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Abstract

‘Continuous attractor’ neural networks can maintain a localised packet of neuronal activity representing the current state of an agent in a

continuous space without external sensory input. In applications such as the representation of head direction or location in the environment,

only one packet of activity is needed. For some spatial computations a number of different locations, each with its own features, must be held

in memory. We extend previous approaches to continuous attractor networks (in which one packet of activity is maintained active) by

showing that a single continuous attractor network can maintain multiple packets of activity simultaneously, if each packet is in a different

state space or map. We also show how such a network could by learning self-organise to enable the packets in each space to be moved

continuously in that space by idiothetic (motion) inputs. We show how such multi-packet continuous attractor networks could be used to

maintain different types of feature (such as form vs colour) simultaneously active in the correct location in a spatial representation. We also

show how high-order synapses can improve the performance of these networks, and how the location of a packet could be read by motor

networks. The multiple packet continuous attractor networks described here may be used for spatial representations in brain areas such as the

parietal cortex and hippocampus.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

‘Continuous attractor’ neural networks are neural net-

works which are able to maintain a localised packet of

neuronal activity representing the current state of an agent in

a continuous space, for example head direction or location in

the environment, without external sensory input (Amari,

1977; Taylor, 1999). They are useful in helping to understand

the representation of head direction (Redish, Elga, &

Touretzky, 1996; Skaggs, Knierim, Kudrimoti, & McNaugh-

ton, 1995; Stringer, Trappenberg, Rolls, & de Araujo, 2002b;

Zhang, 1996), place (Redish & Touretzky, 1998; Samsono-

vich & McNaughton, 1997; Stringer, Rolls, Trappenberg, &

de Araujo, 2002a), and in the primate hippocampus, spatial

view (Stringer, Rolls, & Trappenberg, 2003a). Continuous

attractor networks use excitatory recurrent collateral

connections between the neurons to reflect the distance

between the neurons in the state space (e.g. head direction

space) of the agent. Global inhibition is used to keep the

number of neurons in a bubble of activity relatively constant.

In the applications of continuous attractor networks dis-

cussed above, where a network is required to represent only a

single state of the agent (i.e. head direction, place or spatial

view), it is appropriate for the continuous attractor networks

to support only one activity packet at a time.

In this paper we propose that continuous attractor

networks may be used in the brain in an alternative way, in

which they support multiple activity packets at the same

time. The stability of multiple activity packets in a single

network has been discussed previously by, for example,

Amari (1977) and Ermentrout and Cowan (1979). Ermen-

trout and Cowan (1979) analysed neural activity in a two-

dimensional (2D) network, demonstrating the existence of a

variety of doubly periodic patterns as solutions to the field

equations for the net activity. Amari (1977) considered a

continuous attractor neural network in which the neurons are

mapped onto a one-dimensional (1D) space x;where there are
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short range excitatory connections and longer range

inhibitory connections between the neurons. If two activity

packets are stimulated at separate locations in the same

continuous attractor network, then the two packets may

interact with each other. The neurons in the second packet

will receive an input sðxÞ from the first packet. In this case the

second activity packet moves searching for the maximum of

sðxÞ:The effect of the second packet on the first one is similar.

Depending on the precise shape of the synaptic weight profile

within the network, the effect of this interaction may be to

draw the two packets together or repel them. If the two

activity packets are far enough apart, then the gradient of the

function sðxÞ may be close to zero, and the two packets will

not affect each other (Amari, 1977). However, in this paper

we investigate a more general situation in which a single

continuous attractor network can maintain multiple packets

of activity simultaneously, where individual packets may

exist in different feature spaces. We show how such multi-

packet continuous attractor networks could be used to

maintain representations of a number of different classes of

feature (such as particular line shapes and colour) simul-

taneously active in the correct location in their respective

feature spaces, where such feature spaces might correspond

to the egocentric physical space in which an agent is situated.

The above proposal is somewhat analogous to that

described by Recce and Harris (1996). These authors

developed a model that learned an egocentric map of the

spatial features in a robot’s environment. During navigation

through the environment, the representations of the spatial

features were used in conjunction with each other. That is, in

a sense, the representations of the different spatial features

were co-active in working memory. This provided a robust

basis for navigation through the environment. However, the

model developed by Recce and Harris (1996) was not a

biologically plausible neural network model. In the work

presented here, our aim is to develop biologically plausible

neural network models that are capable of the simultaneous

representation of many spatial features in the environment.

The underlying theoretical framework we use to achieve this

is a continuous attractor neural network which has been

trained to encode multiple charts. Previous investigations

with multiple activity packets in a multichart neural network

have been described by Samsonovich (1998), who showed

that multiple ‘discordant’ activity packets may co-exist and

move independently of one another in such a network.

Samsonovich (1998) also reported that the network could

support activity packets simultaneously active on different

charts. However, the simulation results shown in the paper

were restricted to the case of multiple activity packets co-

active on the same chart.

To elaborate, each neuron in the network might represent

a particular class of feature (such as a straight edge, or red

colour) in a particular egocentric location in the environment.

Thus, each class of feature is represented by a different set of

neurons, where each of the neurons responds to the presence

of a feature at a particular location. The different sets of

neurons that encode the different features may have many

cells in common and so significantly overlap with each other,

or may not have cells in common in which case each neuron

will respond to no more than one feature. For each type of

feature, the ordering in the network of the neurons that

represent the location of the feature in space is random.

Therefore, each separate feature space has a unique ordering

of neurons which we refer to as a ‘map’. However, all the

feature maps are encoded in the same network. The presence

of a particular feature at a particular location in the

environment is represented by an activity packet centred at

the appropriate location in the map which is associated with

that particular feature. The network we describe can maintain

representations of a particular combination of, e.g. colour

features in given relative egocentric spatial positions in the

appropriate maps, and simultaneously maintain active

another combination of, e.g. shape features in given relative

spatial positions. Considered in another way, the network can

model several different state spaces, with no topological

relation between the positions of the neurons in the network

and the location that they encode in each state space. The

topology within each state space is specified by the

connection strengths between the neurons, with each synapse

representing the distance that two neurons are apart from

each other in the state space. In the example above, one state

space might represent the egocentric location of a straight

edge in the physical environment, and another state space

might represent the egocentric location of the colour red in

the physical environment. In this example, all the state spaces

are mapped onto the same physical environment, but this

need not be the case.

Moreover, in this paper we show how the absolute spatial

locations of the packets can be moved together (or

independently) within the separate feature spaces using, for

example, an idiothetic (self-motion) signal. Furthermore, the

locations of the activity packets in the separate feature maps

can be kept in relative alignment during movement of the

agent with respect to, for example, an object which consists

of a combination of features. We thus note that this

architecture has implications for understanding feature

binding. Since the network is able to maintain and update

the representations of many different (e.g. shape) features

simultaneously (which implies binding) using an idiothetic

signal, this means that the network is able to maintain a full

three-dimensional (3D) representation of the spatial structure

of an agent’s environment, even as the agent moves within its

environment in the absence of visual input.

2. Model 1: network model with low order synapses

In this section we present Model 1, which is a continuous

attractor network that is able to stably maintain simul-

taneously active the representations of multiple features

each one of which is in its own location. The model allows

the relative spatial location of each feature to be fixed
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relative to each other, in which case the agent can be thought

of as moving through a fixed environment. The model also

allows for the case where each feature can move to different

locations independently. What characterises a packet of

neuronal activity is a set of active neurons which together

represent a feature in a location. A set of simultaneously

firing activity packets might be initiated by a set of visual

cues in the environment. In this paper we go on to show how

these representations may be updated by idiothetic (self-

motion, e.g. velocity) signals as the agent moves within its

environment in the absence of the visual cues. Model 1 is

able to display these properties using relatively low order

synapses, which are self-organised through local, biologi-

cally plausible learning rules. The architecture of the

network described is that shown in Fig. 2. The weights

learned in the network are different from those that we have

considered previously (Stringer et al., 2002b) in that more

than one topological space is trained into the synapses of the

network, as will be shown in Figs. 6 and 7.

2.1. The neural representation of the locations of multiple

features with respect to a stationary agent

In this section we demonstrate how Model 1 is able to

stably maintain the representations of multiple features after

the visual input has been removed, with the agent remaining

stationary within its environment. The reduced version of

Model 1 used to evaluate this contains a network of feature

cells, which receive inputs from initiating signals such as

visual cues in the environment and are connected by the

recurrent synaptic weights wRC: In the light, individual

feature cells i are stimulated by visual input IV
i from

particular features m in the environment, with each feature

in a particular position with respect to the agent. Then, when

the visual input is removed, the continued firing of the

feature cells continues to reflect the position of the features

in the environment with respect to the agent. The spaces

represented in the attractor are continuous in that a

combination of neurons represents a feature, and the

combination can move continuously through the space

bringing into activity other neurons responding to the same

feature but in different locations in the space. The

connectivity that provides for this continuity in the spaces

is implemented by the synaptic weights of the connections

between the neurons in the continuous attractor.

2.1.1. The dynamical equations governing the network

of feature cells

The behaviour of the feature cells is governed during

testing by the following ‘leaky-integrator’ dynamical

equations. The activation hF
i of a feature cell i is governed

by the equation

t
dhF

i ðtÞ

dt
¼ 2hF

i ðtÞ þ
f0

CF

X
j

ðwRC
ij 2 wINHÞrF

j ðtÞ þ IV
i ; ð1Þ

where we have the following terms. The first term, 2hF
i ðtÞ;

on the right-hand side of Eq. (1) is a decay term. The second

term on the right-hand side of Eq. (1) describes the effects of

the recurrent connections in the continuous attractor, where

rF
j is the firing rate of feature cell j; wRC

ij is the recurrent

excitatory (positive) synaptic weight from feature cell j to

cell i; and wINH is a global constant describing the effect of

inhibitory interneurons.1 The third term, IV
i ; on the right-

hand side of Eq. (1) represents a visual input to feature cell i:

When the agent is in the dark, then the term IV
i is set to zero.

Lastly, t is the time constant of the system.

The firing rate rF
i of feature cell i is determined from the

activation hF
i and the sigmoid transfer function

rF
i ðtÞ ¼

1

1 þ e22bðhF
i
ðtÞ2aÞ

; ð2Þ

where a and b are the sigmoid threshold and slope,

respectively.

