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Abstract
Single-neuron recording studies have demonstrated the existence of neurons in
the hippocampus which appear to encode information about the place where a
rat is located, and about the place at which a macaque is looking. We describe
‘continuous attractor’ neural network models of place cells with Gaussian
spatial fields in which the recurrent collateral synaptic connections between
the neurons reflect the distance between two places. The networks maintain a
localized packet of neuronal activity that represents the place where the animal
is located. We show for two related models how the representation of the
two-dimensional space in the continuous attractor network of place cells could
self-organize by modifying the synaptic connections between the neurons, and
also how the place being represented can be updated by idiothetic (self-motion)
signals in a neural implementation of path integration.

1. Introduction

Place cells which respond when the animal is in a particular location are found in the rat
hippocampus (O’Keefe and Dostrovsky 1971, McNaughton et al 1983, O’Keefe 1984, Muller
et al 1991, Markus et al 1995) and spatial view cells that respond when the monkey is looking
towards a particular location in space are found in the macaque hippocampus (Rolls et al 1997,
Georges-François et al 1999, Robertson et al 1998). As the rat moves without visual input
in the dark, the place cells that are firing change based on idiothetic (self-motion) cues to
represent the new place. Similarly, spatial view cells still respond when the monkey moves his
eyes to look towards the same location in the dark (Robertson et al 1998). The spatial view
cells are tuned to the two spatial dimensions of the horizontal and vertical dimensions of the
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location in space of the spatial view, and can be updated by the horizontal and vertical positions
of the eyes in the dark (Robertson et al 1998). In this paper we describe networks that could
represent the current place where a rat is located, and how this network could be updated by
self-motion cues. The theory described shows how the necessary synaptic connections could
be set up by self-organizing learning. The theory also leads to models for how path integration
is performed by the brain.

Continuous attractor neural networks (CANNs) provide a strong candidate for
implementing the type of memory required. Two-dimensional (2D) continuous attractor
networks can maintain the firing of their neurons at any location in a continuous physical
2D space such as the place where an animal is located (Samsonovich and McNaughton 1997,
Taylor 1999) by using excitatory recurrent collateral connections between the neurons which
reflect the distance between the neurons in the state space of the agent. What is not clear is how
the necessary synaptic connections could be set up. Samsonovich and McNaughton (1997)
have described a model which uses essentially a look-up table to map from one place to another
place using head direction and whole body motion velocity signals, with no suggestion about
how the look-up table would be set up. In this paper we develop 2D models of how place cells
could be updated using idiothetic inputs, developing the 2D model from some of the ideas used
to develop 1D models of how a head direction cell network could self-organize (Stringer et al
2002). Key issues we model are how the continuous attractor network that represents places
could learn to represent the distances between different places; how the continuous attractor
network could be updated in the dark by idiothetic head direction and self-motion signals;
and how drift can be minimized in the 2D CANN. The models provide a foundation also for
understanding how the spatial view cell system could self-organize in primates.

2. Models of 2D continuous attractors

2.1. Continuous attractor models of place cells: the neural representation of the location of
a stationary agent

In this section we present a continuous attractor model of place cells that is able to support a
stable activity packet representing the static location of a stationary agent. The model shows
how the network could self-organize so that the synaptic connections between the neurons in
the continuous attractor network can be set to strengths that reflect the distance in the state
space between the places represented by the firing of the neurons. The model is composed of
a recurrent network of place cells, which receives inputs from the visual system. In particular,
there is a single type of modifiable synaptic connection: the recurrent connections within the
network of place cells. These connections are established during an initial learning phase
during which the agent moves throughout the containment area with visual input available.
During the learning phase we assume that the visual inputs dominate all other excitatory inputs
to the place cells. The ways in which visual cues might stimulate the place cells have been
demonstrated in neurophysiological studies (McNaughton et al 1983, O’Keefe 1984, Muller
et al 1991, Markus et al 1995), and modelled in theoretical investigations (O’Keefe and Burgess
1996, de Araujo et al 2001). The initial learning phase with visual inputs available is able
to set up the recurrent synaptic connections between the neurons in the continuous attractor
network such that, during the subsequent testing phase without visual cues, the network is able
to stably represent the static location of a stationary agent.

The behaviour of the continuous attractor network of place cells is governed during
the testing by the following ‘leaky-integrator’ dynamical equations. The following equation
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describes the dynamics of the activation hP
i of each place cell i :

τ
dhP

i (t)

dt
= −hP

i (t) +
φ0

CP

∑
j

(wRC
i j − wINH)rP

j (t) + I V
i , (1)

where rP
j is the firing rate of place cell j , wRC

i j is the excitatory (positive) synaptic weight from
place cell j to cell i , wINH and φ0 are constants, CP is the number of synaptic connections
received by each place cell from other place cells, I V

i represents a visual input to place cell i ,
and τ is the time constant of the system. When the agent is in the dark, then the term I V

i is
set to zero. The firing rate rP

i of cell i is determined from the activation hP
i and the sigmoid

function

rP
i (t) = 1

1 + exp[−2β(hP
i (t) − α)]

, (2)

where α and β are the sigmoid threshold and slope, respectively. The equations (1) and (2)
governing the internal dynamics of the 2D continuous attractor network of place cells are of an
identical form to the corresponding equations (1) and (2) in Stringer et al (2002), which govern
the behaviour of the 1D continuous attractor network of head direction cells. Thus, it is only
the external inputs to these networks that determine the dimension of the space represented by
the cell response properties. For the network of place cells to behave as a continuous attractor
network, the recurrent synaptic weight profile must be self-organized during the learning phase
in a similar manner to that described by Stringer et al (2002) for the head direction cell models.
The details of how this is done for the place cell models are given later.

