained. In particular, the sequence
of motor firing performed during testing of the motor
program with context state 2 was not the same sequence of
motor firing performed during training. Thus, the network
model is able to generate new motor sequences that have
not been performed during training. This result thus
demonstrates a potential solution to the problem of serial
order in behaviour [8].

4. How could coupled state and motor representations self-

organise in a single recurrent network?

In this section we show that the type of functionality
described above (in e.g. Section 2) can be implemented in a
single recurrent network, and further, how it could self-
organise to have the appropriate synaptic connection
strengths. This may be relevant for understanding the
operation of some parts of the cerebral cortex, in which
recurrent connectivity, and both sensory and motor cells
are found. In such a network, all the state and motor cells
would be fully connected to each other, with the same
learning rules used for modifying the synaptic strengths
between all types of cell. That is, the same learning rules
would be used to modify synaptic connections from state
cells to state cells, from state cells to motor cells, from
motor cells to state cells, and from motor cells to motor
cells. Moreover, there could be a variety of different kinds
of synaptic connection, each with its own learning rule. In
the brain, the different kinds of synaptic connection might
correspond to synaptic contacts occurring on different
parts of the cell dendrites and in different layers of the
cortex. In such a network, the modality and firing
properties of each cell would be determined during training
by the external inputs to that cell, which might be for
example a visual or proprioceptive input, or a motor
training signal. These input signals during training would
then be responsible for guiding the self-organisation of the
synaptic connectivity such that the cells are able to function
later as either state or motor cells, with the network as a
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model used for Experiment 3. There is a single combined network of state

cells and motor cells, and a network of movement selector cells. Within the

combined network of state cells and motor cells, the modality and firing

properties of each cell are determined during training by the external

inputs to that cell, which might be a visual or proprioceptive input, or a

motor training signal. These input signals during training are responsible

for guiding the self-organisation of the synaptic connectivity such that the

cells are able to function after training as either state or motor cells. The

combined state and motor network model has three types of synaptic

connection: w1, w2, and w3. These three types of synaptic connection

function in a similar manner to the corresponding connections in the

model used for Experiment 1. For each particular type of synaptic

connection (w1, w2, or w3), all of the state and motor cells are fully

connected to each other, with the same learning rule used for modifying

the synaptic strengths between all types of cell.

8The scaling factor ðf0=CSMÞ controls the overall strength of the

recurrent inputs to the layer of SM cells mediated by the w1 synapses,

where f0 is a constant and CSM is the number of presynaptic connections

received by each SM cell from other SM cells.
9The scaling factor f1=CSM�SM controls the overall strength of these

SM�SM inputs, where f1 is a constant, and CSM�SM is the number of w2

connections received by each SM cell.
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whole able to reproduce motor sequences learned during
training. In this section we present a simple model which
demonstrates one way in which this might be achieved.
This is an important step towards explaining how the
hierarchical network models described earlier in the paper
might be self-organised in single, fully recurrently con-
nected, brain areas. In [20] we have already shown how
multiple spatial representations can be stably maintained in
a single recurrent network, and updated as the agent moves
through its environment.

The network architecture for the model is shown in Fig. 7.
There is a single combined network of state cells and motor
cells, and a separate network of MS cells. Within the
combined network of state cells and motor cells, the
responses of each cell are determined during training by
the external inputs to that cell, which might be a visual or
proprioceptive input, or a motor training signal. These input
signals during training guide the self-organisation of the
synaptic connectivity such that the cells function after
training as either state or motor cells. The combined state
and motor network model has three types of synaptic
connection: w1, w2, and w3. These three types of synaptic
connection function in a similar manner to the corresponding
connections in the SCL network model used for Experiment
1. That is, the recurrent connections w1 are set up through
Hebbian associative learning, and help to support stable
packets of activity among state cells. The synapses w2 are
Sigma–Pi connections which are set up using a traced
learning rule, and are responsible for performing path
integration. The synapses w3 are Sigma–Pi connections
which are set up using an associative learning rule, and are
responsible for firing motor cells when the MS cells are
active. For each particular type of synaptic connection (w1,
w2 or w3), all of the state and motor cells are fully connected
to each other, with the same learning rule used for modifying
the synaptic strengths between all types of cell.
The behaviour of cells within the combined network of

state cells and motor cells during the testing phase is
governed by the following ‘leaky-integrator’ dynamical
equations. The activation hSM

i of a cell i in the combined
network of state cells and motor cells (denoted SM cells) is
governed by

t
dhSM

i ðtÞ

dt
¼ � hSM

i ðtÞ þ
f0

CSM

X
j

ðw1
ij � wINHÞrSMj ðtÞ

þ ei þ ti þ
f1

CSM�SM

X
j;k

w2
ijkrSMj rSMk

þ
f2

CSM�MS

X
j;k

w3
ijkrSMj rMS

k , ð15Þ

where the activation hSM
i is driven by the following terms.