2.1.2. Self-organisation of the recurrent synaptic

connectivity in the continuous attractor network

of feature cells

We assume that during the initial learning phase the

feature cells respond to visual input from particular features

in the environment in particular locations. For each feature

m; there is a subset of feature cells that respond to visual

input from that feature. The subset of feature cells that

respond (whatever the location) to a feature m is denoted by

Vm: The different subsets Vm may have many cells in

common and so significantly overlap with each other, or

may not have cells in common in which case any particular

feature cell will belong to only one subset Vm: (We note that

a feature cell might also be termed a feature–location cell,

in that it responds to a feature only when the feature is in a

given location.)

After each feature m has been assigned a subset Vm of

feature cells, we evenly distribute the subset Vm of feature

cells through the space xm: That is, the feature cells in the

subset Vm are mapped onto a regular grid of different

locations in the space xm; where the feature cells are

stimulated maximally by visual input from feature m:

However, crucially, in real nervous systems the visual cues

for which individual feature cells fire maximally would be

determined randomly by processes of lateral inhibition and

competition between neurons within the network of feature

cells. Thus, for each feature m the mapping of feature cells

through the space xm is performed randomly, and so the

topological relationships between the feature cells within

each space xm are unique. The unique set of topological

relationships that exist between the subset Vm of feature

cells that encode for a feature space xm is a map. For each

1 The scaling factor ðf0=C
FÞ controls the overall strength of the recurrent

inputs to the continuous attractor network of feature cells, where f0 is a

constant and CF is the number of synaptic connections received by each

feature cell from other feature cells.
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feature m there is a unique map, i.e. arrangement of the

feature cells in the subset Vm throughout the location space

xm where the feature cells respond maximally to visual input

from that feature.

The recurrent synaptic connection strengths or weights

wRC
ij from feature cell j to feature cell i in the continuous

attractor are set up by associative learning as the agent

moves through the space as follows:

dwRC
ij ¼ kRCrF

i rF
j ; ð3Þ

where dwRC
ij is the change of synaptic weight and kRC is the

learning rate constant.2 This rule operates by associating

together feature cells that tend to be co-active, and this leads

to cells which respond to the particular feature m in nearby

locations developing stronger synaptic connections.

In the simulations performed below, the learning phase

consists of a number of training epochs, where each training

epoch involves the agent rotating with a single feature m

present in the environment during that epoch. During the

learning phase, the agent performs one training epoch for

each feature m in turn. Each training epoch with a separate

feature m builds a new map into the recurrent synaptic

weights of the continuous attractor network of feature cells,

corresponding to the location space xm for the particular

feature.

2.1.3. Stabilisation of multiple activity packets within

the continuous attractor network

The following addition to the model is not a necessary

component, but can help to stabilise activity packets. As

described by Stringer et al. (2002b), the recurrent synaptic

weights within the continuous attractor network will be

corrupted by a certain amount of noise from the learning

regime. This in turn can lead to drift of an activity packet

within the continuous attractor network. Stringer et al.

(2002b) proposed that in real nervous systems this

problem may be solved by enhancing the firing of

neurons that are already firing. This might be

implemented through mechanisms for short-term synaptic

enhancement (Koch, 1999), or through the effects of

voltage dependent ion channels in the brain such as

NMDA receptors. In the models presented here we adopt

the approach proposed by Stringer et al. (2002b), who

simulated these effects by adjusting the sigmoid threshold

ai for each feature cell i as follows. At each timestep

t þ dt in the numerical simulation we set

ai ¼
aHIGH

; if rF
i ðtÞ , g

aLOW
; if rF

i ðtÞ $ g

(
ð4Þ

where g is a firing rate threshold. This helps to reinforce

the current positions of the activity packets within the

continuous attractor network of feature cells. The sigmoid

slopes are set to a constant value, b for all cells i:

We employ the above form of non-linearity described by

Eq. (4) to stabilise each activity packet in the presence

of noise from irregular learning, and to reduce the effects

of interactions between simultaneously active activity

packets.

2.1.4. Simulation results with a stationary agent

In the simulations performed in this paper, we simulate

the agent rotating clockwise, and the position of each

feature m with respect to the agent in the egocentric location

space xm is in the range 0–3608.

The dynamical equations (1) and (2) given above

describe the behaviour of the feature cells during testing.

However, we assume that when visual cues are available,

the visual inputs IV
i dominate all other excitatory inputs

driving the feature cells in Eq. (1). Therefore, in the

simulations presented in this paper we employ the

following modelling simplification during the initial

learning phase. During the learning phase, rather than

implementing the dynamical equations (1) and (2), we

train the network with a single feature m at a time, and

set the firing rates of the feature cells within the subset

Vm according to Gaussian response profiles as follows.

During training with a feature m; each feature cell i in

the subset Vm is randomly assigned a unique location

x
m
i [ ½0; 360� in the space xm; at which the feature cell is

stimulated maximally by the visual input from the

feature. Then, during training with each different feature

m; the firing rate rF
i of each feature cell i in the subset

Vm is set according to the following Gaussian response

profile

rF
i ¼ e2ðsF

i Þ
2=2ðsFÞ2

; ð5Þ

where sF
i is the distance between the current egocentric

location of the feature xm and the location at which cell i

fires maximally x
m
i ; and sF is the standard deviation. For

each feature cell i in the subset Vm; sF
i is given by

sF
i ¼ MINðlxmi 2 xml; 360 2 lxmi 2 xmlÞ: ð6Þ

Experiment 1: the stable representation of two

different features in the environment with a stationary

agent. The aim of experiment 1 is to demonstrate how a

single continuous attractor network can stably support the

representations of two different types of feature after the

visual input has been removed, with the agent remaining

2 The associative Hebb rule (3) used to set up the recurrent weights leads

to continual increase in the weights as learning proceeds. To bound the

synaptic weights, weight decay can be used in the learning rule (Redish &

Touretzky, 1998; Zhang, 1996). The use of a convergent learning rule for

the recurrent weights within continuous attractor networks has also been

demonstrated by Stringer et al. (2002b), who normalised the synaptic

weight vector on each neuron continuously during training. In the current

research, we did not examine weight normalisation in more detail, but more

simply after training set the lateral inhibition parameter wINH to an

appropriate level so that the firing of only a small proportion of the neurons

in the network could inhibit all of the other neurons from firing. This leads

to small packets of activity being stably maintained by the network.
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stationary within its environment.3 This is done by

performing simulations of Model 1 with two activity

packets active in two different feature spaces, xm and xn;

in the same continuous attractor network of feature cells.

The network of feature cells thus represents the presence

of two different types of feature, m and n; in the

environment.

For experiment 1 the network is trained with two

features, m and n: The continuous attractor network is

composed of 1000 feature cells. In the simulations presented

here, 200 of these cells are stimulated during the learning

phase by visual input from feature m: This subset of 200

feature cells is denoted Vm; and it is this subset of cells that

is used to encode the location space for feature m: Similarly,

a further 200 feature cells are stimulated during the learning

phase by visual input from feature n: This subset of 200

feature cells is denoted Vn; and it is this subset of cells that

encodes the location space for feature n: For experiment 1

the two subsets, Vm and Vn; are chosen randomly from the

total network of 1000 feature cells, and so the subsets

significantly overlap. During the learning phase, the subset

Vm of feature cells is evenly distributed along the 1D space

xm (and correspondingly for the Vn cells in the xn space).

The training is performed separately with 10 revolutions for

each of the two spaces.

After the training phase is completed, the agent is

simulated (by numerical solution of Eqs. (1) and (2)) for

500 timesteps with visual input available, with the agent

remaining stationary, and with featuresm and n present in the

environment. There is one occurrence of feature m at xm ¼

728; and one occurrence of feature n at xn ¼ 2528: Next the

visual input was removed by setting the IV
i terms in Eq. (1) to

zero, and the agent was allowed to remain in the same state

for another 500 timesteps. This process leads to a stable

packet of activity at xm ¼ 728 represented by the feature cells

in the subsetVm (Fig. 1, left), and a stable packet of activity at

xn ¼ 2528 represented by the feature cells in the subset Vn

(Fig. 1, right). In the plot on the left the feature cells have been

ordered according to the order they occur in the first feature

space, and a stable activity packet in this space is

demonstrated. In the plot on the right the feature cells have

been ordered according to the order they occur in the second

feature space, and a stable activity packet in this second space

is confirmed. The two activity packets were perfectly stable

in their respective spatial feature spaces, with no change even

over much longer simulations.

2.2. Updating the neural representations of the locations

of the features with idiothetic inputs when the agent moves

In the model described above, we considered only how

the continuous attractor network of feature cells might

stably maintain the representations of the locations of

features as the agent remained stationary. In this section we

address the issue of path integration. That is, we show how

the representations of the locations of the features within

the network might be updated by idiothetic (self-motion)

signals as the agent moves within its environment. This is

Fig. 1. Experiment 1. Simulation of Model 1 with two activity packets active in two different feature spaces, xm and xn; in the same continuous attractor network

of feature cells. The figure shows the steady firing rates of the feature cells within the two feature spaces after the external visual input has been removed and the

activity packets have been allowed to settle. In this experiment the two feature spaces significantly overlap, i.e. they have feature cells in common. The left plot

shows the firing rates of the subset of feature cells Vm belonging to the first feature space xm; and the right plot shows the firing rates of the subset of feature cells

Vn belonging to the second feature space xn: In the plot on the left the feature cells have been ordered according to the order they occur in the first feature space,

and in the plot on the right the feature cells have been ordered according to the order they occur in the second feature space. In each plot there is a contiguous

block of active cells which represents the activity packet within that feature space. In addition, in each plot there is also noise from the activity packet which is

active in the other feature space.

3 In experiment 1 we used the following parameter values. The parameter

governing the response properties of the feature cells during learning was

s F ¼ 108: A further parameter governing the learning was kRC ¼ 0:001:

The parameters governing the leaky-integrator dynamical equations (1) and

(2) were t ¼ 1:0; f0 ¼ 300 000 and wINH ¼ 0:0131: The parameters

governing the sigmoid activation function were as follows: aHIGH ¼ 0:0;

aLOW ¼ 220:0; g ¼ 0:5; and b ¼ 0:1: Finally, for the numerical

simulations of the leaky-integrator dynamical equation (1) we employed

a Forward Euler finite difference method with a timestep of 0.2.