The dynamical equations (1) and (2) are used to model the behaviour of the place
cells during testing. However, we assume that when visual cues are available, the visual
inputs I V

i stimulate the place cells to fire when the agent is at specific locations within the
environment. Therefore, in the simulations presented below, rather than implementing the
dynamical equations (1) and (2) during the learning phase, we set the firing rates of the place
cells according to typical Gaussian response profiles as observed in neurophysiological studies
(McNaughton et al 1983, O’Keefe 1984, Muller et al 1991, Markus et al 1995).

2.2. Self-organization of the recurrent synaptic connectivity in the continuous attractor
network of place cells to represent the topology of the environment

To model a biologically plausible way of setting up the synaptic weights between the neurons
in the continuous attractor network of place cells, we used an associative (Hebb-like) synaptic
modification rule. The rationale is that neurons close together in the state space (the space
being represented) would tend to be co-active during learning due to the large width of the
firing fields, so that after the associative synaptic modification the synaptic strength between
any two neurons represents the distance between the places represented in the state space of
the agent (cf Redish and Touretzky 1998 and Stringer et al 2002). During learning the spatial
fields are forced onto each neuron by for example visual inputs.

In the models proposed here the agent visits all parts of the environment. During the
learning phase the visual input drives the place cells such that they fire maximally at particular
locations. Hence, each place cell i is assigned a unique location (xi , yi ) in the environment
at which the cell is stimulated maximally by the visual cues. Then the firing rate rP

i of each
place cell i is set according to the following Gaussian response profile

rP
i = exp[−(sP

i )2/2(σ P)2], (3)
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where sP
i is the distance between the current location of the agent (x, y) and the location at

which cell i fires maximally (xi , yi), and σ P is the standard deviation. sP
i is given by

sP
i =

√
(xi − x)2 + (yi − y)2. (4)

An associative learning rule that may be used for updating the weights wRC
i j from place

cell j with firing rate rP
j to place cell i with firing rate rP

i is the Hebb rule (Zhang 1996, Redish
and Touretzky 1998)

δwRC
i j = krP

i rP
j (5)

where δwRC
i j is the change of synaptic weight and k is the learning rate constant. This rule

operates by associating together place cells that tend to be co-active, and this leads to cells
which respond to nearby locations developing stronger synaptic connections. A second rule
that may be used to update the recurrent weights wRC

i j is the trace rule

δwRC
i j = kr̄P

i rP
j (6)

where r̄P is the trace value of the firing rate of a place cell given by

r̄P(t + δt) = (1 − η)rP(t + δt) + ηr̄P(t) (7)

where η is a parameter set in the interval [0,1] which determines the contribution of the current
firing and the previous trace. See Stringer et al (2002) for more details about the significance
of η.

2.3. Stabilization of the activity packet within the continuous attractor network when the
agent is stationary

As described for the head direction cell models (Stringer et al 2002), the recurrent synaptic
weights within the continuous attractor network will be corrupted by a certain amount of noise
from the learning regime because of the irregularity it introduces, because for example cells
in the middle of the containment area receive more updates than those towards the edges of
the area. This in turn can lead to drift of the activity packet within the continuous attractor
network of place cells when there are no visual cues available even when the agent is not
moving. We propose that in real nervous systems this problem may be solved by enhancing
the firing of neurons that are already firing, as suggested by Stringer et al (2002). This might
be implemented through mechanisms for short-term synaptic enhancement (Koch 1999), or
through the effects of voltage-dependent ion channels in the brain such as NMDA receptors
(Lisman et al 1998). We simulate these effects by resetting the sigmoid threshold αi at each
timestep depending on the firing rate of place cell i at the previous timestep. That is, at each
timestep t + δt we set

αi =
{

αHIGH if rP
i (t) < γ

αLOW if rP
i (t) � γ

(8)

where γ is a firing rate threshold. This helps to reinforce the current position of the activity
packet within the continuous attractor network of place cells. The sigmoid slopes are set to a
constant value, β, for all cells i .

2.4. Continuous attractor models of place cells with idiothetic inputs: the neural
representation of the time-varying location of a moving agent

In the basic continuous attractor model of place cells presented above, we did not address the
issue of path integration, that is, the ability of the network to track and represent the time-
varying location of a moving agent in the absence of visual input. A possible solution to the
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problem of how the representation of place cells might be updated in the dark is provided by
two possible inputs:

(i) head direction cells whose activity in the dark may be updated by rotation cells, and
(ii) idiothetic cues carrying information about the forward velocity of the agent.

Such information could in principle be used to update the activity within a network of place
cells in the absence of visual input (Samsonovich and McNaughton 1997). In this section we
present a model of place cells, Model 2A, that is able to solve the problem of path integration
in the absence of visual cues through the incorporation of idiothetic inputs from head direction
cells and forward velocity cells, and which develops its synaptic connections through self-
organization. When an agent is moving in the dark, the idiothetic inputs are able to shift the
activity packet within the network to track the state of the agent. A closely related model,
Model 2B, is presented later in section 4. Models 2A and 2B employ mechanisms similar
to those employed in the 1D head direction cell Models 1A and 1B of Stringer et al (2002),
respectively.

