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Abstract A key question in understanding the neural basis
of path integration is how individual, spatially responsive,
neurons may self-organize into networks that can, through
learning, integrate velocity signals to update a continuous
representation of location within an environment. It is of
vital importance that this internal representation of position
is updated at the correct speed, and in real time, to accurately
reflect the motion of the animal. In this article, we present
a biologically plausible model of velocity path integration
of head direction that can solve this problem using neuronal
time constants to effect natural time delays, over which asso-
ciations can be learned through associative Hebbian learn-
ing rules. The model comprises a linked continuous attractor
network and competitive network. In simulation, we show
that the same model is able to learn two different speeds of
rotation when implemented with two different values for the
time constant, and without the need to alter any other model
parameters. The proposed model could be extended to path
integration of place in the environment, and path integration
of spatial view.
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1 Introduction

Classes of cells exist in the brain that primarily signal
spatial information. Rat hippocampal place cells respond
maximally when the rat is in a particular location in its envi-
ronment (O’Keefe and Dostrovsky 1971; McNaughton et al.
1983; Muller et al. 1991). Rat entorhinal cortex grid cells are
similar to place cells insofar as they reflect the location of
the rat—but with each cell responding to several locations in
the same environment in a hexagonal grid-like pattern (Haft-
ing et al. 2005; Sargolini et al. 2006). Primate hippocampal
spatial view cells code for the particular location at which
the primate is looking (Rolls et al. 1997; Georges-François
et al. 1999; Rolls and Xiang 2006). Also, head direction cells,
which signal when the head of the animal is facing in a partic-
ular preferred direction, have been shown in both rats (Ranck
1985; Taube et al. 1990a; Muller et al. 1996) and primates
(Robertson et al. 1999).

A key problem to be addressed is how, through learning,
these cells may self-organize to form networks that can per-
form the necessary calculations for spatial navigation. In this
article, we consider the process of path integration, where
an animal integrates idiothetic (self-motion) cues, such as
forward motion or rotation, to update its internal represen-
tation of its position or orientation within an environment
(Mittelstaedt and Mittelstaedt 1980, 1982; Collett and Zeil
1998; Redish 1999).

It has been shown in previous research that when pre-
sented with a continuous input space, a layer of recurrently
connected neurons can form a continuous attractor network.
Within this network, a local packet of persistent activity (a
stable state) can represent a particular directional heading or
location (Amari 1977; Taylor 1999). A continuous attractor
can support a continuous space of stable memory states, and
can, thus, learn to represent any given location or directional
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heading. With training on a continuous sensory space, such
as location or head direction, after associative Hebbian learn-
ing, the strength of the synapses between any two neurons
will be a function of the degree of overlap of their recep-
tive fields (the larger the overlap, the stronger the synapse),
and, thus, symmetric. Thus, the strengths of the synapses
between any given individual neuron and all other neurons in
the network are described by an approximately Gaussian dis-
tribution, with the synaptic strengths again determined by the
degree of receptive-field overlap. This symmetry ensures that
a packet of neural activity representing a directional heading
or a location can remain stable (unlikely to drift) and persis-
tent within the continuous attractor network when the animal
is not moving.

An asymmetric external input is required to drive the activ-
ity packet around the continuous attractor network and, thus,
update the location of the activity packet in the attractor
space. In this manner, the activity packet will track the exact
position and orientation of the animal as it moves within
its environment. Various methods have been proposed for
incorporating both symmetric and asymmetric weights in a
continuous attractor, including the introduction of cells that
signal rotational velocity to the continuous attractor network
(Skaggs et al. 1995; Redish et al. 1996; Samsonovich and
McNaughton 1997; Stringer et al. 2002) and imposing the
asymmetric weight profile upon the network (Zhang 1996;
Song and Wang 2005).

An important question is how the network can learn to
update the location of the activity packet at the same speed
as the animal is moving in its environment during path inte-
gration. Even small (but significant) errors in the speed of
the packet, compared to the true speed of the animal, could
be compounded through time to produce a large discrepancy
between the internal representation and the actual location of
the animal. In order to achieve successful path integration in
a continuous attractor network, there is, thus, a requirement
for some biologically plausible mechanism through which
the network can self-organize to produce an asymmetry in
the synaptic weights that can move the packet of activity in a
manner that is calibrated with the speed the animal is moving.
We have previously shown how this may be achieved in a bio-
logically plausible manner with Hebbian associative learn-
ing, incorporating explicit axonal conduction delays (Walters
et al. 2009). In this article, we demonstrate another way in
which this may be achieved, using biologically realistic neu-
ronal time constants to effect natural time delays which are
then combined with Hebbian associative learning.

We, thus, propose a model which can learn to update the
packet of neural activity at the same speed at which the sim-
ulated agent is moving. We address the issue of path inte-
gration of head direction, and, therefore, our model is of a
generic one-dimensional system. We do, however, note that
the general principles of this model could be extended to

path integration in higher dimensions, i.e. path integration of
place in the environment, or of spatial view.

The present model is a development of a model proposed
by Stringer and Rolls (2006), in which a continuous attrac-
tor is reciprocally linked with a competitive network. In the
previous model, a trace learning rule was used to introduce a
general asymmetry in the synaptic weights during learning.
The asymmetry in the weights was in the correct direction,
which allowed the network to perform path integration in
the correct direction (i.e. clockwise or counter-clockwise).
However, the asymmetric weights were not of the correct
magnitude to effect the correct speed during replay. In other
words, the model of Stringer and Rolls could not automati-
cally learn to perform path integration at the same speed on
which the network had been trained in the light.

In the new model presented here, we use a purely Heb-
bian associative learning rule rather than the trace rule. The
use of the Hebb rule allows our model to learn precise
associations between successive activity states within the
network, which represent particular head directions, over
specific natural time intervals present in the network. In the
model described in this article, the natural time intervals are
effected by the neuronal time constants governing the acti-
vations of the cells. This new approach allows the model to
learn to perform path integration at approximately the same
speed on which the model is trained in the light. In the sim-
ulations described later, we show that the model can operate
with different values for the neuronal time constants, and,
in each case, can learn two different speeds of path integra-
tion without the need to alter any of the other parameters
governing the behaviour of the model.

In this article, we have used the neuronal time constants for
the cell activations to effect a natural time delay over which
to learn associations between successive network states, i.e.
head directions. We propose, however, that the principle of
using some kind of natural time interval in the network to
provide the correct timing for updating a packet of neural
activity is quite general, and other natural time intervals, such
as explicit axonal conduction delays (Walters et al. 2009) or
natural oscillations in network activity, might be used by the
model in a similar manner.

2 The model

2.1 Conceptual overview of the operation of the model

Our model, shown in Fig. 1, consists of two connected net-
works. A network of head direction cells (with firing rate
rHD

i for postsynaptic head direction cell i) represents the
current head direction of the agent, and operates as a contin-
uous attractor performing velocity path integration. Individ-
ual head direction cells are simulated using leaky-integrator

123



Biol Cybern (2010) 103:21–41 23

Fig. 1 Network architecture for a two-layer self-organizing neural net-
work model of the head direction system. The model architecture con-
tains a network of head direction (HD) cells representing the current
head direction of the agent; a network of combination (COMB) cells
representing a combination of head direction and rotational velocity;
and a layer of rotational velocity (ROT) cells that become active when
the agent rotates. There are four types of synaptic connectivity in the
model, which operate as follows. The w1

i j synapses are Hebb-modifiable
recurrent connections between head direction cells. These connections
help to support a stable packet of activity within the continuous attractor
network of head direction cells in the absence of visual input. The com-
bination cells receive inputs from the head direction cells through the
Hebb-modifiable w3

i j synapses, and inputs from the rotational velocity

cells through the Hebb-modifiable w4
i j synapses. These synaptic inputs

encourage combination cells to respond, by competitive learning, to

combinations of a particular head direction and rotational velocity. In
consequence, the combination cells only become active when the agent
is rotating. The head direction cells receive input from the combination
cells through the Hebb-modifiable w2

i j synapses. The neuronal time con-
stants introduce effective transmission delays between the head direc-
tion cells and the combination cells. As the agent rotates during training,
this in turn introduces, through associative learning, an asymmetry in
the w2

i j and w3
i j synaptic weight profiles, which results in each combina-

tion cell learning to stimulate a different postsynaptic head direction cell
to the presynaptic head direction cell that has learned to preferentially
stimulate it. These asymmetries are important in shifting the packet of
head direction cell activity through the head direction cell network at
the correct speed, and on the basis of idiothetic signals alone

firing rate-based models, as described below. That is, our
model does not simulate the individual action potentials emit-
ted by cells. Instead, only the instantaneous average firing rate
for each cell is simulated evolving through time. Within the
layer of head direction cells, there is a single Gaussian packet
of firing activity. The centre of this activity packet represents
the current head direction of the simulated agent.