S.M. Stringer et al. / Neural Networks 17 (2004) 5–27 9



an important problem to solve in order to explain how

animals can perform path integration in the absence of

visual input. The issue also emphasises the continuity of

each of the spaces in the continuous attractor, by showing

how each packet of activity can be moved continuously.

The full network architecture of Model 1, now including

idiothetic inputs, is shown in Fig. 2. The network is

composed of two sets of cells: (i) a continuous attractor

network of feature cells which encode the position and

orientation of the features in the environment with respect to

the agent, and (ii) a population of idiothetic cells which fire

when the agent moves within the environment. (In the

simulations performed below, the idiothetic cells are in fact

a population of clockwise rotation cells.) For Model 1, the

Sigma–Pi synapses connecting the idiothetic cells to the

continuous attractor network use relatively low order

combinations of only two pre-synaptic cells. (Background

to the proposal we develop here is provided by Stringer et al.,

2002b.)

The network of feature cells receives Sigma–Pi connec-

tions from combinations of feature cells and idiothetic cells,

where the idiothetic cells respond to velocity cues produced

during movement of the agent, such as in this paper

clockwise rotation. (The velocity cues could represent

vestibular and proprioceptive inputs produced by move-

ments, or could reflect motor commands.)

2.2.1. The dynamical equations of Model 1 incorporating

idiothetic signals to implement path integration

The behaviour of the feature cells within the continuous

attractor network is governed during testing by the following

leaky-integrator dynamical equations. The activation hF
i of a

feature cell i is governed by the equation

t
dhF

i ðtÞ

dt
¼ 2hF

i ðtÞ þ
f0

CF

X
j

ðwRC
ij 2 wINHÞrF

j ðtÞ þ IV
i

þ
f1

CF£ID

X
j;k

wID
ijkrF

j rID
k : ð7Þ

The last term on the right-hand side of Eq. (7) represents

the input from Sigma–Pi combinations of feature cells and

idiothetic cells, where rID
k is the firing rate of idiothetic cell k;

and wID
ijk is the corresponding overall effective connection

strength.4

Eq. (7) is a general equation describing how the activity

within a network of feature cells may be updated using

inputs from various kinds of idiothetic cells. In the

simulations presented later, the only movement performed

by the agent is clockwise rotation, and in principle only a

single idiothetic cell is needed in the model to represent this

movement (although in the brain such a movement would be

represented by a population of cells). However, the general

formulation of Eq. (7) can be used to incorporate inputs

from various other kinds of idiothetic (self-motion) cells, for

example, forward velocity cells. These cells fire as an

animal moves forward, with a firing rate that increases

monotonically with the forward velocity of the animal.

Whole body motion cells have been described in primates

(O’Mara, Rolls, Berthoz, & Kesner, 1994). In each case,

however, the idiothetic signal must represent a velocity

signal (speed and direction of movement) rather than say

acceleration.

2.2.2. Self-organisation of synaptic connectivity from

the idiothetic cells to the network of feature cells

At the start of the learning phase the synaptic weights wID
ijk

may be set to zero. Then the learning phase continues with

the agent rotating with the feature cells and idiothetic cells

firing according to the response properties described above.

The synaptic weights wID
ijk are updated at each timestep

according to a trace learning rule

dwID
ijk ¼ kIDrF

i �r
F
j rID

k ; ð8Þ

where dwID
ijk is the change of synaptic weight, rF

i is the

instantaneous firing rate of feature cell i; �rF
j is the trace value

(temporal average) of the firing rate of feature cell j; rID
k is

the firing rate of idiothetic cell k; and kID is the learning rate.

The trace value �rF of the firing rate of a feature cell is a form

Fig. 2. Network architecture for continuous attractor network Model 1,

including idiothetic inputs. The network is composed of two sets of cells: (i)

a continuous attractor network of feature cells which encode the position

and orientation of the features in the environment with respect to the agent,

and (ii) a population of idiothetic cells which fire when the agent moves

within the environment. When the agent is in the light, the feature cells are

stimulated by visual input IV: In Model 1 there are two types of modifiable

connection: (i) recurrent connections ðwRCÞ within the layer of feature cells,

and (ii) idiothetic Sigma–Pi connections ðwIDÞ to feature cells from

combinations of idiothetic cells (clockwise rotation cells for the simulations

presented here) and feature cells.

4 The scaling factor f1=ðC
F£IDÞ controls the overall strength of the

idiothetic cell inputs, where f1 is a constant and CF£ID is the number of

connections received by each feature cell from combinations of feature cells

and idiothetic cells. We note that f1 would need to be set in the brain to

have a magnitude which allows the actual head rotation cell firing to move

the activity packet at the correct speed, and that this gain control has some

similarity to the type of gain control that the cerebellum is believed to

implement for the vestibulo-ocular reflex (Rolls & Treves, 1998).
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of temporal average of recent cell activity given by

�rFðt þ dtÞ ¼ ð1 2 hÞrFðt þ dtÞ þ h�rFðtÞ ð9Þ

where h is a parameter set in the interval ½0; 1� which

determines the contribution of the current firing and the

previous trace. The trace learning rule (8) involves a product

of three firing rate terms on the right-hand side of the

equation. The general form of this three-term rule was

originally developed by Stringer et al. (2002b) for path

integration in a 1D network of head direction cells.

However, a simpler form of trace learning rule, involving

only two firing rate terms, has been previously used as a

biologically plausible learning rule for invariant object

recognition (Földiák, 1991; Rolls & Deco, 2002; Wallis &

Rolls, 1997).

During a training epoch with a feature m; the trace

learning rule (8) operates as follows. As the agent rotates,

learning rule (8) associates an earlier activity pattern within

the network of feature cells (representing an earlier

location of the feature with respect to the agent), and the

co-firing of the idiothetic cells (representing the fact the

agent is rotating clockwise), with the current pattern of

activity among the feature cells (representing the current

location of the feature with respect to the agent). The effect

of the trace learning rule (8) for the synaptic weights wID
ijk is

to generate a synaptic connectivity such that, during testing

without visual input, the co-firing of a feature cell j; and the

idiothetic cells, will stimulate feature cell i where feature

cell i represents a location that is a small translation in the

appropriate direction from the location represented by

feature cell j: Thus, the co-firing of a set of feature cells

representing a particular feature in a particular location,

and the idiothetic cells, will stimulate the firing of further

feature cells such that the pattern of activity within the

feature cell network that represents that feature evolves

continuously to track the true location of the feature in the

environment.

Stringer et al. (2002b) showed that a continuous attractor

network of the same form as implemented here can perform

path integration over a range of velocities, where the speed

of movement of the activity packet in the continuous

attractor network rises approximately linearly with the firing

rate of the idiothetic cells.

2.2.3. Simulation results with a moving agent

In this section we present numerical simulations of

Model 1 with a moving agent, in which the locations of the

activity packets within the network of feature cells must be

updated by idiothetic signals. The simulations are for a case

where the idiothetic training signal is the same for the

different feature spaces represented in the network. This

achieves the result that the different features move together

as the agent moves, providing one solution to the binding

problem, and indeed showing how the features can remain

bound even despite a transform such as spatial translation

through the space.

Experiment 2: moving the representation of two identical

features at different locations in the environment as an

agent moves. It is well known that the representation of two

identical objects is a major issue in models of vision (Mozer,

1991). The aim of experiment 2 is to demonstrate how a

single continuous attractor network can represent two

identical features at different locations in the environment,

and update these representations as the agent rotates.5 This

is done by performing simulations of Model 1 with two

activity packets active at different locations in the same

feature space xm in the continuous attractor network of

feature cells. In this situation the network of feature cells

represents the presence of the same feature at different

locations in the environment relative to the agent.

For this experiment the network is trained with only a

single feature m: The continuous attractor network is

composed of 1000 feature cells. In this experiment a subset

of 200 feature cells, denoted Vm; is stimulated during

training in order to encode the location space for feature m:

For each feature cell i in the subset Vm there is a unique

location of the feature m within its space xm for which the

feature cell is stimulated maximally. During the learning

phase, the agent rotates clockwise for 10 complete revolu-

tions with visual input available from featurem present in the

environment. The learning phase establishes a set of

recurrent synaptic weights between the feature cells in the

subset Vm that allows these cells to stably support activity

packets in the feature space xm represented by these cells.

After the training phase was completed, the agent was

simulated (by numerical solution of Eqs. (2) and (7)) for 500

timesteps with visual input available, with the agent

remaining stationary, and with two occurrences of feature

m in the environment. There was one occurrence of feature

m at xm ¼ 728; and another occurrence of feature m at xm ¼

2528: While the agent remained in this position, the visual

input terms IV
i for each feature cell i in Eq. (7) were set to a

Gaussian response profile identical (except for a constant

scaling) to that used for the feature cells during the learning

phase given by Eq. (5). (When there is more than one feature

present in the environment, the term IV
i is set to the

maximum input from any one of the features.) The visual

input was then removed by setting the IV
i terms in Eq. (7) to

zero, and the agent was allowed to remain in the same

direction for another 500 timesteps. The activity for the next

200 timesteps is shown at the beginning of Fig. 3, and it is

clear that two stable packets of activity were maintained in

5 In experiment 2 we used the following parameter values. The parameter

governing the response properties of the feature cells during learning was

sF ¼ 108: Further parameters governing the learning were h ¼ 0:9; kRC ¼

0:001 and kID ¼ 0:001: The parameters governing the leaky-integrator

dynamical equations (2) and (7) were t ¼ 1:0; f0 ¼ 300 000; f1 ¼ 70 000

and wINH ¼ 0:0143: The parameters governing the sigmoid activation

function were as follows: aHIGH ¼ 0:0; aLOW ¼ 220:0; g ¼ 0:5; and b ¼

0:1: Finally, for the numerical simulations of the leaky-integrator

dynamical equation (7) we employed a Forward Euler finite difference

method with a timestep of 0.2.

S.M. Stringer et al. / Neural Networks 17 (2004) 5–27 11



this memory condition at the locations (of xm ¼ 728 and

2528) where they were started. Next, in the period 201–

1050 timesteps in Fig. 3 the agent rotated clockwise (for a

little less than one revolution), and the firing of the idiothetic

clockwise rotation cells (set to 1) drove the two activity

packets through the feature space xm within the continuous

attractor network. From timestep 1051 the agent was again

stationary and the two activity packets stopped moving.