The general neural network architecture is shown in figures 1 and 2. There is a recurrent
continuous attractor network of place cells which receives three kinds of input:

(i) visual inputs from the visual system used to force place cell firing during learning,
(ii) idiothetic inputs from a network of head direction cells, and

(iii) idiothetic inputs from a population of forward velocity cells.

For the place cell models presented below, we assume that the synaptic connectivity of the
network of head direction cells has already become self-organized, as described by Stringer
et al (2002), such that the head direction cells are already able to accurately represent the
head direction of the agent during the learning and testing phases. This is achieved in the
simulations presented below by fixing the firing rates of the head direction cells to reflect the
true head direction of the agent, i.e. according to the Gaussian response profile

rHD
i = exp[−(sHD

i )2/2(σ HD)2], (9)

where sHD
i is the difference between the actual head direction x (in degrees) of the agent and

the optimal head direction xi for head direction cell i , and σ HD is the standard deviation. sHD
i

is given by

sHD
i = MIN(|xi − x |, 360 − |xi − x |). (10)

This is the same Gaussian response profile that was applied to the head direction cells during
learning for the 1D continuous attractor models of head direction cells presented in Stringer et al
(2002). The firing rates of head direction cells in both rats (Taube et al 1996, Muller et al 1996)
and macaques (Robertson et al 1999) are known to be approximately Gaussian. However, an
additional collection of cells required for the place cell models, that was not needed for the
head direction cell models, is the population of forward velocity cells. These cells fire as the
agent moves forward, with a firing rate that increases monotonically with the forward velocity
of the agent. Whole body motion cells have been described in primates (O’Mara et al 1994).
The basic continuous attractor model of place cells described by equations (1) and (2) does
not include idiothetic inputs. However, when the agent is moving and the location is changing
with time, and there is no visual input available, then idiothetic inputs (from head direction
and forward velocity cells) are used to shift the activity packet within the network to track the
state of the agent. We now show how equation (1) may be extended to include idiothetic inputs
from the head direction and forward velocity cells.

The first place cell model, Model 2A, is similar to Model 1A of Stringer et al (2002)
in that it utilizes Sigma–Pi neurons. In this case, the dynamical equation (1) governing the
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Figure 1. General network architecture for 2D continuous attractor models of place cells. There is
a recurrent network of place cells which receives external inputs from three sources: (i) the visual
system, (ii) a population of head direction cells, and (iii) a population of forward velocity cells. The
place cells are distributed throughout a square containment area for the agent, where each place
cell fires maximally when the agent is at a particular location in the area denoted by the Cartesian
position coordinates x, y.

activations of the place cells is now extended to include inputs from the head direction and
forward velocity cells in the following way. For Model 2A, the activation hP

i of a place cell i
is governed by the equation

τ
dhP

i (t)

dt
= −hP

i (t) +
φ0

CP

∑
j

(wRC
i j − wINH)rP

j (t) + I V
i +

φ1

CP×HD×FV

∑
j,k,l

wFV
i jklr

P
j rHD

k rFV
l ,

(11)

where rP
j is the firing rate of place cell j , rHD

k is the firing rate of head direction cell k, rFV
l is the

firing rate of forward velocity cell l and wFV
i jkl is the corresponding overall effective connection

strength, φ0 and φ1 are constants, and CP×HD×FV is the number of idiothetic connections
received by each place cell from combinations of place cells, head direction cells and forward
velocity cells. The first term on the right of equation (11) is a decay term, the second describes
the effects of the recurrent connections in the continuous attractor, the third is the visual input
(if present) and the fourth represents the effects of the idiothetic connections implemented by
Sigma–Pi synapses. Thus, there are two types of synaptic connection to place cells:

(i) recurrent connections from place cells to other place cells within the continuous attractor
network, whose effective strength is governed by the terms wRC

i j , and

(ii) idiothetic connections dependent upon the interaction between an input from another place
cell, a head direction cell, and a forward velocity cell, whose effective strength is governed
by the terms wFV

i jkl .
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Figure 2. Neural network architecture for 2D continuous attractor models of place cells. There is
a recurrent network of place cells with firing rates rP, which receives external inputs from three
sources: (i) the visual system, (ii) a population of head direction cells with firing rates rHD, and
(iii) a population of forward velocity cells with firing rates rFV. The recurrent weights between
the place cells are denoted by wRC, and the idiothetic weights to the place cells from the forward
velocity cells and head direction cells are denoted by wFV.
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Figure 3. The line through containment area along which synaptic weights are plotted in figure 4.
(The containment area is as shown in figure 1, where x and y denote the Cartesian position
coordinates.) The weights plotted in figure 4 are for synapses with the following pre-synaptic
and post-synaptic neurons. All of the synapses have the same pre-synaptic neuron j , which is the
place cell set to fire maximally at the centre of the containment area during the learning phase. The
post-synaptic neurons i are those place cells set to fire maximally at various positions along the
dashed line through the centre of the containment area.

At each timestep, once the place cell activations hP
i have been updated, the place cell firing

rates rP
i are calculated according to the sigmoid transfer function (2). Therefore, the initial

learning phase involves the setting up of the synaptic weights wRC
i j and wFV

i jkl .
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2.5. Self-organization of synaptic connectivity from idiothetic inputs to the continuous
attractor network of place cells

In this section we describe how the idiothetic synaptic connections to the continuous attractor
network of place cells self-organize during the learning phase such that, when the visual cues
are removed, the idiothetic inputs are able to shift the activity packet within the network of
place cells such that the firing of the place cells is able to continue to represent the location of
the agent. A qualitative description occurs first, and then a formal quantitative specification
of the model. The proposal is that during learning of the synaptic weights, the place where
the animal is located is represented by the post-synaptic activation of a place cell, and this is
associated with inputs to that place cell from recently active place cells (detected by a temporal
trace in the presynaptic term), and with inputs from the currently firing idiothetic cells. In this
network, the idiothetic inputs come from head direction and forward velocity cells. The result
of this learning is that if idiothetic signals occur in the dark, the activity packet is moved
from the currently active place cells towards place cells that during learning had subsequently
become active in the presence of those particular idiothetic inputs.