A network of combination cells (with firing rate rCOMB
i

for postsynaptic combination cell i) receives inputs from
both the network of head direction cells and a layer of rota-
tional velocity cells (with separate sub-populations of cells
signalling clockwise and counter-clockwise rotation). The
combination cells are also simulated using leaky-integrator
firing rate-based models, as described shortly. The combina-
tion cells operate as a competitive network and develop their
response profiles during training, with individual combina-
tion cells learning to represent a combination of a particular
head direction and a particular rotational velocity. Such cells
have been found in the brain, having both a Gaussian tuning

to head direction and a tuning to the direction of angular head
velocity (Taube et al. 1990b; Sharp 1996; Bassett and Taube
2005).

In the model described here, we do not incorporate explicit
axonal conduction delays as used by Walters et al. (2009).
Instead, we show how the neuronal time constants in the
current model can introduce effective natural time delays in
the propagation of signals from the layer of head directions
cells to the layer of combination cells, and then back again
from the combination cells to the head direction cells. The
effect of the neuronal time constants is that when a presynap-
tic cell is driving a postsynaptic cell, the activity profile of the
postsynaptic cell is slightly delayed in time from the activ-
ity profile of the presynaptic cell. One useful statistic that
we have considered is the time delay between the centres of
mass of the presynaptic and postsynaptic temporal activity
profiles. In particular, the centre of mass of the activity pro-
file of the postsynaptic cell will be delayed by a small fixed
time interval Δt after the centre of mass of the activity profile
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Fig. 2 Firing rates through time of two simulations of a simple two-
cell system, with the presynaptic cell firing rate indicated by a solid
line and the postsynaptic cell firing rate indicated by a dashed line. Left
Simulation in which the time constant τ of the governing equation for
postsynaptic cell activation was set to 50 ms. As can be seen, there is a
delay between the centres of mass of the temporal firing profiles of the
presynaptic cell and the postsynaptic cell. Right Simulation in which

the time constant τ of the governing equation for postsynaptic cell acti-
vation was set to 100 ms. There is a clear delay between the centres of
mass of the temporal firing profiles of the presynaptic cell and the post-
synaptic cell. The delay is more pronounced than in the left plot, which
indicates that a longer time constant τ will produce a longer delay Δt
between the presynaptic and postsynaptic activity profiles

of the presynaptic cell. Although there is a small delay Δt
between the centres of mass, the synaptic connection from the
presynaptic cell to the postsynaptic cell is still strengthened
by the firing rate-based associative Hebbian rule. This learn-
ing rule strengthens the connections between the two cells in
proportion to the product of their current instantaneous firing
rates, and, hence, strengthens the connection during learning
because the periods of activity of the two cells still partially
overlap through time. This effectively allows the network to
learn associations between neural activity in the head direc-
tion cell and combination cell networks over specific fixed
time intervals Δt , and, thus, the network learns to shift a
packet of head direction cell activity at the correct speed.

In order to explain the operation of the model, consider a
simple two-cell system. The activation hi of the postsynaptic
cell i is governed by

τ
dhi (t)

dt
= −hi (t) + wi j (t)r j (t) (1)

where τ is the neuronal time constant, r j (t) is the firing rate
of the presynaptic cell j , and wi j is the synaptic weight from
the presynaptic cell j to the postsynaptic cell i . The firing
rate of the postsynaptic cell i is given by the sigmoid transfer
function

ri (t) = 1

1 + e−2β(hi (t)−α)
(2)

where α is the sigmoid threshold and β is the slope. Although
the presynaptic cell j and postsynaptic cell i may fire
together, a relatively large time constant τ , say 50–100 ms,
will ensure that the centre of mass of the temporal profile

Table 1 Simulation results for the simple two-cell system

Results from two-cell system
τ (ms) Δt (ms)

50 36.8

60 43.2

70 49.2

80 54.7

90 59.7

100 64.2

For each of six simulations, we varied the neuronal time constant τ and
measured the effective time delay Δt between the centres of mass of the
temporal profile of the presynaptic cell firing and the temporal profile
of the postsynaptic cell firing. In relation to the simple model simu-
lated, an increase of 10 ms in the time constant τ produces an increase
of approximately 5–6 ms in the time delay Δt between the centres of
mass of the presynaptic and postsynaptic cell temporal firing profiles

of the postsynaptic cell activity is delayed by a small time
interval Δt from the centre of mass of the temporal profile of
the presynaptic cell activity. A larger neuronal time constant
τ will lead to a longer effective delay Δt . This is shown in
Fig. 2 and Table 1.

During learning, the synaptic weight wi j from presynap-
tic cell j to postsynaptic cell i is strengthened according to
the Hebbian associative learning rule

dwi j (t)

dt
= kri (t)r j (t) (3)

where k is the learning rate, r j is the firing rate of the presyn-
aptic cell, and ri is the firing rate of the postsynaptic cell. This
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learning rule depends upon the instantaneous firing rates of
the presynaptic and postsynaptic cells, and does not depend
upon the precise timing of the action potentials emitted by
these cells (which are not explicitly simulated in this model).
The learning rule will strengthen the weight between the pre-
synaptic and postsynaptic cells during the short periods in
which both of these cells have high firing rates. However,
due to the neuronal finite time constant of the postsynaptic
cell, the network learns how to associate a temporal activity
profile in the presynaptic cell with a slightly delayed tempo-
ral activity profile in the postsynaptic cell. In particular, the
centre of mass of the temporal activity profile of the postsyn-
aptic cell is always delayed Δt from the centre of mass of
the temporal activity profile of the presynaptic cell. This will
hold true both during and after learning. The consequence of
this is that the presynaptic cell j learns to drive activity in the
postsynaptic cell i with the same effective time delay Δt that
was present during learning. Moreover, a longer postsynaptic
time constant τ ensures that the presynaptic cell j learns to
stimulate the postsynaptic cell i a greater time interval Δt
after the presynaptic cell firing. It is this delay Δt between
presynaptic and postsynaptic cell firing, which allows the cor-
rect time intervals between cell activities to be learned and
replayed by cells in the model. This is essential for the model
to be able to replay the temporal sequence of cell activity at
the speed that was experienced during learning.

In order to further illustrate how the neuronal time con-
stant leads to effective signal delays Δt , we simulated a two-
cell system according to Eqs. 1 and 2 with a non-modifiable
synaptic weight wi j = 1 between the presynaptic and post-
synaptic cells. Figure 2 displays the presynaptic and postsyn-
aptic cell firing rates through time for two simulations of the
two-cell system. In the left plot, the neuronal time constant
τ for the postsynaptic cell was set to 50 ms. It is evident that
there is a delay between the temporal firing profiles of the
presynaptic cell and the postsynaptic cell. In the right plot,
the neuronal time constant τ was set to 100 ms. The delay
between the presynaptic and postsynaptic cell firing is more
pronounced, which illustrates that a longer time constant τ

will produce a longer delay Δt between the presynaptic and
postsynaptic temporal activity profiles. In order to further
quantify this mechanism, we conducted six simulations of
the two-cell system, each with different values for the time
constant τ . For each simulation, we calculated the time delays
Δt between the centres of mass of the presynaptic cell tem-
poral firing profile and the postsynaptic cell temporal firing
profile. Table 1 shows the calculated delay Δt for the six sim-
ulations conducted with different values of the postsynaptic
neuronal time constant τ . Each increase of 10 ms in the time
constant τ leads to an approximate increase of 5–6 ms in the
effective delay Δt . These results show that the time delay Δt
is approximately proportional to the neuronal time constant
τ . The time constant τ can, thus, serve as a reliable timing

mechanism over which associations can be made between
presynaptic and postsynaptic cell activities.

Now let us reconsider the full model, shown in Fig. 1,
that is simulated in this paper. In the simulations presented
below we implemented relatively large neuronal time con-
stants τCOMB = 100&150ms for the combination cells, and
a relatively small time constant τHD = 1ms for the head
direction cells. This meant that the main effective delay Δt
in neurotransmission was in the head direction cell to combi-
nation cell w3 synaptic connections. During training, visual
input is available to guide the firing of the head direction
cells so that they are forced to fire when the agent is facing
their preferred head direction. At any moment in time t the
individual combination cells will respond to an earlier pat-
tern of head direction cell firing at time t − Δt through the
synaptic connections w3. At the same time, the combination
cells will strengthen their w2 synaptic connections onto the
head direction cells that are currently active at time t . If the
agent is rotating with velocity dθ

dt , then over this time inter-
val Δt , the agent will have rotated Δt dθ

dt . This is the overall
association that the network learns to perform. That is, the
network learns that an activity pattern in the head direction
cell network at time t1 representing a particular head direc-
tion θ1 should stimulate (via the network of combination
cells) a new pattern of activity in the head direction cell net-
work at time t2 = t1 +Δt , representing a later head direction
θ2 = θ1 +Δt dθ

dt . This kind of associative learning over fixed
time intervals enables the model to learn the correct velocity
for updating the packet of neural activity in the head direc-
tion cell network, and thus allows path integration to occur
at the correct speed.