From these results we see that the continuous attractor

network of feature cells is able to maintain two activity

packets active at different locations in the same feature

space xm: Furthermore, as the agent moves, the network

representations of the egocentric locations of the features

may be updated by idiothetic signals.

However, it may be seen from Fig. 3 that when the

two packets begin to move, one activity packet grew a

little in size while the other activity packet shrank. In

other simulations it was found that during movement one

activity packet can die away altogether, leaving only a

single activity packet remaining. This effect was only

seen during movement, and was due to the global

inhibition operating between the two activity packets.

Thus the normal situation was that the network remained

firing stably in the state into which it was placed by an

external cue; but when the idiothetic inputs were driving

the system, some of the noise introduced by this was

able to alter the packet size.

The shape of the activity packets shown in Fig. 3 are

relatively binary, with the neurons either not firing or firing

fast. The degree to which the firing rates are binary vs

graded is largely determined by the parameter wINH which

controls the level of lateral inhibition between the neurons.

When the level of lateral inhibition is relatively high, the

activity packets assume a somewhat Gaussian shape.

However, as the level of lateral inhibition is reduced, the

activity packets grow larger and assume a more step-like

profile. Furthermore, the non-linearity in the activation

function shown in Eq. (4) also tends to make the firing rates

of the neurons somewhat binarised. The contributions of

both factors have been examined by Stringer et al. (2002b).

In the simulations described in this paper a relatively low

level of inhibition was used in conjunction with the non-

linear activation function, and this combination led to step-

like profiles for the activity packets. However, in further

simulations we have shown that the network can support

multiple activity packets when the firing rates are graded,

although keeping the network in a regime where the firing

rates are relatively binary does contribute to enabling the

network to keep different activity packets equally active.

Although the network operates best with a relatively binary

firing rate distribution, we note that the network is

nevertheless a continuous attractor in that all locations in

the state space are equally stable, and the activity packet can

be moved continuously throughout the state space.

Experiment 3: updating the representation of two

different features in the environment using non-overlapping

feature spaces. The aim of experiment 3 is to demonstrate

how a single continuous attractor network can represent two

different types of feature in the environment, and update

these representations as the agent rotates.6 This is done by

performing simulations of Model 1 with two activity

packets active in two different feature spaces, xm and xn;

in the same continuous attractor network of feature cells.

The network of feature cells thus represents the presence of

two different types of feature, m and n; in the environment.

The whole experiment was run similarly to experiment

2, except that the network was trained with two features,

with 200 of the cells assigned to the subset Vm that

represents feature m; and 200 of the cells assigned to the

subset Vn that represents feature n: For experiment 3 the

two subsets, Vm and Vn; did not overlap, that is, the two

subsets did not have any cells in common. During the

first learning stage the network was trained with feature

m; and then during the second learning stage the network

was trained with feature n:

The results from experiment 3 are shown in Fig. 4. The

left plot shows the firing rates of the subset of feature

cells Vm that encode the location space xm for feature m;

and the right plot shows the firing rates of the subset of

feature cells Vn that encode the location space xn for feature

Fig. 3. Experiment 2. Simulations of Model 1 with two activity packets

active at different locations in the same feature space xm in the continuous

attractor network of feature cells. The network thus represents the presence

of the same feature at different locations in the environment relative to the

agent. The figure shows the firing rates (with high rates represented by

black) of the feature cells through time, where the feature cells have been

ordered according to the order they occur in the feature space xm: The plot

shows the two activity packets moving through the feature space xm:

6 The model parameters used for experiment 3 were the same as those

used for experiment 2, except for f1 ¼ 200 000 and wINH ¼ 0:0191:
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n: Furthermore, in the plot on the left the feature cells have

been ordered according to the order they occurred in the

feature space xm; and in the plot on the right the feature cells

have been ordered according to the order they occurred in

the second feature space xn: Thus, the left and right plots

show the two activity packets moving within their

respective feature spaces. From timesteps 1 to 200 the

agent is stationary and the two activity packets do not move.

From timesteps 201 to 1050, the agent rotates clockwise and

the idiothetic inputs from the clockwise rotation cells drives

the two activity packets through their respective feature

spaces within the continuous attractor network. From

timestep 1051 the agent is again stationary and the two

activity packets stop moving. From these results we see that

the continuous attractor network of feature cells is able to

maintain activity packets in two different feature spaces, xm

and xn: Furthermore, as the agent moves, the network

representations of the egocentric locations of the features

may be updated by idiothetic signals.

Experiment 4: updating the representation of two

different features in the environment using overlapping

feature spaces. In experiment 4 we demonstrate how a

continuous attractor network can represent two different

features in the environment using two different overlapping

feature spaces, and update these representations as the agent

rotates. In this case the continuous attractor network stores

the feature spaces of two different features m and n; where

the subsets of feature cells used to encode the two spaces xm

and xn have a number of cells in common. This is the most

difficult test case, since using overlapping feature spaces

leads to significant interference between co-active represen-

tations in these different spaces. Experiment 4 was

composed of two parts, 4a and 4b. In experiment 4a we

used the same size network as was used for experiment 3,

whereas for experiment 4b the network was five times larger

in order to investigate the effects of increasing the number

of neurons.

Experiment 4a was run similarly to experiment 3, with a

network of 1000 feature cells, and where each of the subsets

Vm and Vn contained 200 cells.7 However, for experiment

4a the two subsets Vm and Vn were chosen randomly from

the total network of 1000 feature cells, and so the subsets

significantly overlapped. That is, the two subsets had

approximately 40 cells in common.

The results from experiment 4a are shown in Fig. 5. The

left plot shows the firing rates of the subset of feature cells

Vm that encode the location space xm for feature m;

and the right plot shows the firing rates of the subset of

feature cells Vn that encode the location space xn for feature

n: From these results we see that the continuous attractor

network of feature cells is able to maintain activity packets

in two different feature spaces, xm and xn: Furthermore, as

the agent moves, the network representations of the

egocentric locations of the features may be updated by

idiothetic signals. However, experiment 4a showed two

effects that were not present in experiment 3. Firstly,

because the two feature spaces have cells in common, each

feature space contains noise from the firing of cells in the

activity packet present in the other feature space. This shows

as random cell firings in each of the two spaces. Secondly,

the activity packets in each of the two feature spaces are

both distorted due to the interference between the two

spaces. The gross distortion of the two packets was only

seen during movement. However, although the two packets

were able to influence each other through global inhibition,

the distortion of the two activity packets was primarily due

Fig. 4. Experiment 3. Simulation of Model 1 with two activity packets active in two different feature spaces, xm and xn; in the same continuous attractor network

of feature cells which has global inhibition. The network thus represents the presence of two different types of feature,m and n; in the environment. In this

experiment the two feature spaces do not have any feature cells in common. The left plot shows the firing rates of the subset of feature cells Vm belonging to the

first feature space xm; and the right plot shows the firing rates of the subset of feature cells Vn belonging to the second feature space xn: Furthermore, in the plot

on the left the feature cells have been ordered according to the order they occur in the first feature space, and in the plot on the right the feature cells have been

ordered according to the order they occur in the second feature space. Thus, the left and right plots show the two activity packets moving within their respective

feature spaces.

7 The model parameters used for experiment 4a were the same as those

used for experiment 2, except for f1 ¼ 200 000 and wINH ¼ 0:0131:
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to excitatory connections that existed between the neurons

in the two packets.

Fig. 6 shows the learned recurrent synaptic weights wRC
ij

between feature cells in experiment 4a. The left plot of Fig. 6

shows the recurrent weights wRC
ij between the feature cells in

the subset Vm which encodes the first feature space xm: For

this plot the 200 feature cells in the subset Vm are ordered

according to their location in the space xm:The plot shows the

recurrent weights from feature cell 99 to the other feature

cells in the subset Vm: The graph shows an underlying

symmetric weight profile about feature cell 99, which is

necessary for the recurrent weights to stably support an

activity packet at different locations in the space xm:

However, in this experiment cell 99 was also contained in

the subset Vn which encoded the second feature space xn:

Thus, there is additional noise in the weight profile due to

the synaptic weight updates associated with the second

feature space, between feature cell 99 and other feature cells

encoding the second feature space xn: The right plot of Fig. 6

shows the recurrent weights wRC
ij between the feature cells in

the subset Vn which encodes the second feature space xn: For

this plot the 200 feature cells in the subset Vn are ordered

according to their location in the space xn:The plot shows the

recurrent weights from feature cell 97 to the other feature

cells in the subset Vn: The right plot for the second feature

space shows similar characteristics to the left plot.

Fig. 7 shows the learned idiothetic synaptic weights wID
ijk

between the idiothetic (rotation) cells and feature cells in

experiment 4a. The left plot of Fig. 7 shows the idiothetic

weights wID
ijk between the rotation cell k and the feature cells

in the subset Vm which encodes the first feature space xm:

For this plot the 200 feature cells in the subset Vm are

Fig. 5. Experiment 4a. Simulation of Model 1 with two activity packets active in two different feature spaces, xm and xn; in the same continuous attractor

network of feature cells. Conventions as in Fig. 4. In this experiment the two feature spaces significantly overlap, i.e. they have feature cells in common so that

there is some interference between the activity packets. Nevertheless, path integration in each of the spaces is demonstrated.