During the learning phase the response properties of the place cells, head direction cells
and forward velocity cells are as follows. As the agent moves through the environment, the
visual cues drive individual place cells to fire maximally for particular locations, with the firing
rates varying according to Gaussian response profiles of the form (3). Similarly, as discussed
for the head direction cell models, we assume the visual cues also drive the head direction
cells to fire maximally for particular head directions, with Gaussian response profiles of the
form (9). Lastly, the forward velocity cells fire if the agent is moving forward, and with a firing
rate that increases monotonically with the forward velocity of the agent. In the simulations
performed later, the firing rates of the forward velocity cells during the learning and testing
phases are set to 1 to denote a constant forward velocity.

For Model 2A, the learning phase involves setting up the synaptic weights wFV
i jkl for all

ordered pairs of place cells i and j , and for all head direction cells k and forward velocity
cells l. At the start of the learning phase the synaptic weights wFV

i jkl may be set to zero or
random positive values. Then the learning phase continues with the agent moving through
the environment with the place cells, head direction cells and forward velocity cells firing
according to the response properties described above. During this, the synaptic weights wFV

i jkl
are updated at each timestep according to

δwFV
i jkl = k̃rP

i r̄P
j rHD

k rFV
l (12)

where δwFV
i jkl is the change of synaptic weight, rP

i is the instantaneous firing rate of place cell i ,
r̄P

j is the trace value of the firing rate of place cell j given by equation (7), rHD
k is the firing rate

of head direction cell k, rFV
l is the firing rate of forward velocity cell l, and k̃ is the learning

rate. If we consider two place cells i and j that are stimulated by the available visual cues to
fire maximally in nearby locations, then during the learning phase cell i may often fire a short
time after cell j depending on the direction of movement of the agent as it passes through
the location associated with place cell j . In this situation the effect of the above learning rule
would be to ensure that the size of the weights wFV

i jkl would be largest for head direction cells k
which fire maximally for head directions most closely aligned with the direction of the location
represented by cell i from the location represented by cell j . The effect of the above learning
rules for the synaptic weights wFV

i jkl should be to generate a synaptic connectivity such that the
co-firing of (i) a place cell j , (ii) a head direction cell k, and (iii) a forward velocity cell l,
should stimulate place cell i where place cell i represents a location that is a small translation
in the appropriate direction from the location represented by place cell j . Thus, the co-firing
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Table 1. Parameter values for Model 2A.

σHD 20◦
σ P 0.05
Learning rate k 0.001

Learning rate k̃ 0.001
Trace parameter η 0.9
τ 1.0
φ0 50 000
φ1 1000 000
wINH 0.05
γ 0.5
αHIGH 0.0
αLOW −20
β 0.1

of a set of place cells representing a particular location, a particular cluster of head direction
cells, and the forward velocity cells, should stimulate the firing of further place cells such that
the pattern of activity within the place cell network evolves continuously to faithfully reflect
and track the changing location of the agent.

3. Simulation results

The experimental set-up is as illustrated in figures 1 and 2. The neural network architecture of
the simulated agent consists of a continuous attractor network of place cells, which receives
inputs from the visual system (during the learning phase), a population of head direction
cells, and a population of forward velocity cells (in fact only a single forward velocity cell
is simulated). During the simulation, the agent moves around in a square 1 unit × 1 unit
containment area. This area is covered by a square 50 × 50 grid of nodes. At each node
i there is a single place cell that is set to fire maximally at that location (xi , yi) during the
learning phase with a Gaussian response profile given by equation (3). The standard deviation
σ P used for the place cell Gaussian response profiles (3) is 0.05 units. This gives a total of
2500 place cells within the place cell continuous attractor network of the agent. In addition,
due to the large computational cost of these simulations, we include only eight head direction
cells. The head direction cells k = 1, . . . , 8 are set to fire maximally for the eight principal
compass directions in a clockwise order as follows: k = 1 fires maximally for head direction
0◦ (North); k = 2 fires maximally for head direction 45◦ (North–East); and so on up to k = 8
which fires maximally for head direction 315◦ (North–West). The head direction cells are
set to fire maximally for these directions according to the Gaussian response profile (9). The
standard deviation σ HD used for the head direction cell Gaussian response profiles (9) is 20◦.
These head direction cell response profiles are implemented for both the initial learning phase
in the light and the subsequent testing phase in the dark. Finally, we include only 1 forward
velocity cell, which is the minimal number required for the model to work. For the simulations
discussed below we present results only for the Sigma–Pi Model 2A; further simulations (not
shown here) have confirmed that Model 2B gives very similar results. The model parameters
used in the simulations of Model 2A are given in table 1.