2.2 Model equations and implementation

The two-layer model architecture is shown in Fig. 1. During
training, each head direction cell i receives an external visual
input ei , which carries information about the head direction
of the agent. When visual cues are available, these external
inputs dominate other excitatory inputs to the head direction
cells, and force each head direction cell to respond best to a
particular head direction of the agent. The Gaussian tuning of
the head direction cell response profile leads, for any given
head direction cell, to a decrease in cell firing as the head
direction of the agent moves away from the preferred head
direction of that cell.

The activation hHD
i of head direction i in the model is

governed by

τHD dhHD
i (t)

dt
= −hHD

i (t) + ei (t)

− 1

N HD

∑

j

w̃HDrHD
j (t)
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+ φ1

CHD→HD

∑

j

w1
i j (t)r

HD
j (t)

+ φ2

CCOMB→HD

∑

j

w2
i j (t)r

COMB
j (t)

−I EXTERN (4)

where the activation hHD
i (t) is driven by the following terms:∑

j w̃HDrHD
j (t) represents inhibitory feedback within the

head direction cell network, where the summation is per-
formed over all the presynaptic head direction cells j ; w̃HD

is a global constant describing the effect of inhibitory inter-
neurons within the network of head direction cells, and N HD

= 500 is the total number of head direction cells in the model.
The term

∑
j w1

i j (t)r
HD
j (t) represents excitatory feedback

within the layer of head direction cells. The term rHD
j (t) is

the presynaptic firing rate of head direction cell j , and w1
i j

is the excitatory (positive) synaptic weight from presynaptic
head direction cell j to postsynaptic head direction cell i .1

Further terms in Eq. 4 are as follows. The term −hHD
i (t) is

a decay term such that, in the absence of further presynaptic
input, the activation level of the postsynaptic head direction
cell will decay to zero according to the time constant τHD.
The term ei (t) represents an external visual input to postsyn-
aptic head direction cell i . When there is no visual input, the
term ei is set to zero. Thus, in the absence of visual input, the
key term driving the head direction cell activations in Eq. 4
is a sum of inputs from the presynaptic combination cells∑

j w2
i j (t)r

COMB
j (t). The term rCOMB

j (t) is the firing rate of

the presynaptic combination cell j , and w2
i j is the strength of

the corresponding synapse between that presynaptic combi-
nation cell and the postsynaptic head direction cell i .2 The
term I EXTERN represents external feedforward inhibition to
the head direction cell network: this is necessary during the
learning phase to ensure that, in the presence of visual input,
only a small subset of head direction cells (those represent-
ing head directions nearby in the head-direction space) are
active at any one point in time, i.e. the standard deviation of
the head direction cell activity packet remains small. In the
absence of external visual input (during the testing phase),
the term I EXTERN is set to zero.

The firing rate rHD
i (t) of postsynaptic head direction cell

i is determined from the activation hHD
i (t) of that cell and

the sigmoid activation function

1 The scaling factor φ1
CHD→HD controls the overall strength of the recur-

rent inputs to the network of head direction cells, where φ1 is a constant,
and CHD→HD is the number of synapses onto each postsynaptic head
direction cell from the presynaptic head direction cells.
2 The scaling factor φ2

CCOMB→HD controls the overall strength of the com-

bination cell inputs, where φ2 is a constant, and CCOMB→HD is the
number of synapses onto each postsynaptic head direction cell from the
presynaptic combination cells.

rHD
i (t) = 1

1 + e−2β(hHD
i (t)−α)

(5)

where α and β are the sigmoid threshold and slope respec-
tively.

The recurrent synapses w1
i j (t) in the head direction cell

network are trained by a local associative Hebb rule

dw1
i j (t)

dt
= k1rHD

i (t)rHD
j (t) (6)

which increases the strength of the synapses between those
head direction cells that represent nearby directions in the
head-direction space, and which tend to be co-active due
to broadly tuned, overlapping receptive fields. In order to
bound the synaptic weights, weight normalization was used.
In order to implement the normalization, the recurrent syn-
aptic weights w1

i j (t) were rescaled after each timestep of
the learning phase to ensure that for each postsynaptic head
direction cell i we have
√∑

j

(w1
i j (t))

2 = 1 (7)

where the sum is over all the presynaptic head direction cells
j . Such a renormalization process may be achieved in bio-
logical systems through synaptic weight decay (Oja 1982;
Rolls and Treves 1998). The renormalization helps in ensur-
ing that the learning rules are convergent in the sense that
the recurrent synaptic weights within the continuous attrac-
tor network settle down over time to steady values, i.e. the
weights do not grow unbounded.

During learning, associative synaptic modification in the
recurrent synapses w1

i j , in conjunction with the continuity of
the head-direction space, allows the strength of the synapses
between any two head direction cells to reflect the distance
between the head directions represented by those two cells.
The recurrent connectivity implemented by the w1

i j synapses
allows the network of head direction cells to operate as a
continuous attractor network and support stable packets of
neural activity in the absence of external visual input; thus,
the agent can operate in the dark.

The learning rule to update the w2
i j (t) synapses from pre-

synaptic combination cell j to postsynaptic head direction
cell i is expressed by

dw2
i j (t)

dt
= k2rHD

i (t)rCOMB
j (t) (8)

which increases the strength of the synapses between
co-active postsynaptic head direction cells and presynap-
tic combination cells. In order to bound the w2

i j (t) synaptic
weights, rescaling occurred after each timestep of the learn-
ing phase, as in Eq. 7, to ensure that for each postsynaptic
head direction cell i , we have
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√∑

j

(w2
i j (t))

2 = 1 (9)

where the sum is over all the presynaptic combination
cells j .

After learning has occurred, and during testing in the
absence of visual input, the w2

i j synapses are responsible for
stimulating new head direction cells in the direction the agent
is rotating, so as to shift the location of the head direction cell
activity packet and, thus, perform path integration.

The combination cells are driven by synaptic inputs w3
i j (t)

from the head direction cell network, and synaptic inputs
w4

i j (t) from the layer of rotational velocity cells (which are
external inputs to the network that are only active when the
agent is rotating). During the training phase, the w3

i j and

w4
i j synapses onto the combination cells self-organize using

Hebbian competitive learning rules, which enable the com-
bination cell network to operate as a competitive network
that learns to represent different combinations of a particular
head direction and rotational velocity. The activation of the
postsynaptic combination cell i is governed by

τCOMB dhCOMB
i (t)

dt
= −hCOMB

i (t)

− 1

N COMB

∑

j

w̃COMBrCOMB
j (t)

+ φ3

CHD→COMB

∑

j

w3
i j (t)r

HD
j (t)

+ φ4

CROT→COMB

∑

j

w4
i j (t)r

ROT
j (t) (10)

with the terms defined as follows. The term
∑

j w̃COMB

rCOMB
j (t) represents inhibitory feedback within the combina-

tion cell network, where the summation is performed over all
postsynaptic combination cells j ; w̃COMB is the global lateral
inhibition constant describing the effect of inhibitory inter-
neurons within the combination cell network, and N COMB =
1000 is the total number of combination cells in the model.
The term

∑
j w3

i j (t)r
HD
j (t) is the input from the head direc-

tion cells, where rHD
j (t) is the firing rate of presynaptic head

direction cell j , and w3
i j (t) is the corresponding strength of

the synapse from this cell.3 The term
∑

j w4
i j (t)r

ROT
j (t) is

the input from the rotational velocity cells, where the fir-
ing rate of presynaptic rotational velocity cell j is given by
rROT

j (t), and w4
i j (t) is the strength of the corresponding syn-

3 The scaling factor φ3
CHD→COMB controls the overall strength of the inputs

from the head direction cells, where φ3 is a constant, and CHD→COMB is
the number of synapses onto each postsynaptic combination cell from
the presynaptic head direction cells.

apse from this cell.4 Activity within the combination cell
network is driven by the head direction cell network if, and
only if, the rotational velocity cells are also active. If the
rotational velocity cells cease firing, i.e. the agent is station-
ary, then the activity in the combination cell network decays
to zero according to the term −hCOMB

i (t) and the time con-
stant τCOMB.

The firing rate rCOMB
i (t) of postsynaptic combination cell

i is determined from the activation hCOMB
i (t) and the sigmoid

activation function

rCOMB
i (t) = 1

1 + e−2β(hCOMB
i (t)−α)

(11)

where α and β are the sigmoid threshold and slope, respec-
tively. The threshold α is set to a high value to ensure that
each individual postsynaptic combination cell j will function
similar to a logical AND gate. That is to say that temporally
conjunctive inputs from the presynaptic head direction cells
and presynaptic rotational velocity cells are required in order
for the postsynaptic combination cells to fire. In this manner,
individual combination cells become selective to combina-
tions of a particular head direction occurring a small time
interval Δt in the past and a rotational velocity, and, thus, a
competitive network emerges.