The term rSMj is the firing rate of a pre-synaptic SM cell j

within the combined network of state cells and motor cells,
w1

ij is the excitatory (positive) synaptic weight from SM cell
j to SM cell i, and wINH is a global constant describing the
effect of inhibitory interneurons within the layer of SM
cells.8 Further terms in Eq. (15) are as follows. The term t
is the time constant of the system. The term ei represents an
external input to SM cell i, which carries information about
the state of the agent and may be visual or proprioceptive.
When there is no visual or proprioceptive input, the term ei

is set to zero. The term ti represents an external input to
SM cell i, which carries a motor training signal. In the
absence of external inputs, there are two key terms driving
the SM cell activations in Eq. (15). Firstly, the termP

j;kw2
ijkrSMj rSMk represents a sum of coupled inputs from

SM cells, where rSMj is the firing rate of SM cell j, rSMk is the

firing rate of SM cell k, and w2
ijk is the corresponding

strength of connection from these cells.9 These terms are
responsible for performing path integration within the



ARTICLE IN PRESS

11For Experiment 3 we used the following parameter values. The

parameters governing the learning were: Z ¼ 0:9, k1
¼ 0:001, k2
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and k3

¼ 0:001. The parameters governing the ‘leaky-integrator’ dynami-
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combined network of state cells and motor cells. Secondly,

the term
P

j;kw3
ijkrSMj rMS

k represents a sum of coupled inputs

from SM cells and MS cells, where rSMj is the firing rate of

SM cell j, and rMS
k is the firing rate of MS cell k.10 These

terms are responsible for firing the motor cells when the
MS cells are active.

The firing rate rSMi of cell i is given by the sigmoid
activation function

rSMi ðtÞ ¼
1

1þ e�2bðh
SM
i ðtÞ�aÞ

, (16)

where a and b are the sigmoid threshold and slope,
respectively.

During training, the three different types of synaptic
connection, w1, w2 and w3, are self-organised according to
biologically plausible local learning rules, which are
dependent on local cell quantities such as the (traced)
firing rates of the pre- and post-synaptic neurons, and the
external inputs to the postsynaptic neurons.

The learning rule used to update the recurrent synapses
w1

ij is the associative Hebb rule

dw1
ij ¼ k1rSMi rSMj ei. (17)

Learning rule (17) operates somewhat similarly to Eq. (6),
except that the pre- and post-synaptic cells are SM cells
rather than state cells, and except for the additional factor
ei. The factor ei represents an external input to SM cell i

carrying information about the state of the agent, which
may be visual or proprioceptive. The input ei will only be
present (i.e. non-zero) for a portion of SM cells, which will
then learn during training to function as state cells. We
note that post-synaptic regulation of Hebbian associativity
has been described by [12].

The learning rule used to update the synapses w2
ijk is

dw2
ijk ¼ k2rSMi r̄SMj r̄SMk ei. (18)

Learning rule (18) is a traced learning rule which operates
similarly to Eq. (7), except that the pre- and post-synaptic
cells are SM cells rather than state cells and motor cells,
and except for the additional factor ei.

The synaptic weights w3
ijk are updated during learning

according to

dw3
ijk ¼ k3rSMi rSMj rMS

k ti. (19)

Learning rule (19) is an associative learning rule which
operates similarly to Eq. (9), except that the state and
motor cells have been combined as SM cells, and except for
the additional factor ti. The factor ti represents an external
input to SM cell i carrying a motor training signal. The
input ti will only be present (i.e. non-zero) for a portion of
SM cells, which will then learn during training to function
as motor cells.
10The scaling factor f2=CSM�MS controls the overall strength of these