The numerical simulation begins with the initial learning phase in which the recurrent and
idiothetic synaptic weights, which are initialized to zero at the beginning of the simulation,
are self-organized. During this phase, visual cues are available to the agent to help guide
the self-organization of the weights. However, as described earlier, we do not model the
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visual cues explicitly and the simulations are simplified in the following manner. During the
learning phase, rather than implementing the dynamical equations (2) and (11) for Model 2A
explicitly, we set the firing rates of the place cells to typical Gaussian response profiles in
accordance with the observed behaviours of such cells in physiological studies, as described
above. The learning phase then proceeds as follows. Firstly, the agent is simulated moving
along approximately 50 equi-distant parallel paths in the northwards direction. These paths
fully cover the containment area. That is, each of the parallel paths begins at the boundary
y = 0 and terminates at the boundary y = 1. In addition, the separate paths are spread evenly
through the containment area, with the first path aligned with the boundary x = 0 and the
last path aligned with the boundary x = 1. The agent moves along each path with a constant
velocity for which the firing rate rFV of the forward velocity cell is set to 1. (Although regular
training was used, this is not necessary for such networks to learn usefully, as shown by results
with 1D continuous attractor networks, and in that the trace rule can help when the training
conditions are irregular (Stringer et al 2002).) Each path is discretized into approximately 50
steps (locations) at which the synaptic weights are updated. At each step the following three
calculations are performed:

(i) the current position of the agent is calculated from its location, head direction and speed
at the previous timestep;

(ii) the firing rates of the place cells, head directions cells and the forward velocity cell are
calculated as described above; and

(iii) the recurrent and idiothetic synaptic weights are updated according to equations (6)
and (12).

Further model parameters are as follows. The learning rates, k and k̃, for both the recurrent
and idiothetic weights are set to 0.001. Also, the trace learning parameter η used in the trace
update equation (7) is set to 0.9. This value of η is used in both learning rules (6) and (12) for
both the recurrent and idiothetic synaptic weights. A similar procedure is then repeated for
each of the seven other principal directions in a clockwise order. This completes the learning
phase.

Examples of the final recurrent and idiothetic synaptic weights are shown in figure 4. The
plot on the left compares the recurrent and idiothetic synaptic weight profiles as follows. The
first graph shows the recurrent weights wRC

i j where the pre-synaptic neuron j is the place cell
set to fire maximally at the centre of the containment area during the learning phase, and the
post-synaptic neurons i are those place cells set to fire maximally at various positions along
the dashed line through the centre of the containment area shown in figure 3. It can be seen that
the learning has resulted in nearby cells in location space, which need not be at all close to each
other in the brain, developing stronger recurrent synaptic connections than cells that are more
distant in location space. Furthermore, it can be seen that the graph of the recurrent weights
is symmetric about the central node and is approximately a Gaussian function of the distance
between the cells in location space. This is important for stably supporting the activity packet
at a particular location when the agent is stationary. The second graph shows the idiothetic
weights wFV

i jkl where the pre- and post-synaptic neurons j and i are as above, and the head
direction cell k is 1 (North). Here it can be seen that the idiothetic weight profile for k = 1
(North) is highly asymmetric about the central node, and that the peak lies to the north of the
central node. This is essential to enable the idiothetic inputs to shift the activity packet within
the network of place cells in the correct direction when the agent is moving northwards. The
plot on the right compares three different idiothetic synaptic weight profiles as follows. The
first, second and third graphs show the idiothetic weights wFV

i jkl where the pre- and post-synaptic
neurons j and i are as above, and the head direction cells k are respectively k = 1 (North),
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Figure 4. Synaptic weight profiles plotted along the dashed curve through the centre of the
containment area shown in figure 3. Left: the plot on the left compares the recurrent and idiothetic
synaptic weight profiles as follows. The first graph shows the recurrent weights wRC

i j where the
pre-synaptic neuron j is the place cell set to fire maximally at the centre of the containment area
during the learning phase, and the post-synaptic neurons i are those place cells set to fire maximally
at various positions along the dashed curve through the centre of the containment area shown in
figure 3. The second graph shows the idiothetic weights wFV

i jkl where the pre- and post-synaptic
place cells j and i are as above, and the head direction cell k is 1 (North). Right: the plot on the
right compares three different idiothetic synaptic weight profiles as follows. The first, second and
third graphs show the idiothetic weights wFV

i jkl where the pre- and post-synaptic place cells j and i
are as above, and the head direction cells k are respectively k = 1 (North), k = 3 (East) and k = 5
(South).

k = 3 (East) and k = 5 (South). Here it can be seen that the idiothetic weight profiles for
k = 1 (North) and k = 5 (South) are both asymmetric about the central node, but that while
for k = 1 the peak lies to the north of the central node, for k = 5 the peak lies to the south of
the central node. In addition, for k = 3 (East), the idiothetic weight profile is in fact symmetric
about the central node, with a lower peak value than for either k = 1 or 5. Hence, the effect of
the learning rule for the idiothetic weights has been to ensure that sizes of the weights wFV

i jkl are
largest for head direction cells k which fire maximally for head directions most closely aligned
with the direction of the location represented by cell i from the location represented by cell j .

After the learning phase is completed, the simulation continues with the testing phase in
which visual cues are no longer available, and the continuous attractor network of place cells
must track the location of the agent solely through the idiothetic inputs. For the testing phase,
the full dynamical equations (2) and (11) for Model 2A are implemented. At each timestep
the following four calculations are performed:

(i) the activations hP
i of the place cells are updated;

(ii) the firing rates rP
i of the place cells are updated according to the sigmoid function (2);

(iii) the firing rates rHD
k of the head direction cells are set according to their Gaussian response

profiles (9), as described above;
(iv) the firing rate rFV

l of the forward velocity cell is set to 1 if the agent is moving, and set to
0 if the agent is stationary.