The synaptic weights w3
i j (t) from the head direction cells

to the combination cells are updated during learning accord-
ing to

dw3
i j (t)

dt
= k3rCOMB

i (t)rHD
j (t) (12)

which increases the strength of the synapses between
co-active presynaptic head direction cells and postsynaptic
combination cells. In order to bound the synaptic weights,
rescaling was employed after each timestep of the learning
phase to ensure that for each postsynaptic combination cell
i , we have
√∑

j

(w3
i j (t))

2 = 1 (13)

where the sum is over all presynaptic head direction
cells j .

The synaptic weights w4
i j (t) from the rotational velocity

cells to the combination cells are updated during learning
according to

dw4
i j (t)

dt
= k4rCOMB

i (t)rROT
j (t) (14)

and the weights are bound by rescaling after each timestep
of learning to ensure that for each postsynaptic combination

4 The scaling factor φ4
CROT→COMB controls the overall strength of the

inputs from the rotational velocity cells, where φ4 is a constant, and
CROT→COMB is the number of synapses onto each postsynaptic combi-
nation cell from the presynaptic rotational velocity cells.

123



28 Biol Cybern (2010) 103:21–41

Table 2 Simulation parameter values (values are constant across all
experiments except where specified)

Network parameters

No. HD cells 500

No. COMB cells 1000

No. ROT cells 500

No. w1 synapses onto each HD cell 500

No. w2 synapses onto each HD cell 1000

No. w3 synapses onto each COMB cell 25

No. w4 synapses onto each COMB cell 500

w̃HD 375

w̃COMB 50

I EXTERN 150

σHD 20◦

Learning rates k1, k2, k3, k4 0.1

λ 200.0

τHD 1.0 ms

τCOMB (Experiments 1 and 2) 150.0 ms

τCOMB (Experiments 3 and 4) 100.0 ms

φ1 3.75 × 103

φ2 2.5 × 103

φ3 5 × 103

φ4 4 × 102

HD sigmoid transfer function parameters

α 0.0

β 1.5

COMB sigmoid transfer function parameters

α 10.0

β 1.5

Training parameters

No. Training epochs 50

Speed of rotation (Experiments 1 and 3) 360◦/s

Speed of rotation (Experiments 2 and 4) 180◦/s

HD Head direction, COMB Combination, ROT Rotational velocity

cell i we have
√∑

j

(w4
i j (t))

2 = 1 (15)

where the sum is over all presynaptic rotational velocity cells
j .

During training, the w3
i j and w4

i j synapses onto the post-
synaptic combination cells self-organize using competitive
learning to enable the combination cells to learn to repre-
sent combinations of particular head directions and rotational
velocities.

In the models simulated, we set the neuronal time constant
τCOMB for the combination cells to a large value as given in
Table 2. This was due to the results from some preliminary

simulations, which indicated that having a relatively large
time constant τCOMB compared to the neuronal time con-
stant τHD for the head direction cells would produce the best
operation of the model. The large value of the time constant
τCOMB means that, through learning, the current activity in
the combination cell network will be associated with activity
that occurred Δt in the past in the head direction cell net-
work due to the effective time delay Δt between the activity
packet in the head direction cell network and the activity
in the combination cell network. Thus, after unsupervised
learning, different cells in the combination cell network will
respond to different combinations of a particular head direc-
tion that occurred Δt in the past and a rotational velocity (i.e.
direction of movement through the head-direction space).

2.3 Training and testing

In order to keep the simulation run-time reasonable, the mod-
els were simulated with a relatively small architecture con-
taining 500 head direction cells and 1000 combination cells.
There were also 500 rotational velocity cells—with 250 of the
cells (1–250) responding to clockwise rotation of the agent,
and the remaining 250 cells (251–500) responding to counter-
clockwise rotation. The head direction cells were mapped
onto a regular grid of different head directions, such that
each postsynaptic head direction cell i had a preferred head
direction xi of the agent at which the cell would be maximally
stimulated by the visual input.

Throughout the training phase, the agent moved round
a 1D circular space. A full clockwise rotation of the agent
through consecutive positions 0–360◦, followed by a full
counter-clockwise rotation of the agent through consecutive
positions 360–0◦, constituted 1 epoch of training. The train-
ing phase was complete after 50 epochs had been performed.
As the agent rotated during training, the activations and firing
rates of the head direction cells were simulated according to
the dynamical Eqs. 4 and 5.

During training in the light, the external visual inputs ei ,
included in Eq. 4, were the dominant influence upon the fir-
ing of the head direction cells. Since each head direction cell
is tuned to fire maximally to visual input from a particular
head direction, for each postsynaptic cell i , the visual input
ei was set to the following Gaussian response profile

eHD
i = λe−(sHD

i )2/2(σHD)2
(16)

where sHD
i is the difference between the actual head direc-

tion x of the agent and the preferred head direction xi for
postsynaptic head direction cell i ; λ is a scaling factor that
expresses the strength of the non-modifiable visual input syn-
apses onto the postsynaptic head direction cells, and σHD is
the standard deviation. For each postsynaptic head direction
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cell i , the difference sHD
i is given by

sHD
i = MIN(|xi − x |, 360 − |xi − x |). (17)

In the training phase of the simulations, the activity of the
combination cells is driven by the w3

i j synaptic inputs from

the presynaptic head direction cells, and the w4
i j synaptic

inputs from the rotational velocity cells. One of the purposes
of the training phase was to determine that the model can
self-organize, through competitive learning, to correctly set
up the combination cells to respond to combinations of a par-
ticular head direction occurring Δt in the past and clockwise
or counter-clockwise rotation. Throughout the training, the
activations and the firing rates of the combination cells were
simulated according to the dynamical Eqs. 10 and 11.

At the beginning of the training phase, the synaptic
weights w1

i j , w2
i j , w3

i j and w4
i j were all initialized to ran-

dom positive values. These weights were updated at every
timestep of the training phase according to Eqs. 6, 8, 12, and
14, respectively, and thus allowed to self-organize.

After the training phase was over, the simulations contin-
ued with the testing phase, during which the packet of head
direction cell activity was required to update on the basis
of idiothetic signals alone (the visual inputs ei were set to
zero). During the testing phase, the dynamical Eqs. 4, 5, 10
and 11 were simulated, but without any learning in any of
the synapses i.e. Eqs. 6, 8, 12 and 14 were not simulated.

At the start of the testing phase, all of the firing rates rHD
i ,

rCOMB
i and rROT

i were set to zero. The agent was oriented
to an initial head direction and simulated with visual input
available, but with no rotational velocity cells being active,
for a period of 1 s. For the period that the agent maintained
this head direction, the visual input term ei for each post-
synaptic head direction cell i was set to a Gaussian response
profile identical to that used by the head direction cell dur-
ing the training phase as given by Eq. 16. The visual input
was then removed by setting all the ei terms to zero, and the
agent was allowed to rest in the same initial head direction
for a further 1 s. The purpose of this initial part of the testing
was to allow the development within the head direction cell
network of a stable packet of activity (representing the initial
head direction).

The agent was allowed to remain stationary for a further
1 s, then the firing rates rROT

i of the 250 clockwise rotational
velocity cells were set to 1 (fully active) for 1 s. The co-fir-
ing of the rotational velocity cells with the head direction
cells stimulated a subset of the cells within the combina-
tion cell network. The firing of these combination cells then
stimulated cells in the head direction cell network represent-
ing head directions in the clockwise direction of rotation,
and the packet of head direction cell activity moved through
the continuous attractor. This part of the testing phase was

to ascertain that the representation of current head direction
can be updated on the basis of idiothetic signals alone.

The firing rates rROT
i of all the rotational velocity cells

were then set to 0 for 1 s. As the 250 clockwise rotational
velocity cells ceased firing, the driving input to the com-
bination cells disappeared, and the combination cells also
ceased firing. In consequence, the combination cell network
no longer provided a driving input to the head direction
cell network, and the packet of head direction cell activity
remained stationary at the last-visited head direction. This
was to demonstrate that the head direction cell network could
maintain a stable packet of activity representing any given
head direction.

The firing rates rROT
i of the 250 counter-clockwise rota-

tional velocity cells were then set to 1 for 1 s. In an identical
manner to the period of clockwise rotation, the head direction
cell activity packet then updated in a counter-clockwise direc-
tion, to demonstrate that counter-clockwise rotation could
also be achieved on the basis of idiothetic signals alone.

The firing rates rROT
i of all the rotational velocity cells

were then set to 0 for a final 1 s. Again, this was to demon-
strate that the head direction cell network could maintain a
stable packet of activity at the last-visited head direction.

In the simulations, all the differential Eqs. 4, 6, 8, 10, 12,
14 were approximated by Forward Euler finite difference
schemes with a timestep of 0.0001 s.