Fig. 6. Learned recurrent synaptic weights between feature cells in experiment 4a. The left plot shows the recurrent weights wRC
ij between the feature cells in the

subset Vm which encodes the first feature space xm: For this plot the 200 feature cells in the subset Vm are ordered according to their location in the space xm:

The plot shows the recurrent weights from feature cell 99 to the other feature cells in the subset Vm: The graph shows an underlying symmetric weight profile

about feature cell 99, which is necessary for the recurrent weights to stably support an activity packet at different locations in the space xm: However, in this

experiment feature cell 99 was also contained in the subset Vn which encoded the second feature space xn: Thus, there is additional noise in the weight profile

due to the synaptic weight updates associated with the second feature space, between feature cell 99 and other feature cells encoding the second feature space

xn: The right plot shows the recurrent weights wRC
ij between the feature cells in the subset Vn which encodes the second feature space xn: For this plot the 200

feature cells in the subset Vn are ordered according to their location in the space xn: The plot shows the recurrent weights from feature cell 97 to the other

feature cells in the subset Vn: The right plot for the second feature space shows similar characteristics to the left plot.
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ordered according to their location in the space xm: The plot

shows the idiothetic weights from the rotation cell and

feature cell 99 to the other feature cells in the subset Vm:

The graph shows an underlying asymmetric weight profile

about cell 99, which is necessary for the idiothetic weights

to shift an activity packet through the space xm (Stringer

et al., 2002b). From the idiothetic weight profile shown in

the left plot of Fig. 7, it can be seen that the co-firing of the

rotation cell k and feature cell 99 will lead to stimulation of

other feature cells that are a small distance away from

feature cell 99 in the space xm: This will lead to a shift of an

activity packet located at feature cell 99 in the appropriate

direction in the space xm: In this way, the asymmetry in the

idiothetic weights is able to shift an activity packet through

the space xm when the agent is rotating in the absence of

visual input. However, in experiment 4a feature cell 99 was

also contained in the subset Vn which encoded the second

feature space xn: Thus, there is additional noise in the weight

profile due to the synaptic weight updates associated with

the second feature space. The right plot of Fig. 7 shows the

idiothetic weights wID
ijk between the rotation cell k and the

feature cells in the subset Vn which encodes the second

feature space xn: For this plot the 200 feature cells in the

subset Vn are ordered according to their location in the space

xn: The plot shows the idiothetic weights from the rotation

cell and feature cell 97 to the other feature cells in the subset

Vn: The right plot for the second feature space shows similar

characteristics to the left plot.

In experiment 4b we investigated how the network

performed as the number of neurons in the network

increased.8 This is an important issue given that recurrent

networks in the brain, such as the CA3 region of the

hippocampus, may contain neurons with many thousands of

recurrent connections from other neurons in the same

network. Experiment 4b was similar to experiment 4a,

except that for experiment 4b the network contained five

times as many neurons as in experiment 4a. For experiment

4b the network was composed of 5000 feature cells, with

each of the feature spaces represented by 1000 feature cells

chosen randomly. It was found that as the number of

neurons in the network increased there was less interference

between the activity packets, and the movement of the

activity packets through their respective spaces was much

smoother. This can be seen by comparing the results shown

in Fig. 8 for the large network with those shown in Fig. 5 for

the smaller network. It can be seen that, in the small

network, the size of the activity packets varied continuously

through time. In further simulations (not shown) this could

lead to the ultimate extinction of one of the packets.

However, in the large network, the activity packets were

stable. That is, the size of the activity packets remained

constant as they moved through their respective feature

spaces. This effect of increasing the number of neurons in

the network is analysed theoretically in Section 5 and

Appendix A. This important result supports the

hypothesis that large recurrent networks in the brain are

able to maintain multiple activity packets, perhaps rep-

resenting different features in different locations in the

environment.

From experiment 4 we see that one way to reduce

interference between activity packets in different spaces is

to increase the size of the network. In Section 3, we describe

another way of reducing the interference between simul-

taneously active packets in different feature spaces, using

higher order synapses.

Fig. 7. Learned idiothetic synaptic weights between the idiothetic (rotation) cells and feature cells in experiment 4a. The left plot shows the idiothetic weights

wID
ijk between the rotation cell k and the feature cells in the subset Vm which encodes the first feature space xm: For this plot the 200 feature cells in the subset Vm

are ordered according to their location in the space xm: The plot shows the idiothetic weights from the rotation cell and feature cell 99 to the other feature cells in

the subset Vm: The graph shows an underlying asymmetric weight profile about cell 99, which is necessary for the idiothetic weights to shift an activity packet

through the space xm: However, in experiment 4a feature cell 99 was also contained in the subset Vn which encoded the second feature space xn: Thus, there is

additional noise in the weight profile due to the synaptic weight updates associated with the second feature space. The right plot shows the idiothetic weights

wID
ijk between the rotation cell k and the feature cells in the subset Vn which encodes the second feature space xn: For this plot the 200 feature cells in the subset

Vn are ordered according to their location in the space xn: The plot shows the idiothetic weights from the rotation cell and feature cell 97 to the other feature

cells in the subset Vn: The right plot for the second feature space shows similar characteristics to the left plot.

8 The model parameters used for experiment 4b were the same as those

used for experiment 4a, except for wINH ¼ 0:0146:
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3. Model 2: Network model with higher order synapses

In Model 2 the recurrent connections within the

continuous attractor network of feature cells employ

Sigma–Pi synapses to compute a weighted sum of the

products of inputs from other neurons in the continuous

attractor network. In addition, in Model 2 the Sigma–Pi

synapses connecting the idiothetic cells to the continuous

attractor network use even higher order combinations of

pre-synaptic cells.

The general network architecture of Model 2 is shown in

Fig. 9. The network architecture of Model 2 is similar to

Model 1, being composed of a continuous attractor network

of feature cells, and a population of idiothetic cells. However,

Model 2 combines two presynaptic inputs from other cells in

the attractor into a single synapse wRC; and for the idiothetic

update synapses combines two presynaptic inputs from other

cells in the continuous attractor with an idiothetic input in

synapses wID: The synaptic connections within Model 2

are self-organised during an initial learning phase in a

similar manner to that described above for Model 1.

3.1. The dynamical equations of Model 2

The behaviour of the feature cells within the continuous

attractor network is governed during testing by the

following leaky-integrator dynamical equations. Model 2

is introduced with synapses that are only a single order

greater than the synapses used in Model 1, but in principle

the order of the synapses can be increased. In Model 2 the

activation hF
i of a feature cell i is governed by the equation

t
dhF

i ðtÞ

dt
¼2hF

i ðtÞþ IV
i þ
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The effect of the higher order synapses between the

neurons in the continuous attractor is to make the

recurrent synapses more selective than in Model 1. That

is, the synapse wRC
ijm will only be able to stimulate feature

cell i when both of the feature cells j;m are co-active.

Each idiothetic connection also involves a high order

Sigma–Pi combination of two pre-synaptic continuous

attractor cells and one idiothetic input cell. The effect of

this is to make the idiothetic synapses more selective than

in Model 1. That is, the synapse wID
ijmk will only be able to

stimulate feature cell i when both of the feature cells j;m

and the idiothetic cell k are co-active. The firing rate rF
i of

Fig. 8. Experiment 4b. Simulation of Model 1 with two activity packets active in two different feature spaces, xm and xn: Experiment 4b was similar to

experiment 4a, except that for experiment 4b the network contained five times as many neurons as in experiment 4a. For experiment 4b the network was

composed of 5000 feature cells, with each of the feature spaces represented by 1000 feature cells chosen randomly. As the number of neurons in the network

increases the movement of the activity packets through their respective spaces is much smoother, which can be seen by comparing the results shown here with

those shown in Fig. 5 for the smaller network.

Fig. 9. General network architecture for continuous attractor network

Model 2. The network architecture of Model 2 is similar to Model 1, being

composed of a continuous attractor network of feature cells, and a

population of idiothetic cells. However, Model 2 uses Sigma–Pi recurrent

synaptic connections wRC within the continuous attractor network, and

higher order Sigma–Pi idiothetic synaptic connections wID to feature cells

from combinations of idiothetic cells and feature cells.
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feature cell i is determined from the activation hF
i and the

sigmoid function (2).

The recurrent synaptic weights within the continuous

attractor network of feature cells are self-organised during

an initial learning phase in a similar manner to that

described above for Model 1. For Model 2 the recurrent

weights wRC
ijm ; from feature cells j;m to feature cell i may be

updated according to the associative rule

dwRC
ijm ¼ kRCrF

i rF
j rF

m ð11Þ

where dwRC
ijm is the change of synaptic weight and kRC is the

learning rate constant. This rule operates by associating the

co-firing of feature cells j and m with the firing of feature

cell i: This learning rule allows the recurrent synapses to

operate highly selectively in that, after training, the synapse

wRC
ijm will only be able to stimulate feature cell i when both of

the feature cells j;m are co-active.

The synaptic connections to the continuous attractor

network of feature cells from the Sigma–Pi combinations of

idiothetic (or motor) cells and feature cells are self-

organised during an initial learning phase in a similar

manner to that described above for Model 1. However, for

Model 2 the idiothetic weights wID
ijmk may be updated

according to the associative rule

dwID
ijmk ¼ kIDrF

i �r
F
j �r

F
mrID

k ð12Þ

where dwID
ijmk is the change of synaptic weight, rF

i is the

instantaneous firing rate of feature cell i; �rF
j is the trace

value (temporal average) of the firing rate of feature cell j;

etc., rID
k is the firing rate of idiothetic cell k; and kID is

the learning rate. The trace value �rF of the firing rate of a

feature cell is given by Eq. (9). During a training epoch with

a feature m; the trace learning rule (12) operates to associate

the co-firing of feature cells j;m and idiothetic cell k; with

the firing of feature cell i: Thus, learning rule (12) operates

somewhat similar to learning rule (8) for Model 1 in that,

as the agent rotates, learning rule (12) associates an earlier

activity pattern within the network of feature cells

(representing an earlier location of the feature with respect

to the agent), and the co-firing of the idiothetic cells

(representing the fact the agent is rotating clockwise), with

the current pattern of activity among the feature cells

(representing the current location of the feature with respect

to the agent). However, learning rule (12) allows the

idiothetic synapses to operate highly selectively in that

after training, the synapse wID
ijmk will only be able to

stimulate feature cell i when both of the feature cells j;m and

idiothetic cell k are co-active.

3.2. Simulation results with Model 2

Experiment 5: representing overlapping feature spaces

with higher order synapses. The aim of experiment 5 is to

demonstrate that the higher order synapses implemented in

Model 2 are able to reduce the interference between activity

packets which are simultaneously active in different

spaces.9 Experiment 5 is run similarly to experiment 4.

That is, experiment 5 involves the simulation of Model 2

with two activity packets active in two different feature

spaces, xm and xn; in the same continuous attractor network

of feature cells. In this experiment the two feature spaces have

the same degree of overlap as was the case in experiment 4.

For experiment 5, due to the increased computational cost of

the higher order synapses of Model 2, the network was

simulated with only 360 feature cells. Each of the two feature

spaces, xm and xn; was represented by a separate subset of 200

feature cells, where two subsets were chosen such that the two

feature spaces had 40 feature cells in common. This overlap

between the two feature spaces was the expected size of the

overlap in experiment 4, where there were a total of 1000

feature cells, and each of the two feature spaces recruited a

random set of 200 cells from this total.