The testing phase then proceeds as follows. Firstly, the activations and firing rates of the place
cells are initialized to zero. Then the agent is placed in the containment area for 500 timesteps
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at the location x = 0.2, y = 0.2, with visual input available. While the agent rests at this
position the visual input terms I V

i for each place cell i in equations (11) is set to a Gaussian
response profile identical (except for a constant scaling) to that used for place cells during
the learning phase given by equation (3). Next, the visual input is removed by setting all of
the terms I V

i to zero, and then the agent is allowed to rest in the same location for another
500 timesteps. This process leads to a stable packet of activity within the continuous attractor
network of place cells. The agent was then moved along a three stage multi-directional track
through the containment area as follows:

(i) during the first stage the agent moves eastwards for 150 timesteps;
(ii) during the second stage the agent moves northwards for 150 timesteps; and

(iii) during the third stage the agent moves North–Eastwards for 150 timesteps.

Between each successive pair of stages, the agent was kept stationary for 100 timesteps to
demonstrate that the place cell network representation can be stably maintained for different
static locations of the agent. During these periods of rest and movement, the firing rates of
the place cells, head direction cells and the forward velocity cell were calculated as described
above. Further parameter values are as follows. The parameter τ is set to 1.0, φ0 is set to
50 000, φ1 is set to 1000 000, and wINH is set to approximately 0.05. The sigmoid transfer
function parameters are as follows: αHIGH is 0.0, αLOW is −20.0, β is 0.1, and γ is 0.5. Finally,
the timestep was approximately 0.2.

Figure 5 shows the firing rate profiles within the continuous attractor network of place
cells that occurred during the testing phase. In the top left is shown a stable firing rate profile
within the continuous attractor network of place cells just before the agent starts to move on
the first stage of its track. That is, the plot shows the network activity after the initial visual
input has stimulated activity within the network for 500 timesteps and the network has then
been allowed to settle for a further 500 timesteps without visual input available. The activity
packet is stable, allowing the place cell network to reliably maintain a representation of the
static location of the stationary agent. However, the stability of the activity packet relies on
the reinforcement of the firing of those neurons that are already highly active by setting αLOW

to be, for example, −20.0. If the sigmoid parameter αLOW is set to 0 (so that there is no
reinforcement of the firing of those neurons that are already highly active), then the activity
packet within the continuous attractor network is not stably maintained. In this case, the
activity packet drifts quickly towards the centre of the containment area in location space.
This is due to a particular kind of systematic inhomogeneity that accumulates in the recurrent
weights of the continuous attractor network during the learning phase because, with the current
learning regime, the agent will spend a greater amount of time near to the central nodes of
the containment area than nodes at the boundaries of the containment area. This means that
place cells that fire maximally when the agent is near the centre of the containment area will
receive more recurrent synaptic updates during learning than neurons that fire maximally near
to boundaries. Hence the neurons that represent the centre of the containment area will tend to
develop stronger recurrent weights, and will therefore tend to attract the activity packet away
from the boundaries of the containment area. However, this drift of the activity packet can be
prevented by enhancing the firing of those neurons that already have a relatively high firing
rate by setting αLOW to be, for example, −20.0.

In the top right of figure 5 the maximum firing rates that occurred during the testing phase
as the agent moved along a fixed track within the containment area are shown. The maximum
firing rate is calculated over all timesteps for each x, y location. This plot clearly shows the
path taken by the agent. It can be seen that the activity packet can accurately track the path
of the agent in the containment area, even as the agent changes direction. In the simulation
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Figure 5. Firing rate profiles within the continuous attractor network of place cells. Top left:
stable firing rate profile within the network of place cells before the agent starts to move. Top right:
maximum firing rates that occurred during the testing phase as the agent moved along a fixed track
within the containment area. The maximum firing rate is calculated over all timesteps for each x, y
location. This plot clearly shows the path taken by the agent. Bottom left: maximum firing rates
that occurred during the testing phase as the agent moved along a fixed track, but with the maximum
firing rate now calculated over all y nodes for each x location and for each timestep. Bottom right:
maximum firing rates that occurred during the testing phase as the agent moved along a fixed track,
but with the maximum firing rate now calculated over all x nodes for each y location and for each
timestep.

presented here, the agent was kept stationary for 100 timesteps between successive stages of
the track. However, in further simulations (not shown here) it has been found that this resting
period for the agent between different directions is not necessary for the place cell network
to accurately track the location of the agent. The bottom left of figure 5 shows the maximum
firing rates that occurred during the testing phase as the agent moved along the same fixed
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track, but with the maximum firing rate now calculated over all y nodes for each x location
and for each timestep. In the bottom right of figure 5 the maximum firing rates are shown
that occurred during the testing phase as the agent moved along the fixed track, but with the
maximum firing rate now calculated over all x nodes for each y location and for each timestep.
The bottom two plots of figure 5 reveal more detail about the movement of the activity packet
within the continuous attractor network through time. Firstly, it can be seen that for each
interval of 100 timesteps between successive stages of movement of the agent along its track,
the activity packet is able to stably represent the static location of the stationary agent. This
may be seen, for example, from timesteps 150 to 250 where the activity packet remains static
in both of the bottom two plots of figure 5. Another detail revealed by the bottom two plots
of figure 5 is the elongation of the activity packet in the direction of motion of the agent when
the agent is moving. For example, for timesteps 1–150 when the agent is moving eastwards in
the x direction, the projection of the activity packet onto the x-axis at any particular timestep
(bottom left) is broader than the projection of the activity packet onto the y-axis (bottom
right). A further interesting observation is that during the subsequent resting stage (timesteps
150–250), the resting activity packet appears to keep the shape from the preceding movement
stage. That is, for timesteps 150–250 when the agent is stationary, the projection of the activity
packet onto the x-axis at any particular timestep (bottom left) is still broader than the projection
of the activity packet onto the y-axis (bottom right). This is due to the short term memory
effect implemented by the nonlinearity in the activation function of the neurons that could
reflect the operation of NMDA receptors effected by equation (8). This phenomenon can be
seen again for timesteps 400–500 where the agent is again stationary, but the projection of the
activity packet onto the x-axis at any particular timestep (bottom left) is now less broad than
the projection of the activity packet onto the y-axis (bottom right). This reflects the fact that
in the preceding timesteps 250–400 the agent was moving northwards in the y-direction.