3 Simulations

3.1 Experiment 1: τCOMB 150 ms; 360◦/s rotational velocity

In this experiment, the model was simulated with the agent
rotating at a velocity of 360◦/s during training in the presence
of visual input. The model parameters used for this exper-
iment are given in Table 2. Testing in the absence of visual
input was then carried out to determine whether the model
had learned to update a packet of head direction cell activity
at the same speed as the rotational velocity imposed dur-
ing training. The results from the testing phase are shown in
Figs. 3 to 7, and also in Table 3.

Figure 3 displays the recurrent synaptic weights w1 within
the head direction cell network after training with the cor-
responding Hebbian associative learning rule (6) and weight
normalization (7). Each of the four plots shows the learned
synaptic weights to a different postsynaptic head direction
cell from the 500 presynaptic head direction cells. Within
each plot, the presynaptic head direction cells are arranged
according to where they fire maximally in the head-direction
space of the agent when visual input is available. In each
plot, a dashed vertical line indicates the presynaptic head
direction cell with which the postsynaptic head direction cell
has maximal w1 synaptic weight. For all the plots, the syn-
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Fig. 3 The recurrent synaptic
weights w1 within the network
of head direction (HD) cells
after training with the Hebbian
associative learning rule (6) and
weight normalization (7). These
results are from a simulation
with a time constant τCOMB of
150 ms, and a rotational velocity
during training of 360◦/s (all
other parameters are as given in
Table 2). Each of the four plots
shows the learned synaptic
weights to a different
postsynaptic HD cell from the
other 500 presynaptic HD cells
in the network. In the plots, the
500 presynaptic HD cells are
arranged according to where
they fire maximally in the
head-direction space of the
agent when visual input is
available. For each plot, a
dashed vertical line indicates the
presynaptic HD cell with which
the postsynaptic HD cell has
maximal w1 synaptic weight. In
all the plots, the synaptic weight
profile is symmetric about the
presynaptic HD cell with
maximal synaptic strength, and
this symmetry helps in
supporting a stable packet of
HD cell activity during testing
in the absence of visual input

aptic weight profile across the presynaptic head direction
cells is clearly symmetric about the individual presynaptic
head direction cell with maximal w1 synaptic strength. This
symmetry ensures that the head direction cell network can
maintain a stable packet of head direction cell activity when
the agent is stationary in the absence of visual input.

In Fig. 4, the plots display the w3 synaptic weights from
the head direction cell network to the combination cell
network after competitive learning with the corresponding
associative Hebbian learning rule (12) and weight normali-
zation (13). Each individual plot shows the learned synap-
tic weights to a different postsynaptic combination cell from
the 500 presynaptic head direction cells, with the presynaptic
head direction cells arranged in the plots according to where
they fire maximally in the head-direction space of the agent in
the presence of visual input. For each plot, a dashed vertical
line indicates the presynaptic head direction cell with which
the postsynaptic combination cell has maximal w3 synap-
tic strength. Diluted synaptic connectivity was implemented
for the w3 synapses to ensure that competitive learning was
preserved in the combination cell network. Thus, individ-
ual postsynaptic combination cells learned to respond to a

combination of a particular head direction occurring Δt in
the past and a rotational velocity, rather than all possible
head directions due to the continuity of the head-direction
space and the overlapping receptive fields of the head direc-
tion cells (Stringer and Rolls 2006). With the exception of
this diluted connectivity, each of the synaptic weight pro-
files is centred on a region of similarly tuned head direction
cells and is approximately symmetric about the presynaptic
head direction cell with maximal w3 synaptic weight. The
symmetric profile demonstrates that individual postsynaptic
combination cells have learned to be preferentially stimulated
by a subset of presynaptic head direction cells representing
a preferred head direction Δt in the past. Since the model
parameters φ3, φ4 and the threshold α of the combination
cell sigmoid transfer function (11) are tuned to ensure that a
strong rotational velocity cell input through the w4 synapses
is also required to fire individual postsynaptic combination
cells, these cells can be said to learn to respond to com-
binations of a particular head direction Δt in the past and
clockwise or counter-clockwise rotational velocity.

The plots in Fig. 5 display the synaptic weights w2 from
the combination cell network to the head direction cell net-
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Fig. 4 The synaptic weights w3 from the head direction (HD) cell
network to the combination (COMB) cell network after competitive
learning with the Hebbian associative learning rule (12) and weight
normalization (13). These results are from a simulation with a time
constant τCOMB of 150 ms, and a rotational velocity of 360◦/s (all other
parameters are as given in Table 2). Each of the four plots shows the
learned synaptic weights to a different postsynaptic COMB cell from
the 500 presynaptic HD cells. The presynaptic HD cells are arranged
in the plots according to where they fire maximally in the head-direc-
tion space of the agent when visual input is available. For each plot, a
dashed vertical line indicates the presynaptic HD cell with which the
postsynaptic COMB cell has maximal w3 weight. Except for the effects

of diluted synaptic connectivity, each of the weight profiles is centred
on a region of similarly tuned HD cells, with a profile that is approxi-
mately symmetric about the presynaptic HD cell with maximal synaptic
strength. Thus, the learned w3 synaptic weights show that individual
COMB cells learn to receive maximal stimulation from particular HD
cells. Given that the model parameters φ3, φ4, and the threshold α of
the COMB cell sigmoid transfer function (11) are tuned to ensure that
a strong rotational velocity cell input through the w4 synapses is also
needed to fire the COMB cells, these cells in fact learn to respond to
combinations of a particular head direction and clockwise or counter-
clockwise rotational velocity

work after learning with the corresponding Hebbian asso-
ciative learning rule (8) and weight normalization (9). In
each plot, the learned synaptic weights are shown from a dif-
ferent presynaptic combination cell to the 500 postsynaptic
head direction cells, with the head direction cells arranged
in the plots according to where they fire maximally in the
head-direction space of the agent when visual input is avail-
able. The dashed vertical lines indicate, for each plot, the
postsynaptic head direction cell with which the presynaptic

combination cell has maximal w3 weight as per Fig. 4. For all
four plots, the w2 synaptic weight profile is asymmetric about
the postsynaptic head direction cell with maximal w3 weight.
This asymmetry shows that the presynaptic combination cell
has learned to preferentially stimulate a postsynaptic head
direction cell that represents a different head direction to the
head direction cell from which the combination cell receives
maximal w3 stimulation. Thus, the asymmetry reflects the
fact that, during training in the presence of visual input, the
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Fig. 5 The synaptic weights w2 from the combination (COMB) cell
network to the head direction (HD) cell network after learning with
the Hebbian associative learning rule (8) and weight normalization (9).
These results are from a simulation with a time constant τCOMB of
150 ms, and a rotational velocity of 360◦/s (all other parameters are
as given in Table 2). Each of the four plots shows the learned synaptic
weights from a different presynaptic COMB cell to the 500 postsyn-
aptic HD cells. The postsynaptic HD cells are arranged in the plots
according to where they fire maximally in the head-direction space of
the agent when visual input is available. For each plot, a dashed verti-
cal line indicates the postsynaptic HD cell with which the presynaptic
COMB cell has maximal w3 weight as shown in Fig. 4. In each plot, the

w2 synaptic weight profile is asymmetric about the postsynaptic HD
cell with maximal w3 synaptic weight, indicating that the presynaptic
COMB cell preferentially stimulates an HD cell representing a differ-
ent head direction to the HD cell from which the COMB cell receives
maximal w3 synaptic weight. This reflects the fact that the packet of
HD cell activity will have moved through the head-direction space of
the agent in the time delay Δt between the firing of the presynaptic head
direction cells and the resulting firing of the postsynaptic combination
cells. Thus, the effective natural time delays Δt produced by the neu-
ronal time constants τCOMB and τHD act, through learning, as a timing
mechanism that enables the update of the packet of HD cell activity at
the same speed as the agent is rotating

packet of head direction cell activity (representing current
head direction) will have moved through the head-direction
space of the agent in the natural time delay Δt between the
activity profile in the head direction cell network and the
activity profile in the combination cell network. This results,
at any given moment in time, in the most active combination
cell learning to stimulate a different postsynaptic head direc-
tion cell to the presynaptic head direction cell it has learned
to be stimulated by, reflecting the changing head direction
of the agent. Therefore, the neuronal time constants τCOMB

and τHD act, through learning, as a timing mechanism that is
sufficient for the purpose of enabling the update of the packet
of head direction cell activity at the same speed as the agent
is rotating.