The results of experiment 5 are presented in Fig. 10, and

these results can be compared to those shown in Fig. 5 for

Model 1. The left plot shows the firing rates of the subset of

feature cells Vm belonging to the first feature space xm; and

the right plot shows the firing rates of the subset of feature

cells Vn belonging to the second feature space xn: It can be

seen that with the higher order synapses used by Model 2,

the activity packets in the two separate feature spaces are far

less deformed. In particular, over the course of the

simulation, the activity packets maintain their original

sizes. This is in contrast to experiment 4, where one packet

became larger while the other packet became smaller.

Hence, with the higher order synapses of Model 2, there is

much less interference between the representations in the

two separate feature spaces.

4. How the representations of multiple features within

a continuous attractor network may be decoded

by subsequent, e.g. motor systems

In this section we consider how subsequent, for example

motor, systems in the brain are able to respond to the

representations of multiple features supported by a continu-

ous attractor network of feature cells. The execution of

motor sequences by the motor system may depend on

exactly which features are present in the environment, and

where the features are located with respect to the agent.

However, for both models 1 and 2 presented in this paper, if

multiple activity packets are active within the continuous

attractor network of feature cells, then the representation of

each feature will be masked by the ‘noise’ from the other

active representations of other features present in the

environment, as shown in Fig. 5. In this situation, how

can subsequent motor systems detect the representations of

individual features? What we propose in this section is that

9 The model parameters used for experiment 5 were the same as those

used for experiment 2, except for f0 ¼ 108 000 000; f1 ¼ 43 200 000 and

wINH ¼ 0:129:
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a pattern associator would be able to decode the represen-

tations in the continuous attractor network and would have

the benefit of reducing noise in the representation. (The

operation and properties of pattern association networks are

reviewed by Hertz, Krogh, & Palmer, 1991; Rolls & Treves,

1998; Rolls & Deco, 2002.)

The way in which the decoding could work is shown in

Fig. 11, which shows the network architecture for Model 1

augmented with a pattern associator in which the neuronal

firing could represent motor commands. During an initial

motor training phase in the light, the feature cells in the

continuous attractor are stimulated by visual input IV;

the motor cells are driven by a training signal t; and the

synapses wM are modified by associative learning. Then,

after the motor training is completed, the connections wM

are able to drive the motor cells to perform the appropriate

motor actions. We have described elsewhere a network

which enables motor cells to be selected correctly by

movement selector cells (Stringer et al., 2003b), and this

could be combined with the architecture shown in Fig. 11 to

allow the motor cells activated to depend on both the feature

representation in the continuous attractor and on the desired

movement. During the learning, the synaptic weights wM
ij

from feature cells j to motor cells i are updated at each

timestep according to

dwM
ij ¼ kMrM

i rF
j : ð13Þ

4.1. Simulation results with a network of motor cells

The motor activity of the agent was characterised by an

idealised motor space y: We defined the motor space y of the

agent as a toroidal 1D space from y ¼ 0 to 360. This allowed

a simple correspondence between the motor space y of the

agent and the feature spaces. Next, we assumed that each

motor cell fired maximally for a particular location in

the motor space y; and that the motor cells are distributed

evenly throughout the motor space y:

Experiment 6: how motor cells respond to individual

representations within the network of feature cells. In

experiment 6 we demonstrate that the motor network is able

to respond appropriately to the representation of a particular

feature m in the continuous attractor network of feature

cells, even when the representation of feature m is somewhat

masked by the presence of noise due to the representation of

another feature n in the same continuous attractor

network.10 Experiment 6 was similar to experiment 4,

except here we augment the Model 1 network architecture to

include a network of motor cells, as described above.

For experiment 6, the continuous attractor network of

feature cells is trained with two features m and n in an

identical manner to that described above for experiment 4.

The motor network was trained as follows. The motor

network contains 200 motor cells. During the first stage of

learning, while the continuous attractor network of feature

cells was being trained with feature m; the network of motor

neurons was trained to perform a particular motor sequence.

The learned motor sequence was simply y ¼ xm: That is, the

motor neurons learned to fire so that the activity packet

within the motor network mirrors the location of the activity

packet in the feature space xm: While the agent ran through

the motor sequence associated with feature m during the first

stage of the training phase, the synaptic weights wM
ij are

updated according to Eq. (13). During the second stage of

training, in which the feature cells were trained with feature

n; the motor cells did not fire, and so the synaptic weights

wM
ij do not change. Then, after training, the goal was for the

network to repeat the motor sequence with y ¼ xm; even

when there is a representation of the second feature n also

Fig. 10. Experiment 5. Simulation of Model 2 with two activity packets active in two different feature spaces, xm and xn; in the same continuous attractor

network of feature cells. In this experiment the two feature spaces significantly overlap, and have the same degree of overlap as in experiment 4. This

experiment is similar to experiment 4, except here we implement Model 2 with higher order synapses instead of Model 1. The results presented in this figure

should be compared to those shown in Fig. 5 for Model 1. It can be seen that with the higher order synapses used by Model 2, there is much less interference

between the representations in the two separate feature spaces.

10 The model parameters used for experiment 6 were the same as those

used for experiment 2, except for f1 ¼ 200 000 and wINH ¼ 0:0131:
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present in the network of feature cells. In this case, the

network of motor cells must be able to ignore the irrelevant

representation in the second feature space xn:

Results from experiment 6 are shown in Figs. 5 and 12,

which show the firing rates of the feature cells and motor

cells through time. In Fig. 12 the motor cells have been

ordered according to the order they occur in the motor space

y: There is a single activity packet in the motor network

which tracks the location of the activity packet in the feature

space xm represented by the continuous attractor network of

feature cells. This may be seen by comparing the results in

Fig. 12 with those shown in the left plot of Fig. 5. However,

the pattern of activity in the motor network does not contain

the noise that is present in the feature space xm due to the

representation of feature n: Thus, the motor network is able

to filter out the noise due to the representations of irrelevant

features. This means that the motor network performs the

motor sequence correctly in that, at each stage of the

sequence, the correct motor neurons fire, but with no firing

of the other neurons in the motor network.

Experiment 6 demonstrates that the motor system is able

to detect and respond appropriately to the representation of a

particular feature m in the continuous attractor network of

feature cells, even when the representation of feature m is

somewhat masked by the presence of noise due to the

representations of other features in the same continuous

attractor network. This is because, if the firing threshold is

set to a relatively high value for the motor cells, the motor

cells will ignore random ‘salt and pepper’ noise (due to

activity packets in overlapping feature spaces) in the feature

Fig. 11. Network architecture for Model 1 augmented with an additional decoder network of e.g. motor cells. The network is composed of three sets of cells: (i)

a continuous attractor network of feature cells, (ii) a population of idiothetic cells which fire when the agent moves within the environment, and (iii) a

population of motor cells which represent the motor activity of the agent. During the initial motor training phase in the light, the feature cells are stimulated by

visual input IV; and the motor cells are driven by a training signal t: There are three types of modifiable synaptic connection: (i) Recurrent connections ðwRCÞ

within the layer of feature cells, (ii) Idiothetic Sigma–Pi connections ðwIDÞ to feature cells from combinations of idiothetic cells (clockwise rotation cells for the

simulations presented here) and feature cells, and (iii) Associative connections ðwMÞ to the motor cells from feature cells.

Fig. 12. Experiment 6. Simulation of the network architecture of Model 1

augmented by the addition of a network of motor cells. The simulation of the

continuous attractor networkoffeaturecells isperformed in an identical manner

to experiment 4, with two activity packets active in two different overlapping

feature spaces, xm and xn:This figure shows the firing rates of the linked network

of motor cells through time, where the motor cells have been ordered according

to the order they occur in the motor space y: There is a single activity packet in

the motor network which tracks the location of the activity packet in the feature

space xm represented by the continuous attractor network of feature cells.

However, the pattern of activity in the motor network does not contain the noise

that is present in the feature space xm due to the representation of feature n:
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space xm they have learned to respond to, and will only

respond to the presence of a genuine contiguous activity

packet in the space xm:

Finally, in further simulations (not shown here) it was

found that the performance of the motor network could be

improved further by implementing even higher order

synapses wM; where the pre-synaptic input terms involved

a product consisting of the firing rates of two feature cells.

5. Theoretical analysis of interaction between activity

packets in different feature spaces

In Section 1 we reviewed the theoretical results of Amari

(1977), which describe how multiple activity packets

interact in a single feature space encoded in a continuous

attractor network. As the numerical results in this paper

have shown that multiple activity packets can co-exist in

different feature spaces in the same network, we have

developed a mathematical analysis of this scenario. The

analysis examines how activity packets in different feature

spaces, encoded within the same continuous attractor

network, affect each other. The mathematical details of

the analysis are provided in Appendix A, and the main

points are summarised here.

The analysis provides an explanation for the numerical

findings of experiments 4a and 4b, where it was found that

as the number of neurons in the network increased, the

activity packets moved through the two feature spaces more

stably. That is, the shape and size of the activity packets

remained constant through time. Both the numerical and the

analytic results support the proposal that recurrent networks

in the brain, in which there are tens of thousands of

connections to each neuron (Rolls & Treves, 1998), are able

to represent and track multiple spatial features in the manner

described in this paper.

The analysis begins (Appendix A.1) by examining the

interaction between activity packets in the discrete model

described in Section 2, in which the feature spaces are

represented discretely by a large number of neurons. A core

assumption of this analysis is that the different feature

spaces are encoded by different random orderings of the

feature cells. (Evidence for this in a brain area such as the

CA3 region of the rat hippocampus is provided in Section

6.) Given these random orderings of the neurons in the

different feature spaces, an activity packet in one space will

appear as noise in another space. The random ordering

requires the analysis to be performed in a discrete system

(Zhang, 1996). The analysis (Appendix A.1) shows that, as

the number of feature cells NF in the network increases, the

input to an activity packet in a first feature space xm from the

activity packet in a second feature space tends towards a

continuous function sðx; tÞ: The function sðx; tÞ takes the

form of a fixed wave profile which follows the activity

packet profile in the first feature space xm: We show in

Appendix A.2 that this form of interaction between

the packets in the different feature spaces is required for

the packets to not destabilise each other.

In Appendix A.2 we use a continuous neural field model

in which there is a single activation function hðx; tÞ which is

a continuous function of space x and time t: This framework

permits us to apply the analytical methods of Amari (1977).