4. Model 2B

The second place cell model, Model 2B, is similar to Model 1B of Stringer et al (2002) in that
it incorporates synapse modulation effects into the calculation of the neuronal activations in
the recurrent network. In this case, the dynamical equation (1) governing the activations of
the place cells is now extended to include inputs from the head direction and forward velocity
cells in the following way. For Model 2B, the activation hP

i of a place cell i is governed by the
equation

τ
dhP

i (t)

dt
= −hP

i (t) +
φ0

CP

∑
j

(w̃RC
i j − wINH)rP

j (t) + I V
i , (13)

where rP
j is the firing rate of place cell j , and where w̃RC

i j is the modulated strength of the
synapse from place cell j to place cell i . The modulated synaptic weight w̃RC

i j is given by

w̃RC
i j = wRC

i j

(
1 +

φ2

CHD×FV

∑
kl

λFV
i jklr

HD
k rFV

l

)
(14)

where wRC
i j is the unmodulated synaptic strength set up during the learning phase, rHD

k is the
firing rate of head direction cell k, rFV

l is the firing rate of forward velocity cell l, and λFV
i jkl is the

corresponding modulation factor. Thus, there are two types of synaptic connection between
place cells:

(i) recurrent connections from place cells to other place cells within the continuous attractor
network, whose strength is governed by the terms w̃RC

i j , and
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(ii) idiothetic connections from the head direction and forward velocity cells to the place cell
network, which now have a modulating effect on the synapses between the place cells,
and whose strength is governed by the modulation factors λFV

i jkl .

As for Model 2A, once the place cell activations hP
i have been updated at the current timestep,

the place cell firing rates rP
i are calculated according to the sigmoid transfer function (2).

The initial learning phase involves the setting up of the synaptic weights wRC
i j and the

modulation factors λFV
i jkl . The synaptic weights wRC

i j and the modulation factors λFV
i jkl are set

up during an initial learning phase similar to that described for Model 2A above, where the
recurrent weights are updated according to equation (5), and the modulation factors λFV

i jkl are
updated at each timestep according to

δλFV
i jkl = k̃rP

i r̄P
j rHD

k rFV
l (15)

where rP
i is the instantaneous firing rate of place cell i , r̄P

j is the trace value of the firing rate
of place cell j given by equation (7), rHD

k is the firing rate of head direction cell k, rFV
l is the

firing rate of forward velocity cell l, and k̃ is the learning rate.

5. Discussion

In this paper we have developed 2D continuous attractor models of place cells that can learn the
topology of a space. We have also shown how they are able to self-organize during an initial
learning phase with visual cues available such that, when the agent is subsequently placed in
complete darkness, the continuous attractor network is able to continue to track and faithfully
represent the state of the agent using only idiothetic cues. The network thus performs path
integration. The motivation for developing such self-organizing continuous attractor models
stems from the problems of biological implausibility associated with current models which
tend to rely on pre-set or hard-wired synaptic connectivities for the idiothetic inputs, which
are needed to shift the activity packet in the absence of visual input. In this paper we have
presented models that operate with biologically plausible learning rules and an appropriate
architecture to solve the following two problems.

The first problem is how the recurrent synaptic weights within the continuous attractor
should be self-organized in order to represent the topology of the 2D environment (or more
generally the 2D state space of the agent). In the models presented here, a continuous
attractor network is used for the representation, and it is trained with associative synaptic
modification rules such as those shown in equations (5) and (6) to learn the distances between
the places represented by the firing of neurons based on the coactivity of neurons with tapering
(e.g. Gaussian) place fields produced by the visual input.