Figure 6 displays the w4 synaptic weights from the layer of
rotational velocity cells to the combination cell network after
learning with the corresponding Hebbian associative learn-
ing rule (14) and weight normalization (15). Each of the plots
shows the learned synaptic weights to a different postsynaptic
combination cell from the 500 presynaptic rotational veloc-
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Fig. 6 The synaptic weights
w4 from the layer of rotational
velocity (ROT) cells to the
combination (COMB) cell
network after learning with the
Hebbian associative learning
rule (14) and weight
normalization (15). These
results are taken from a
simulation with a time constant
τCOMB of 150 ms, and a
rotational velocity of 360◦/s (all
other parameters are as given in
Table 2). Each of the four plots
shows the learned synaptic
weights to a different
postsynaptic COMB cell from
the 500 presynaptic ROT cells.
As the firing profile of the
presynaptic ROT cells is binary,
the w4 synaptic weight profiles
in the plots above can be
described as a step function of
the presynaptic ROT cell firing
rate rROT

j (t). Combination cells
300 and 1000 have learned to
respond to the clockwise
direction of rotation.
Combination cells 150 and 850
have learned to respond to the
counter-clockwise direction of
rotation

ity cells. Since the firing profile of the presynaptic rotational
velocity cells is binary, with each cell signalling that the agent
is either rotating in a particular direction (cell fully firing) or
is not (cell not firing), the w4 synaptic weight profiles can
be described as a step function of the presynaptic rotational
velocity cell firing rate rROT

j (t). As the four plots display,
each postsynaptic combination cell receives positive synap-
tic weights from the subset of exactly 250 presynaptic rota-
tional velocity cells that signal either clockwise or counter-
clockwise rotation (but not both subsets). Combination cells
300 and 1000 have learned to respond to the 250 rotational
velocity cells representing clockwise rotation. Combination
cells 150 and 850 have learned to respond to the 250 rota-
tional velocity cells representing counter-clockwise rotation.
Thus, the postsynaptic combination cells have learned to be
maximally stimulated by a particular head direction occur-
ring Δt in the past and a particular rotational velocity. The
postsynaptic combination cells will, in turn, stimulate a dif-
ferent postsynaptic head direction to the presynaptic head
direction cell that preferentially stimulates them; but this
will only occur if the rotational velocity cells are temporally
co-firing with the head direction cells.

The firing rates of the head direction, combination and
rotational velocity cells are shown in the plots in Fig. 7. The
top left plot displays the firing rates of the head direction
cells during the training phase of the experiment. Through-
out the training, the activity in the head direction cells is
driven by the presence of external visual input. In the time
interval 0.0–2.25 s, the agent rotated in a clockwise direction,
with counter-clockwise rotation occurring in the time inter-
val 2.25–4.5 s. The top right plot displays the firing rates of
the head direction cells in the testing phase without exter-
nal visual input. During the time interval 0.0–1.0 s, there was
no firing in the rotational velocity cells (bottom left plot),
and a moderate amount of baseline activity in the network
of combination cells (bottom right plot); thus, there was a
stable packet of head direction cell activity supported by the
w1 recurrent synapses. During the time interval 1.0–2.0 s,
the 250 rotational velocity cells representing clockwise rota-
tion became active (bottom left), stimulating activity in the
combination cells (bottom right) through the w4 synapses
in conjunction with the head direction cell input through
the w3 synapses. Owing to the high value of the neuronal
time constant τCOMB and the asymmetry in the w2 and w3
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Fig. 7 Firing rates of head direction (HD), combination (COMB), and
rotational velocity (ROT) cells during training and testing. These results
are taken from a simulation with a time constant τCOMB of 150 ms, and
a rotational velocity of 360◦/s (all other parameters are as given in
Table 2). Top left Firing rates in the network of 500 HD cells during the
4.5 s of training, with the HD cells driven by visual input (0.0–2.25 s:
agent rotating clockwise; 2.25–4.5 s: agent rotating counter-clockwise).
Top right Firing rates in the network of 500 HD cells during the 5 s of
testing in the absence of visual input. During the interval 0.0–1.0 s, there
was a stable packet of activity in the HD cell network. In the interval
1.0–2.0 s, the ROT cells representing clockwise rotation were turned
on and the packet of HD cell activity moved through the network in
a clockwise direction. During the interval 2.0–3.0 s, the packet of HD
cell activity remained stable in the network. In the interval 3.0–4.0 s,
the ROT cells representing counter-clockwise rotation were turned on

and the packet of HD activity moved through the network in a counter-
clockwise direction. During the interval 4.0–5.0 s, the packet of HD cell
activity remained stable in the HD cell network. Bottom left: Firing rates
in the layer of 500 ROT cells during the 5 s of testing in the absence of
visual input (1.0–2.0 s: ROT cells representing clockwise rotation are
active; 3.0–4.0 s: ROT cells representing counter-clockwise rotation are
active). Bottom right Firing rates in the network of 1000 COMB cells
during the 5 s of testing in the absence of visual input. In the interval
1.0–2.0 s, the COMB cells become active due to the firing of the 250
ROT cells representing clockwise rotation of the agent. In the inter-
val 3.0–4.0 s, the COMB cells become active due to the firing of the
250 ROT cells representing counter-clockwise rotation. At other peri-
ods, there is a moderate amount of baseline activity in the COMB cell
network. In all plots, regions of high firing are represented by darker
shading

synaptic weight profiles produced during learning, the fir-
ing of the combination cells during this period of the test-
ing phase stimulated head direction cells representing head
directions further along in the clockwise direction of rotation.
Thus the head direction cell activity packet moved through
the head-direction space of the agent, and the model per-
formed velocity path integration of head direction. During
the time interval 2.0–3.0 s, the rotational velocity cells were
quiescent in their firing, and there was only a moderate

amount of baseline activity in the combination cells; thus,
the head direction cell activity packet remained stable in the
head direction cell network. During the time interval 3.0–
4.0 s, the 250 rotational velocity cells representing counter-
clockwise rotation started firing (bottom left), in turn, stimu-
lating activity in the combination cell network (bottom right).
In an identical mechanism to that for clockwise rotation,
the model thus performed velocity path integration of head
direction, but this time in the counter-clockwise direction
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Table 3 Speed of movement of the head direction activity packet during testing in the absence of visual input

Clockwise Counter-clockwise

τCOMB 150 ms; 360◦/s Rotational velocity
Mean speed 180.0◦/s 201.7◦/s

Standard error 19.4◦/s 8.0◦/s

Percentage 50.0% 56.0%

τCOMB 150 ms; 180◦/s Rotational velocity

Mean speed 125.1◦/s 125.5◦/s

Standard error 9.7◦/s 7.5◦/s

Percentage 69.5% 69.7%

τCOMB 100 ms; 360◦/s Rotational velocity

Mean speed 204.5◦/s 224.1◦/s

Standard error 15.1o/s 3.2◦/s

Percentage 56.9% 62.3%

τCOMB 100 ms; 180◦/s Rotational velocity

Mean speed 117.2◦/s 104.2◦/s

Standard error 4.5◦/s 4.3◦/s

Percentage 65.1% 57.9%

For all of the four experiments, the results are computed over six simulation runs. Within an experiment, each of the six simulations had identical
model parameters but different random synaptic connectivity and different random synaptic weight initializations. The table displays the mean
speed of the activity packet across the six simulations during testing as calculated according to Eqs. 18 and 19; the standard error of the mean; and
the mean speed of the activity packet as a percentage of the speed of rotation of the agent that was imposed during training in the presence of visual
input. For each experiment, results are displayed for both clockwise and counter-clockwise rotations of the activity packet during testing

of rotation. During the time interval 4.0–5.0 s, the rotational
velocity cells ceased firing, the activity level in the combi-
nation cell network returned to a baseline level and again
there was a stable packet of activity in the head direction cell
network.

In order to determine whether the model could perform
velocity path integration of head direction at the same speed
during testing as was imposed during training, the speed of
update of the head direction cell activity packet was recorded.
The measurement was taken according to

speed =
∣∣∣∣

p2 − p1

t2 − t1

∣∣∣∣ (18)

where p1 and p2 represent the start and end positions respec-
tively (in degrees) of the packet of head direction cell activ-
ity; and t1 and t2 represent the time (in s) at which the start
and end packet positions were obtained. The packet positions
were calculated as follows:

p =
∑

i riθi∑
i ri

(19)

where ri is the firing rate of postsynaptic head direction cell
i , and θi is the preferred head direction for postsynaptic head
direction cell i in the presence of visual input.

Measurements of speed were taken for 0.5 s during both
the clockwise (1.25–1.75 s) and counter-clockwise (3.25–
3.75 s) periods of rotation during testing. (The recording was

started 0.25 s after the rotational velocity cells started firing
to allow time for the combination cells to become active, due
to the high value of the neuronal time constant τCOMB, and
start driving the head direction cell activity packet through
the head direction cell network.)