An equation is derived which gives the speed of any location

of the activity profile (or packet) hðx; tÞ in the space xm: It is

shown that, for the system to settle into a fixed activity wave

(i.e. where the shape and size of the activity packet is

constant) moving through the space xm; the input function

sðx; tÞ (from an activity packet in a second space) must take

the form of a fixed wave profile which follows the activity

profile hðx; tÞ in the space xm: This form of interaction

between the packets, which is required for the packets not to

destabilise each other, is shown to be true for large systems

in Appendix A.1. Any random perturbations from such an

ideal input wave sðx; tÞ from the second packet (such as

might occur in small networks) that occur during the time

evolution of the system will result in different speeds for

different parts of the activity profile in the space xm; and

hence lead to deformation of the shape of the packet in this

space. This analysis thus provides theoretical insight into

the numerical results of experiments 4a and 4b. That is, as

the size of the network increases, there is less time variation

in the shape and size of the activity packets in the different

spaces produced by the interactions between the packets in

the different feature spaces in the same network.

6. Discussion

In this paper we have explored how continuous attractor

neural networks can be used to support multiple packets of

neuronal activity, and how these separate representations

may be simultaneously updated by external inputs to the

continuous attractor network, where such external inputs

might represent, for example, idiothetic inputs or motor

efference copy. To achieve this, the continuous attractor

networks presented here make use of (i) a recurrent

synaptic connectivity that encodes each activity packet on

a separate map, and (ii) higher order Sigma–Pi synapses to

enable the idiothetic input to move the activity packets.

The networks also benefit from a non-linear neuronal

activation function that could be implemented by NMDA

receptors. An important property of the models presented

in this paper is that they are self-organising with

biologically plausible learning rules. However, the frame-

work developed here is quite flexible. For example,

although in the simulations presented above the features

moved in tandem, it is possible for the external signals to

learn to drive some but not other activity packets, and to

drive the activity packets at differing speeds from one

another. Hence, we propose that such multi-packet

continuous attractor networks may play an important role

in various aspects of brain function.
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The simulations described in this paper showed that

when more than one activity packet is active in the network,

the activity packets may under some conditions be stable.

One of the conditions is a bounded non-linear transfer

function is used. Considering stationary activity packets,

two packets of activity in a single feature space remain

separate and stable if the activity packets are far enough

apart, as shown by Amari (1977) and summarised in Section

1. This is true even when the activity packets are of unequal

size. Further, as demonstrated in this paper, two stationary

activity packets can remain stable even if they share active

neurons, but the activity packets are in different feature

spaces. Next we consider the situation when the agent is

moving and path integration is being performed with moving

activity packets. In the case of two activity packets moving

in one feature space, the activity packets may interfere with

each other, with one activity packet growing while the other

packet shrinks. These effects were observed in experiment

2, the results of which are shown in Fig. 3. When the activity

packets are moving in different overlapping feature spaces,

then the packets may interfere more severely. This effect

was observed in experiment 4a, the results of which are

shown in Fig. 5. As the overlap between two feature spaces

increases, the activity packets in the two spaces interfere

with each other more and more. This can be seen by

comparing Figs. 4 and 5, which show results with zero

overlap and an overlap of approximately 40 cells between

the feature spaces, respectively. The nature of this

interaction was analysed in Section 5 and Appendix A,

where it was shown that the interference between co-active

packets in different feature spaces reduces as the size of the

network increases. This analysis was supported by

the results of experiment 4b, in which increasing the size

of the network reduced the interference between the activity

packets in the two different feature spaces, as shown in Fig.

8. Thus we have shown in this paper that two activity

packets in different feature spaces can both be moved

successfully by path integration, and result in persistent

separate non-moving activity packets when the idiothetic

movement-inducing signal is removed. In simulations of

continuous attractor networks with the sigmoidal transfer

function (2), the level of activity in the network due to both

the size and number of activity packets could be controlled

by the level of lateral inhibition between the neurons wINH:

The importance of a bounded non-linear transfer function

for the findings just summarised is supported by the

following results not described elsewhere in this paper. In

attractor networks governed by Eq. (1), but trained with a

small set of random binarised activity patterns, it was found

that with the sigmoidal transfer function (2), which remains

bounded as h !1; stable multiple activity patterns were

supported. However, when the sigmoid function was

replaced with a threshold linear function, the network was

unable to support multiple activity patterns. With the

threshold linear transfer function, the firing rates of the

neurons in a single pattern always grew large enough to

suppress the other neurons in the network. Hence, only a

single pattern could be supported by the network. However,

this limitation of the threshold linear transfer function could

be remedied by introducing an upper bound on the neuronal

firing rates. When the firing rates were clipped to a

maximum of 1, the network was once more able to support

multiple patterns. Thus, these simulations suggest that in

order for the network to support multiple patterns, the form

of the transfer function must ensure that the neuronal firing

rates are bounded as the activation hi increases (Treves,

1991). Providing the transfer function was bounded, the

number of activity patterns stably supported by the network

could be controlled by the level of lateral inhibition between

the neurons wINH:

The concept of storing multiple maps in a single

continuous attractor network has been investigated pre-

viously by Battaglia and Treves (1998) and Samsonovich

and McNaughton (1997), who used the term ‘chart’. (See

also Redish (1999) for a detailed discussion of the multiple

chart hypothesis and relevant experimental data.) The

concept of a chart comes from neurophysiological studies

of place cells in rats, which respond when the rat is in a

particular place. When moved to a different environment,

the relative spatial locations in which neurons fire appear to

be different, and hence the concept arises that these

hippocampal place cells code for different charts, where

each chart applies in a different spatial environment (Wilson

& McNaughton, 1993). However, within any one environ-

ment or chart, there would be only one activity packet

representing the current location of the animal. (Only one

activity packet is required in these models (Battaglia &

Treves, 1998; Samsonovich & McNaughton, 1997) because

the rat cannot be in two places at once.) In contrast, in the

continuous attractor model described in this paper, the

concept is that multiple maps can have simultaneously

active packets of activity. Indeed, we adopt a more abstract

viewpoint, in which different maps may be thought of as

distinct spaces in which a representation specific to that

space may move continuously. Thus, in the models

presented in this paper, rather than using different charts

to represent different environments, we use each map to

represent the space through which the representation of an

individual feature may move continuously to represent the

changing position of the feature with respect to the agent.

The system we describe can maintain several packets of

activity simultaneously because each activity packet

receives support from the other neurons in the same space

in the continuous attractor. As shown in the simulations,

individual neurons can be in more than one of the spaces.

A key question is how many feature spaces may be

learned by a continuous attractor network before the

network reaches its loading capacity. This question has

been investigated in detail by Battaglia and Treves (1998),

and summarised by Rolls, Stringer, and Trappenberg

(2002b) and Tsodyks (1999). The maximum number of
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feature spaces (charts) that may be stored is

Nfeature spaces , 2C=logðamÞ; ð14Þ

where C is the average number of recurrent synaptic

contacts per cell, and am is the map sparseness which is

related to the size of a typical activity packet relative to the

size of the entire feature space.

The system we describe enables the representations in

the different maps to be moved together or separately by the

same or different idiothetic inputs. This provides one

solution to the binding problem, in that features in different

classes (and hence maps) can be moved together by, for

example, a single idiothetic input.

In this paper the theory of multi-packet continuous

attractor networks was developed in the context of how a

brain might represent the 3D structure of an animal’s

environment. This involves the representation of many

independent features and their individual spatial relation-

ships to the agent. After the agent has learned an alphabet of

features through early visual experience, when the agent is

exposed to a single snapshot view of a new environment

(not encountered during training), a full 3D representation

of the new environment is initiated in the network of feature

cells. Then, when the visual input is removed, the

representation can be maintained and updated as the agent

moves through its environment in the absence of visual

input. Hence, the models presented in this paper can

perform path integration using only a single view of a new

environment. Another application of this class of model is to

the situation when more than one spatial location must be

simultaneously and independently represented, as occurs for

example when one moving object may collide with or miss

another moving object. To the extent that this can be

represented in allocentric space, this is likely to involve the

hippocampus (or structures that receive from it), and the

hippocampus does not use topological mapping in the brain

(O’Keefe & Conway, 1978), so that the individual

representations of allocentric space would overlap.

The network described here is able to learn how to move

the activity packets in their egocentric feature spaces given

any kind of vestibular velocity signal (e.g. clockwise or anti-

clockwise rotation, forward velocity, etc. or perhaps some

form of motor efference copy). It should not matter, for

example, that rotations in 3D space do not commute, unlike

rotations in 1D space. To see this, consider the following

situation. If a clockwise rotation of the agent results in the

relative change in position of a feature m from egocentric

location A to location B1, and a further upward turn of the

agent results in the relative movement of the feature m from

location B1 to location C1, then these transitions are what

the network would learn. Furthermore, if an upward turn of

the agent results in the relative change in position of feature

m from egocentric location A to location B2, and a further

clockwise rotation of the agent results in the relative

movement of the feature m from location B2 to location C2,

then these transitions would also be learned by the network.

The network would be capable of learning both transition

sequences, and replaying either sequence using only the

relevant vestibular signals.

A key problem with current models of hippocampal

place cells (Redish, 1999) is the inability of the represen-

tations supported by these neural networks to provide a basis

for planning novel routes through complex environments

full of obstacles. Current models of place cells assume a

single activity packet in a 2D layer of place cells, where the

cells are simply mapped onto the floor of the containment

area. However, such a representation merely locates the

agent in a 2D space, and cannot provide information about

the full 3D structure of the surrounding environment, which

would be necessary for planning a novel route along paths

and past obstacles, etc. However, in the models developed in

this paper, we address how the full 3D structure of the

surrounding environment might be represented in a

continuous attractor network, and how this representation

may be updated through idiothetic signals or motor

efference copy. Only such a representation of the full 3D

structure of the agent’s environment will provide a robust

basis for planning novel routes in complex, cluttered

environments.

The concept introduced in this paper may be relevant to

understanding the visuo-spatial scratchpad thought to

implement a representation of spatial positions of several

objects in a scene (Rolls & Arbib, 2003). Consider the

output of the inferior temporal cortex (IT), which provides a

distributed representation of an object close to the fovea

under natural viewing conditions (Rolls et al., 2002a). The

representation of this object in different positions in

egocentric space would be learned by a continuous attractor

network of the type described in this paper by combining

this output of IT with a signal (present in the parietal cortex)

about the position of the eyes (and head, etc). For each

egocentric position, the network would have an arbitrary set

of neurons active that would represent the object in that

position. As the agent moved, the relation between the

idiothetic self-motion signals and the object input would be

learned as described here. Each object would be trained in

this way, with a separate ‘object’ space or chart for each

object. After training, eye movements round the scene

would establish the relative positions of objects in the scene,

and after this, any idiothetic self-motion would update the

positions of all the objects in egocentric space in the scene.