SM�MS inputs, where f2 is a constant, and CSM�MS is the number of w3

connections received by each SM cell.
The combined state and motor network model described
in this section and shown in Fig. 7 combines the state cells
and motor cells into a single recurrent network, and so has
a simpler network architecture than the SCL model
presented in Section 2 which has separate state and motor
networks with specific types of synaptic connection
between them. Moreover, through the use of a combina-
tion of carefully designed learning rules, the combined state
and motor network model is still able to self-organise
during training such that it is able to perform a desired
motor sequence, as shown below. However, after training,
the operation of the combined state and motor network
model is in fact more complex than the SCL model because
for each particular type of synaptic connection (w1, w2 or
w3), all of the state and motor cells are fully connected to
each other, with the same learning rule used for modifying
the synaptic strengths between all types of cell. This gives
rise to additional interactions between the cell types (state
and motor) that are not present in the SCL model. For
example, the learning rule shown in Eq. (17), not only
strengthens connections from state cells to state cells, but
also strengthens connections from motor cells to state cells.
Similarly, learning rule (18), as well as strengthening
connections from state cells and motor cells to state cells,
also strengthens connections from pairs of state cells to
other state cells, and from pairs of motor cells to state cells.
Finally, learning rule (19), as well as strengthening
connections from pairs of state cells and MS cells to motor
cells, also strengthens connections from pairs of motor cells
and MS cells to motor cells.

4.1. Simulation results

Experiment 3 demonstrates the ability of the combined
state and motor network model to learn to perform a
motor sequence.11 The network architecture was as shown
in Fig. 7, where the combined network of state cells and
motor cells was composed of 200 state cells and 200 motor
cells, and the movement selector network contained 200
cells. The network was trained to perform a motor
sequence with the postural state x of the agent and the
motor activity y running in lock-step from x ¼ 0:1 to 0.9
with y ¼ x. During the training, the selection of this
movement was represented by setting the firing rates rMS of
MS cells 1–10 to 1, with the firing rates of the remaining
MS cells 11–200 set to 0. This training was performed in a
similar manner to that described for the SCL model in
Experiment 1.
In the testing phase the agent performed the motor

sequence without the motor training signal ti, and without
cal equation (15) were: t¼1, f0 ¼ 3� 105, f1 ¼ 5� 106, f2 ¼ 1:25� 107,

and wINH ¼ 0:429. The parameters governing the sigmoid activation

functions for the SM cells were as follows: aHIGH ¼ 0:0, aLOW ¼ �20:0,
g ¼ 0:5, and b ¼ 0:1.
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Fig. 8. Numerical results from Experiment 3, in which the combined state

and motor network model is trained to perform a motor sequence. We

show the neuronal firing rates within the network through time as the

agent performs the learned motor sequence. Top: firing rates within the

movement selector network. Middle: firing rates of the motor cells

contained within the combined state and motor network. Bottom: firing

rates of the state cells contained within the combined state and motor

network. The motor sequence is performed without the motor training

signal ti, and without the external (visual or proprioceptive) input ei.
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the visual and proprioceptive inputs ei. The aim was to show
that the population of MS cells could produce the desired
motor sequence once the relevant MS cells were activated.
For the testing phase, the full ‘leaky-integrator’ dynamical
equations (15) and (16) were implemented. Before the MS
cells were activated, the network was set into a state of firing
which represented the starting point of the motor sequence
(by applying visual inputs for a short period).

Numerical results from Experiment 3 are presented in
Fig. 8, which shows the neuronal firing rates within the
network through time as the agent performs the learned
motor sequence. Top: firing rates within the MS network.
Middle: firing rates of the motor cells contained within the
combined state and motor network. Bottom: firing rates of
the state cells contained within the combined state and motor
network. It is shown that applying steady activity to the
relevant MS cells during timesteps 201–1600 resulted in the
continuously moving motor and postural states. In this way,
the activity packet supported by the state cells and the
activity packet supported by the motor cells moved together,
with the network firing patterns running through the learned
motor sequence maintaining the relation x ¼ y. During
timesteps 1601–1800 the MS cells stopped firing, and all the
motor cells became quiescent while the state cells continued
firing representing the state reached. The motor sequence
was performed without the motor training signal ti, and
without the external (visual or proprioceptive) input ei.

5. Discussion

The self-organising networks we described are novel in
their application to learning hierarchical motor function.
Most approaches to motor function have been in the arena
of a servo system, whether feedforward or feedback, that
attempts to minimise an error with respect to a defined
target. The approaches we describe utilise a dynamical
framework in which the controlling network itself gen-
erates the dynamics of the movement. This is achieved by
using a continuous attractor network to represent the
current state, e.g. postural state, and then utilising a
mechanism for driving the packet of activity in the
continuous attractor network, in order to generate the
movement. The driving is achieved in the network we
describe by utilising the Sigma–Pi w2 synapses in Fig. 1 (or
Fig. 5) (which were set up during training using a trace
delay) to enable the current state of the network, in
conjunction with the current motor signal (from the motor
cell network M), to produce the next state of the postural
state network. That next state of the postural state network
then produces via Sigma–Pi synapses w3 in Fig. 1 (or
Fig. 5), in conjunction with the movement selector (MS)
cell firing, the next pattern of motor (M) neuron firing.
Because the network is a dynamical system with time
constants in the updates of each stage, the whole movement
evolves continuously in time.