Six simulations were conducted, and in each simulation
the same model parameters were employed, with the excep-
tion of different random synaptic connectivity and different
random synaptic weight initialization. Table 3 summarizes
the statistics we carried out on the results. The mean speed
of rotation across the six simulations was 180.0◦/s for clock-
wise rotation, and 201.7◦/s for counter-clockwise rotation.
This is compared to a true speed of 360.0◦/s during train-
ing the presence of external visual input. Standard errors of
19.4◦/s for clockwise rotation, and 8.0◦/s for counter-clock-
wise rotation indicate a small amount of variation across the
simulations, but the standard errors are still sufficiently small
to conclude that the simulations produced speeds of rota-
tion consistent enough with one another to produce reliable
results. In order to further compare the recorded speed dur-
ing testing to the speed imposed during training, the mean
speed was calculated during testing as a percentage of the
speed during training. For the period of clockwise rotation,
the model updated the packet of head direction cell activity
at a speed that was 50.0% of that imposed during training.
For the period of counter-clockwise rotation, the speed was
56.0% of the speed during training. The model has learned
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to achieve this automatically without the need to carefully
hand-tune a parameter specifically governing the speed as
was used by Stringer and Rolls (2006). We note, however, that
while the speed at testing is a reasonable approximation (and
within the same order of magnitude) of the speed imposed
during training, the speeds during testing are regularly below
those during training. In future study, we will investigate what
architectural features contribute to this underestimation of
the speed during path integration.

3.2 Experiment 2: τCOMB 150 ms; 180◦/s rotational velocity

We conducted this experiment to demonstrate that if the
model was trained with the same parameter set but at half
the rotational velocity compared to Experiment 1, then dur-
ing the testing phase the model would still perform velocity
path integration of head direction at the correct speed. Thus,
the same model can learn and perform path integration at
different rotational velocities. Except for the difference in
rotational velocity, all the model parameters were the same
as for Experiment 1 (as given in Table 2).

The plots in Fig. 8 display the firing rates of the head direc-
tion, combination, and rotational velocity cells during train-
ing and testing of the model. The conventions are the same as
for Fig. 7, and so is the interpretation. When the same model is
trained at half the rotational velocity compared to Experiment
1, the same mechanism of a high value for the neuronal time
constant τCOMB on the activations of the combination cells
produces a natural time delay Δt between the activity profile
in the head direction cell network and the activity profile in
the combination cell network. During this delay, Δt , the head
direction of the agent will have changed. Thus, at any given
moment in time, the most active combination cell learns to
preferentially stimulate the head direction cell representing
the new head direction. This learned association will help
to shift a packet of head direction cell activity through the
head direction cell network. Much similar to Experiment 1,
the current model also requires temporally conjunctive inputs
to the combination cells through the w3 synapses from the
head direction cells, and the w4 synapses from the rotational
velocity cells, in order for the combination cells to start firing
and, in turn, stimulate an activity packet in the head direction

Fig. 8 Firing rates of head
direction (HD), combination
(COMB) and rotational velocity
(ROT) cells during training and
testing. These results are taken
from a simulation with a time
constant τCOMB of 150 ms, and
a rotational velocity of 180◦/s
(all other parameters are as
given in Table 2). Conventions
are as for Fig. 7
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cell network (bottom left and right plots). When there is no
firing in the layer of rotational velocity cells, there is only a
moderate amount of baseline activity in the combination cell
network, and, thus, there is a stable packet of activity in the
head direction cell network (top right plot).

In order to determine whether the model had learned
to update the packet of head direction cell activity at the
same speed during testing as was imposed during training,
we measured the speed of the update according to Eqs. 18
and 19. We took measurements across a 0.5 s interval for
both clockwise and counter-clockwise rotation, and repeated
these measurements across six different simulations that had
identical model parameters with the exception of different
random synaptic connectivity and different random synaptic
weight initialization. The results we obtained are summa-
rized in Table 3.

The mean speed of rotation was 125.1◦/s for the period of
clockwise rotation, and 125.5◦/s for the period of counter-
clockwise rotation. This is compared to the true speed dur-
ing training of 180.0◦/s. Standard errors of 9.7◦/s for the
clockwise measurements and 7.5◦/s for the counter-clock-
wise measurements, indicate a small degree of variability
across the six simulations, but the standard errors are small
enough to conclude that the simulations produced speeds of
rotation consistent enough with one another to be consid-
ered as reliable results. We also calculated the mean speed
of the activity packet during testing as a percentage of the
rotational velocity imposed during training. For the period
of clockwise rotation, the mean speed during testing was
69.5% of the rotational velocity imposed during training.
For the period of counter-clockwise rotation, the mean speed
was 69.7% of the rotational velocity imposed during training.
Similar to Experiment 1, the speeds recorded during testing
of the model are a reasonable approximation to those experi-
enced during training of the model, although there is a small

but regular underestimation. Moreover, the same model with
the same set of parameters is able to learn two completely
different rotational velocities during training, and reproduce
(within a small margin of error) those velocities during the
testing phase.

3.3 Experiment 3: τCOMB 100 ms; 360◦/s rotational velocity

This experiment was conducted to demonstrate that the same
model could learn to perform velocity path integration of
head direction when implemented with a different value,
compared to Experiments 1 and 2, for the neuronal time
constant τCOMB. (Thus, the principle of the neuronal time
constants for the cell activations producing effective natural
time delays Δt over which associations between cell activi-
ties can be learned is a general one.) Except for the value of
the time constant τCOMB, all the other model parameters are
identical to those used for Experiment 1 (as given in Table 2.)

The left plot in Fig. 9 displays the firing rates of the head
direction cells during the 5 s of testing the model in the
absence of visual input. The conventions are the same as
for the top right plots in Figs. 7 and 8, and demonstrate that
when there is no firing in the layer of rotational velocity
cells, the combination cell network does not become active
enough to shift an activity packet in the head direction cell
network; thus, there is a stable packet of head direction cell
activity. When the rotational velocity cells start firing (to sig-
nal either clockwise or counter-clockwise rotation), then the
combination cells reach an activation level sufficient to shift
an activity packet in the head direction cell network, and the
model updates its representation of current head direction.
The model has, thus, learned to perform velocity path inte-
gration of head direction.

We took measurements of the speed of update of the head
direction cell activity packet according to equations (18) and

Fig. 9 Firing rates of head
direction (HD) cells during
testing. These results are taken
from simulations with a time
constant τCOMB of 100 ms and
rotational velocities during
training of 360◦/s (Left plot) and
180◦/s (Right plot). Conventions
are as for the top-right plots in
Figs. 7 and 8
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(19). The measurements were taken across six different sim-
ulations with identical model parameters except for different
random synaptic connectivities and different random syn-
aptic weight initializations. The results are summarized in
Table 3. The mean speed of rotation was 204.5◦/s during
the period of clockwise rotation, and 224.1◦/s during the
period of counter-clockwise rotation. This is compared to the
true rotational velocity imposed during training of 360.0◦/s.
Standard errors of 15.1◦/s for the clockwise measurements
and 3.2◦/s for the counter-clockwise measurement, indicate a
small degree of variation across the simulations. The standard
errors are small enough, however, to conclude the recorded
rotational velocities were consistent enough with one another
to produce reliable results. The mean speed of rotation as a
percentage of the rotational velocity imposed during train-
ing was calculated to be 56.9% for the period of clockwise
rotation and 62.3% for the period of counter-clockwise rota-
tion. The speeds recorded during testing are approximately
the same as those that the model experienced during training,
and although there is an underestimation for both clockwise
and counter-clockwise rotations, the mean speeds are within
the same order of magnitude as the speed imposed during
training. The model can thus be implemented with a differ-
ent value for the time constant τCOMB, and can still learn (to
within a small margin of error) to update the packet of head
direction cell activity at the same speed it experienced during
training.

3.4 Experiment 4: τCOMB 100 ms; 180◦/s rotational
velocity

By using these values we aimed at demonstrating that the
same model could be implemented with different values for
the neuronal time constant τCOMB, and could be trained at
different rotational velocities when implemented with these
different values, and in all the cases could still learn to per-
form velocity path integration of head direction. With the
exception of a different value for the time constant τCOMB,
and a different rotational velocity, the model parameters are
identical to those used in the previous experiments (as given
in Table 2).

The right plot of Fig. 9 displays the firing rates of the head
direction cells during the 5 s of testing in the absence of visual
input. The conventions are the same as for the top right plot
in Figs. 7 and 8, and show that when there is no firing in the
layer of rotational velocity cells, the combination cells do
not become active enough to stimulate the head direction cell
network, and, thus, the packet of head direction cell activity
remains stable. When the rotational velocity cells do begin
to fire, the combination cells will, through learning, pref-
erentially stimulate head direction cells representing head
directions further along in the current direction of rotation.
The model, with the same parameters as used in Experiment

3, has, thus, learned to perform velocity path integration of
head direction at the new rotational speed of 180◦/s.