The self-organizing continuous attractor networks described in this paper are in some
senses an interesting converse of Kohonen self-organizing maps (Kohonen 1989, 1995, Rolls
and Treves 1998). In Kohonen maps, a map-like topology is specified by the connections being
strong between nearby neurons, and weaker between distant neurons. This is frequently con-
ceptualized as being implemented by short-range fixed excitatory connections between nearby
neurons, and longer range inhibition (implemented for example by inhibitory interneurons).
The Kohonen map operates in effect as a competitive network but with local interactions of
the type just described (Rolls and Treves 1998). The result is that neurons which respond to
similar vectors or features in the input space become close together in the map-like topology.
In contrast, in the self-organizing continuous attractor networks described here, there is no
map-like topology between the spatial relations of the neurons in the continuous attractor and
the space being represented. Instead, the representations in the continuous attractor of different
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locations of the state space are randomly mapped, with the closeness in the state space being
represented by the strength of the synapses between the different neurons in the continuous at-
tractor, and not by the closeness of the neurons in the network. A major difference between the
two networks is that a Kohonen map has a dimensionality that is preset effectively by whether
the neighbour relations are described between neurons in a 1D array (a line), a 2D array (a
2D space), etc. Whatever the dimensionality of the inputs that are to be learned, they will be
represented in such (typically low order) spaces. In contrast, in the self-organizing continuous
attractor networks described here, the continuous attractor takes on the dimensionality of the
inputs. In this way, there is no presetting of the dimensionality of the solutions that can be rep-
resented, and the system will self-organize to represent as high a dimensionality as is present
in the input space (subject to the number of connections onto each neuron in the continuous
attractor from other neurons in the continuous attractor). Self-organizing continuous attractor
networks thus provide a much more flexible system for representing state spaces, including
for example capturing the geometry and the complex spatial arrangements of an irregular en-
vironment. Indeed, the recurrent connections in the continuous attractor network described
here could learn the topological relations even in highly irregular and warped spaces, such
as spaces partially intersected by barriers. Self-organizing continuous attractor networks thus
provide a flexible system for representing state spaces, including for example in the case of
place cells capturing the geometry and the complex spatial arrangements of a cluttered natural
environment. We also note that, as in the continuous attractor networks described here, nearby
cells in the hippocampus do not represent nearby places, and indeed there is no clear topology
in the way that place cells are arranged in the rat hippocampus (O’Keefe and Conway 1978,
Muller and Kubie 1987, Markus et al 1994). Indeed, with respect to place cells in the rat
hippocampus, it is not feasible that the rat could be born with an innate synaptic encoding
of the different environments it will encounter during its lifetime. Thus, a recurrent synaptic
connectivity that reflects the relationship between neuronal responses and the state of an agent
may need to arise naturally through learning and self-organization, for example by modifying
the strengths of connections based on the similarity in the responses of the neurons.

The second problem is how idiothetic synaptic connections could be self-organized in
such a way that self-motion of the agent moves the activity packet in the continuous attractor
to represent the correct location in state space. Without a suggestion for how this is achieved,
a hard-wired model of this process must effectively rely on a form of ‘look-up’ table to be
able to move the activity packet in the correct way (Samsonovich and McNaughton 1997).
The apparent absence of any spatial regularity in the cell response properties of the continuous
attractor networks makes such innate hard-wiring unlikely, as discussed by Stringer et al
(2002). In this paper we present two models that can self-organize to solve the problem of the
idiothetic update of the representation of the current position of the agent in a 2D state space.

The neural architecture implied by Model 2A utilizes Sigma–Pi synapses with four firing
rate terms, as seen in equations (11) and (12). If this seems complicated, one can note that
if there was a population of cells that represented combinations of linear motion and head
direction (e.g. moving North fast), then two of the terms, rFV

l and rHD
k would collapse together,

leaving only three firing rate terms for modified versions of equations (11) and (12). An
equivalent reduction can be made for Model 2B. Biophysical mechanisms that might be able
to implement such three-term (or even possibly four-term) synapses have been discussed by
Stringer et al (2002), and include, for three-term synapses, presynaptic contacts.

We note that it is a property of the models described in this paper as well as in the companion
paper on 1D models of head direction cells (Stringer et al 2002) that they move the current
representation at velocities that depend on the magnitude of the driving idiothetic input (which
reflects the linear velocity of the agent for the 2D models, and the angular velocity of the agent
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for head direction cells). This occurs even when the network is tested with magnitudes of the
idiothetic inputs with which it has not been trained. For the models of head direction cells
presented, it was found that the relation between the idiothetic driving input and the velocity of
the head direction representation in the continuous attractor network is approximately linear if
NMDA receptor non-linearity is not used to stabilize the network (see figure 7 of Stringer et al
(2002)), and shows a threshold non-linearity if NMDA receptor like non-linearity is included
in the neuronal activation function (see figure 10 of Stringer et al (2002)).

The models described here have been applied to place cells in rats. However, the models
are generic, and can be applied to other problems. For example, the spatial view cells of
primates are tuned to the two spatial dimensions of the horizontal and vertical dimensions of
the location in space of the spatial view, and can be updated by the horizontal and vertical
positions of the eyes in the dark (Robertson et al 1998). The 2D models described here
provide a foundation for understanding how this spatial view system could self-organize to
allow idiothetic update by eye position. We note that very few idiothetic Sigma–Pi synapses
would suffice to implement the mechanism for path integration described in this paper. The
reason for this is that the introduction of any asymmetry into the continuous attractor functional
connectivity will suffice to move the activity packet. The prediction is thus made that the
connectivity of the idiothetic inputs could be quite sparse in brain systems that perform path
integration.

In this paper we show how path integration could be achieved in a system that self-organizes
by associative learning. The path integration is performed in the sense that the representation
in a continuous attractor network of the current location of the agent in a 2D environment can
be continuously updated based on idiothetic (self-motion) cues, in the absence of visual inputs.
The idiothetic cues used to update the place representation are from head direction cell firing
and from linear whole body velocity cues. We note that whole body motion cells are present in
the primate hippocampus (O’Mara et al 1994) and that head direction cells are present in the
primate presubiculum (Robertson et al 1999). In the companion paper (Stringer et al 2002) we
showed how a continuous attractor network representing head direction could self-organize to
allow idiothetic update by head rotation signals. Together these two proposals provide much
of what is needed for an agent to perform path integration in a 2D environment. In particular,
an agent that implemented the proposals described in these two papers could continuously
update its head direction and position in a 2D space in the dark using head rotation and linear
velocity signals.
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