The Single Command Layer (SCL) network model,
which consists of the architecture shown in Fig. 1 but
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without the high-level movement selector cells and the w4

synapses, can learn hierarchical motor programs as
illustrated by the following. After training on a set of
three motor primitives represented by three patterns of MS
cell firing, the three MS cell patterns could be presented in
sequence while a fourth set of MS cells were active for the
whole sequence, in order to train this fourth set of MS cells
as a command set for the overall motor program. In
simulations not illustrated here, it was shown that after
training, when this fourth set of MS cells was made active,
the whole motor program, consisting of the three
primitives performed in succession, unfolded in time.

The new concept introduced in this paper is about
extending the basic SCL approach [22] to hierarchical
control. The advantages are that context can be introduced
(which allows novel sequences to be performed during
different contexts as shown in Experiment 2), and that the
learning signal can use a delayed reward as shown
elsewhere [19]. The extended HCL model that can deal
with context was demonstrated with the new architecture
shown in Fig. 5. The context signal might reflect for
example different loading on a limb, or guidance round an
obstacle. After training the network on the three motor
primitives with each of the contexts present but without
HMS cell firing, then the HMS firing is present during
subsequent training of the w4 synapses with one pattern of
HMS inputs active, and in the presence of only one of the
contexts. During later testing with the other context signal
present, the same HMS cell firing leads to the motor
response sequence appropriate for the second context,
without further training. In this way, this network
demonstrates generalisation from one context to another,
where quite a different motor cell firing may be needed to
produce the same movement (i.e. change of postural
states S) in the two contexts. In particular, the sequence
of motor firing performed during testing of the motor
program with context state 2 was not the same sequence of
motor firing performed during training. Thus, the HCL
network model is able to generate new motor sequences
that have not been performed during training. This
demonstrates a potential solution to the problem of serial
order in behaviour [8].

A very novel aspect of the approach to understanding
motor function described here is that we have been able to
combine the necessary functionality into a single self-
organising recurrent network (Experiment 3). This is an
interesting advance, for networks with recurrent connec-
tivity and intermingled neurons with different types of
response are a feature of the cerebral cortex. In the single
network we describe, all the state and motor cells are fully
connected to each other, with the same learning rules used
for modifying the synaptic strengths between both types of
cell. After training, the activity of the state and motor
neuronal populations evolves dynamically to produce a full
dynamical sequence corresponding to a movement with
just a single MS command as the input to the single
network. We know of no similar self-organising model in
which the sensory and motor neurons are combined in a
single network that can implement many functions funda-
mental in the organisation of movements.
One interesting property of the networks described is

that their dynamical states do not unfold blindly with
respect to the state of the agent, but instead the evolution
in time is guided by the dynamics of the postural state
network and its interactions with the other networks,
which are set during training to reflect the time course of
the changing visual or proprioceptive inputs e to the
postural state (S) network. In this way, the network learns
and becomes tuned to the actual dynamics of the system
being controlled.
The simulations described are for a one-dimensional

space, although the network can operate in higher
dimensional spaces. In higher dimensions the network
can learn arbitrary paths. Indeed, part of the utility of the
context inputs is that they could allow the agent to learn
trajectories in which the paths crossed, as for example in
drawing the number ‘8’. We further note that in the current
formulation of the model, the state cells represent the
location of the agent. However, the state cells could also
include additional information about for example the
current motion of the agent. This would allow the agent
to move forwards and backwards in one dimension, or
perform a Figure 8 in two dimensions.
As noted in the Introduction, there has been little previous

work in applying self-organising activity packet based
continuous attractor networks, in which the activity packet
moves round the network, to the problem of learning
arbitrary motor programmes. Stringer et al. [22] provided the
design of a network based on the interactions of a
continuous attractor network to represent postural state
with a motor (M) cell network, which used trace rule learning
in order to enable the system to learn to unfold the correct
movement. Although we do not propose that the framework
we describe here operates in exactly this way in the brain, we
do believe that the approach we describe does provide a
possible computational basis for what could be implemented
(with different implementation details) in the brain. The
networks described above do capture some of what seems to
be needed, and which may be difficult to provide with other
approaches, namely a continuous unfolding in time of an
arbitrary set of motor movements, hierarchical motor
control, and a way to incorporate context effects such as
altered loading forces on the system. In addition, and in the
direction of biological plausibility, we have described
elsewhere how Sigma–Pi neurons can be replaced with
neurons that self-organise using competitive learning to
represent combinations of the input signals that can then be
correctly mapped using pattern association learning [15].
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