We calculated the speed of update of the head direction
cell activity packet according to Eqs. 18 and 19. The mea-
surements were taken across six different simulations with
identical model parameters except for different random syn-
aptic connectivities and different random synaptic weight
initializations. The results are summarized in Table 3. The
mean speed of rotation was 117.2◦/s during the period of
clockwise rotation and 104.2◦/s during the period of counter-
clockwise rotation. This is compared to the true speed of
180.0◦/s imposed upon the model during training. We cal-
culated a standard error of 4.5◦/s for the clockwise measure-
ments, and 4.3◦/s for the counter-clockwise measurements.
The standard error indicate little variation in the speed of
update of the activity packet across simulations, and, thus,
the six simulations are consistent enough with one another to
produce reliable results. The mean speed of clockwise rota-
tion was calculated to be 65.1% of the true speed imposed
during training. The mean speed of counter-clockwise rota-
tion was calculated to be 57.9% of the speed imposed during
training. For both directions of rotation, there is an underes-
timation of the true speed encountered during training. The
speeds recorded are still within the same order of magnitude
of the speed imposed during training, and, thus, sufficiently
close to one another to conclude that the model can be imple-
mented with different values for the time constant τCOMB,
and trained at different rotational velocities, and can, in each
case, still learn (to within a small margin of error) to per-
form velocity path integration of head direction at the correct
speed.

4 Discussion

The model that we presented in this article can learn to
update a packet of head direction cell activity by the cor-
rect amount given an external input representing the velocity
of self-motion. The principle of operation is that the neu-
ronal time constants for the governing equations of the cell
activations produce effective natural time delays Δt between
the activity profiles in the presynaptic cells and the postsyn-
aptic cells, and it is this delay Δt over which associations
between cell activities can be learned and replayed at the
correct speed. In the current model, a high value for the neu-
ronal time constant τCOMB leads to a time delay Δt between
the presynaptic head direction cell activity profile and the
postsynaptic combination cell activity profile. During train-
ing in the presence of visual input, the head direction of the
agent will have changed during the delay Δt ; thus, at any
given moment in time, the most active combination cell will
strengthen its synapse with the head direction cell represent-
ing the new head direction, and this head direction cell will
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be a different cell to the one which preferentially stimulates
the combination cell. Essentially, the model learns to make
associations between a current head direction and a combi-
nation of a particular head direction that occurred Δt in the
past and a rotational velocity.

In the four experiments we conducted, the model did not
reproduce the exact speed during testing that was imposed
during training. This could be due to the fact that our sim-
ulated models were relatively small, containing only 2000
neurons in total. This small architecture may be more suscep-
tible to noise in the system due to an inability to average the
noise out as well as a larger architecture, and the noise may
lead to the packet of head direction cell activity updating at a
slower speed than the model was trained with. A model with
a larger architecture may, thus, show less difference between
the speeds recorded during testing and those imposed dur-
ing training, when compared to the results we presented in
this article. Unfortunately, owing to the large simulation run-
time, we were unable to investigate the performance in a
larger network in this study. We hope to examine this issue
further in future research.

We know of no previous model that can update a packet
of head direction cell activity at the correct speed through
self-organization with biologically plausible associative
learning rules. Hahnloser (2003) used an error correction
learning rule in a network with separate head direction sub-
networks for each direction of idiothetic signal to produce a
convergent learning scheme in a one-dimensional head direc-
tion cell system. One disadvantage of that model, however,
is that the use of an error correction learning rule makes it
less biologically plausible than the model presented in this
article.

In order for the current model to operate correctly for dif-
ferent rotational velocities, it is necessary to have different
rotational velocity cells tuned to those different velocities.
This in turn requires that the model is trained for each dif-
ferent velocity. If a distributed representation of rotational
velocity is implemented (with each rotational velocity cell
tuned to a range of velocities and overlapping with its neigh-
bours) then the model should generalize well across differ-
ent velocities. We have shown in this article that the model
can, without the need to alter any model parameters, learn
to perform path integration when trained with different rota-
tional velocities, and it would be interesting to confirm that
the same model can be trained on different rotational veloc-
ities at the same time. Training with just a few velocities
should suffice to allow the model to generalize over a range of
velocities.

In the simulations of the two-layer network described
above, the neuronal time constants τCOMB implemented for
the combination cells were much larger than the neuronal
time constants τHD used for the head direction cells. In fur-
ther simulations, not described in this paper, we also varied

the values of the neuronal time constants for the head direc-
tion cells. In these simulations, we found that the accuracy
of path integration during testing was significantly degraded
by having larger values for the neuronal time constants for
the head direction cells. Thus, we observed an asymmetry
between the effects of the neuronal time constants for the
combination cells and the head direction cells. The path inte-
gration mechanism described in this paper was successful
only over the effective delays in neurotransmission from the
head direction cells to the combination cells due to large
τCOMB, and not over delays in neurotransmission from the
combination cells to the head direction cells due to large τHD.
The reason for this is as follows.

The combination cells operate as a competitive network,
and simply learn through the w3 synapses to represent the
head direction some time interval Δt in the past (when there
is a rotation signal also present). However, the learning rule
for the w2 synapses must operate as a pattern association
network, and associates the combination cell firing with the
current pattern of activity in the head direction cell network
imposed by the visual training signal. During testing, how-
ever, if the head direction cells have a large neuronal time
constant, then there is a significant delay in neurotransmis-
sion from the combination cells to the head direction cells.
This means that the combination cells are firing up the head
direction cells too late to keep accurate track of the true head
direction of the agent. The only way to ameliorate this inaccu-
racy is to implement a relatively small neuronal time constant
for the head direction cells. Alternatively, we hypothesise that
one way in which the path integration accuracy of the model
might be improved is by introducing explicit time delays
into the learning rules for the w2 and w3 synaptic weights,
which will match the delays in neurotransmission through
these synapses. This has already been investigated by Walters
et al. 2009). These authors have simulated path integration
in a similar network architecture with axonal transmission
delays incorporated into the equations governing both the
cell activations and the corresponding learning rules. These
authors have reported more accurate path integration during
testing.

We chose to vary the neuronal time constant τCOMB across
the experiments conducted, whilst keeping the neuronal time
constant τHD constant, to clarify the principle that an increase
in the value of the time constant τCOMB is approximately pro-
portional to an increase in the effective natural time delay Δt .
Thus, the same model can learn to perform path integration
when implemented with different time delays Δt . Moreover,
the analytical argument given in Sect. 2.1 should apply to any
individual three-cell circuit of head direction cell → com-
bination cell → head direction cell over a broad range of
possible neuronal time constants. Further, individual three-
cell circuits should be able to operate in parallel with other
three-cell circuits with different time constants, i.e. where
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τHD, τCOMB and τHD for the three cells are set to differ-
ent values. Therefore, we hypothesise that the model should
still self-organize and perform path integration at the cor-

rect speed if the neuronal time constants τHD and τCOMB for
individual head direction and combination cells were drawn
from a distribution of time constants, instead of being homo-
geneous for each cell type. We plan to test this hypothesis in
future simulations.

In the models simulated, we used values of 100 and 150 ms
for the neuronal time constant τCOMB, and a constant value
of 1 ms across all simulations for the neuronal time constant
τHD. A possible way in which the different time constants—
the key principle of operation for the current model—could
be implemented in the brain is through the use of AMPA
receptor-mediated synaptic transmission for faster time con-
stants (in the case of the current model, this would be the
head direction cells), and NMDA receptor-mediated synap-
tic transmission for slower time constants (the combination
cells in the current model). The time constant for AMPA
currents is approximately 2 ms, while the time constant for
NMDA currents is approximately 100–150 ms (Hestrin et al.
1990; Spruston et al. 1995; Brunel and Wang 2001). Thus,
the values we have implemented are within the range of bio-
logical plausibility.

One of the key components of the current model is the
presence of combination cells that learn to respond to combi-
nations of a particular head direction and a rotational velocity.
For the proposed architecture to be implemented in the brain,
there would, thus, need to be classes of neurons that respond
to combinations of spatial information and velocity. Previous
research has revealed that there are neurons that respond to a
combination of head direction and angular rotation velocity
(Taube et al. 1990b; Sharp 1996; Bassett and Taube 2005). It
has also been shown that hippocampal place cells can have
their activity modulated by running speed (McNaughton et al.
1983), and can even be tuned to particular velocities (Wiener
et al. 1989). The current theory provides an account of the
presence of such cells in the hippocampus. The origin of these
signals, and indeed a possible brain region for path integra-
tion of place to be implemented, is the dorsocaudal medial
entorhinal cortex which contains spatial grid cells that are
modulated by head direction and forward velocity (Hafting
et al. 2005; Sargolini et al. 2006).

Finally, we suggest that path integration implemented in
the way described in this article could be performed in other
brain systems, including the hippocampal place cell system
(O’Keefe and Dostrovsky 1971; McNaughton et al. 1983;
Muller et al. 1991) and the hippocampal spatial view system
of neurons that respond when a primate looks at a particular
location in space, which are updated by idiothetic eye move-
ments made in the dark (Robertson et al. 1998, 1999; Rolls
1999; Rolls and Xiang 2006).
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