There is some evidence from cue rotation experiments

that different representations can be simultaneously active

in the rat hippocampus (Wiener, Korshunov, Garcia, &

Berthoz, 1995), and if so, the simultaneously active

representations could be based on processes of the type

studied in this paper. There is also evidence for multiple

representations in the rat hippocampus from experiments in

which individual visual cues in the rat’s environment are

moved. In such experiments (Tanila, Shapiro, & Eichen-

baum, 1997a; Tanila, Sipila, Shapiro, & Eichenbaum,

1997b), the activity of many cells followed either the distal
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or local cue sets, while other cells encoded specific subsets

of the cues. In particular, it was demonstrated that some

hippocampal place cells encode the egocentric location of a

number of different subsets of environmental stimuli with

respect to the rat (for a review, see Shapiro & Eichenbaum,

1999). These experiments suggest that the rat hippocampus

may support multiple independent activity packets that

represent different aspects of the spatial structure of the

environment, with individual place cells taking part in more

than one representation. Moreover, the fact that spatial cells

in the hippocampus are not arranged in a topographic map

suggests that the feature spaces are encoded by different

random orderings of the cells. Whether it is the hippo-

campus or some other brain region that maintains a

dynamical representation of the full 3D structure of the

agent’s environment to provide a robust basis for planning

novel routes in complex, cluttered environments remains to

be shown.
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Appendix A. Mathematical analysis of interaction

between activity packets

A.1. Interaction between activity packets in the discrete

model

In this section we examine how activity packets in

different feature spaces interact in the discrete model

described in Section 2. Let us consider a fully connected

continuous attractor neural network composed of NF feature

cells, which has been trained to encode two different feature

spaces, xm and xn; where each of the feature spaces is

encoded by a different random ordering of the NF feature

cells. In the following analysis, the feature spaces xm and xn

we consider are 1D closed spaces from 0 to 2p radians, as

implemented in the numerical simulations described above.

In the absence of visual input, the activations of the

feature cells are governed by

t
dhF

i ðtÞ

dt
¼ 2hF

i ðtÞ þ
f0

NF

X
j

ðwRC
ij 2 wINHÞrF

j ðtÞ

þ
f1

NFNID

X
j;k

wID
ijkrF

j rID
k ; ðA1Þ

where NID is the number of idiothetic cells. Since we are

assuming the network has been trained to encode two

feature spaces xm and xn (where the synaptic weight updates

for the two feature spaces have been combined additively),

Eq. (A1) may be rewritten as

t
dhF

i ðtÞ

dt
¼ 2hF

i ðtÞ þ
f0

NF

X
j

ðw
RC;m
ij þ wRC;n

ij 2 wINHÞrF
j ðtÞ

þ
f1

NFNID

X
j;k

ðw
ID;m
ijk þ wID;n

ijk ÞrF
j rID

k ; ðA2Þ

where w
RC;m
ij are the components of the excitatory recurrent

weights associated with the first feature space xm; wRC;n
ij are

the components of the excitatory recurrent weights

associated with the second feature space xn; w
ID;m
ijk are the

components of the idiothetic weights associated with

the first feature space xm; and wID;n
ijk are the components of

the idiothetic weights associated with the second feature

space xn:

If we combine the recurrent and idiothetic terms for each

feature space, Eq. (A2) may be rewritten as

t
dhF

i ðtÞ

dt
¼ 2hF

i ðtÞ þ
1

NF

X
j

W
m
ij rF

j ðtÞ þ
1

NF

X
j

Wn
ij r

F
j ðtÞ;

ðA3Þ

where the terms W
m
ij and Wn

ij are resultant weights which

encode the two feature spaces xm and xn; respectively, and

which are given by

W
m
ij ¼ f0ðw

RC;m
ij 2 wINH

=2Þ þ
f1

NID

X
k

w
ID;m
ijk rID

k ; ðA4Þ

Wn
ij ¼ f0ðw

RC;n
ij 2 wINH

=2Þ þ
f1

NID

X
k

wID;n
ijk rID

k : ðA5Þ

The resultant weights W
m
ij and Wn

ij are responsible for

supporting activity packets in the two feature spaces xm and

xn; respectively, and for shifting the activity packets

through these spaces when the agent begins to move.

Consider the weights W
m
ij associated with the first feature

space xm: As can be seen from Eq. (A4), the weights W
m
ij are

composed of the following two parts. The first part,

f0ðw
RC;m
ij 2 wINH=2Þ; is symmetric in the space xm; and is

responsible for stably supporting the activity packets in the

space xm: The second part, ðf1=N
IDÞ

P
k w

ID;m
ijk rID

k ; is asym-

metric in the space xm; is dependent on the firing rate of

the idiothetic cells rID
k ; and is responsible for shifting the

activity packets in the appropriate direction through the

space xm when the agent moves.

Let us assume that at some time t the network activity

vector hF ¼ ½hF
1 ;…; hF

NF �
T is composed of two separate

components hF;m and hF;n; where hF;m represents an activity

packet in the space xm; and hF;n represents an activity packet

in the space xn: That is, for each feature cell i; the cell

activation hF
i ðtÞ is composed as follows

hF
i ðtÞ ¼ h

F;m
i ðtÞ þ hF;n

i ðtÞ: ðA6Þ
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So far we have only defined the vectors hF;m and hF;n as

representing static activity packets in the two spaces xm and

xn at some time t: We must also define how the vectors hF;m

and hF;n will continue to evolve through time, maintaining

the relation (A6), where the evolution of each cell

activation, hF
i ðtÞ; continues to be governed by Eq. (A3).

We define the evolution of the vectors hF;m and hF;n through

time in the following manner.

In Eq. (A3) there are two neuronal interaction terms,

ð1=NFÞ
P

j W
m
ij rF

j ðtÞ and ð1=NFÞ
P

j Wn
ij r

F
j ðtÞ; which contribute

to the rate of change of the cell activations ðdhF
i ðtÞ=dtÞ: The

first term is mediated by the weights W
m
ij which are

associated with the first feature space xm; and the second

term is mediated by the weights Wn
ij which are associated

with the second feature space xn: Using these associations

between weights and feature spaces, we define the

temporal evolution of the vectors hF;m and hF;n as follows.

We associate the rate of change of cell activations

mediated by the weights W
m
ij with the rate of change in

the vector hF;m: Similarly, we associate the rate of change

of cell activations mediated by the weights Wn
ij with the

rate of change in the vector hF;n: Using these definitions for

the temporal evolution of the activation vectors hF;m and

hF;n; the evolution of the vectors hF; hF;m; and hF;n is

governed by the following equations. For each feature cell

i we have

dhF
i ðtÞ

dt
¼

dh
F;m
i ðtÞ

dt
þ

dhF;n
i ðtÞ

dt
ðA7Þ

where

t
dh

F;m
i ðtÞ

dt
¼ 2h

F;m
i ðtÞ þ

1

NF

X
j

W
m
ij rF

j ðtÞ ðA8Þ

and

t
dhF;n

i ðtÞ

dt
¼ 2hF;n

i ðtÞ þ
1

NF

X
j

Wn
ij r

F
j ðtÞ: ðA9Þ

Eqs. (A8) and (A9) are used to define the temporal

evolution of the activation vectors hF;m and hF;n: Eqs. (A8)

and (A9) are coupled through the firing rates rF
j ðtÞ; which

reflect the presence of both activity packets, hF;m and hF;n:Eq.

(A3) may be recovered by summing Eqs. (A8) and (A9).

We now consider how the vector hF;m representing an

activity packet in the first feature space xm evolves

according to Eq. (A8). The firing rates of the feature cells

are given by the sigmoid transfer function

rF
i ¼

1

1 þ e22bðhF
i
2aÞ

¼
1

1 þ e22bððh
F;m

i
þhF;n

i
Þ2aÞ

: ðA10Þ

However, since the sigmoid function is monotonically

increasing, the cell firing rates may be decomposed into

rF
i ¼ r

F;m
i þ re

i ; ðA11Þ

where r
F;m
i is defined as the cell firing rate that would result

from the presence of a single activity packet hF;m in the first

feature space xm; i.e.

r
F;m
i ;

1

1 þ e22bðh
F;m

i
2aÞ

; ðA12Þ

and re
i is the component of the cell firing due to the

presence of the additional activity packet hF;n in the second

feature space xn: With a non-linear sigmoid transfer

function, it is evident that the noise term re
i from the

second feature space xn depends on the activity h
F;m
i in the

first feature space xm:

Substituting Eq. (A11) into Eq. (A8) gives

t
dh

F;m
i ðtÞ

dt
¼ 2h

F;m
i ðtÞ þ

1

NF

X
j

W
m
ij r

F;m
j ðtÞ þ

1

NF

X
j

W
m
ij re

j :

ðA13Þ

The system of Eq. (A13) governing the evolution of the

activity profile hF;m takes the form of a continuous attractor

network model encoding a single feature space xm; but with

additional inputs ð1=NFÞ
P

j W
m
ij re

j due to the presence of the

activity packet hF;n in the other feature space xn: The

continuous attractor model defined by the system of Eq.

(A13) without the input terms ð1=NFÞ
P

j W
m
ij re

j is identical

to that investigated by Stringer et al. (2002b). This system

is able to support a stable activity packet in the space xm

using the symmetric components of the weight matrix W
m
ij ;

and was shown by Stringer et al. (2002b) to be able to shift

the activity packet in the correct direction as the agent

begins to move using the asymmetric components of the

weight matrix W
m
ij :

When the input terms ð1=NFÞ
P

j W
m
ij re

j are present in the

system of Eq. (A13), the effects of these inputs on the

evolution of hF;m may be ameliorated in two ways. Firstly, if

the firing rates of the feature cells are somewhat binarised

(as in the simulations described in this paper) this may

contribute to the stability of the activity packets in each

space. This is because shifting the activity packet requires

activating new cells maximally, and this creates an energy

barrier for the packet to move through. Secondly, the

resetting of the sigmoid threshold a according to Eq. (4)

helps to stabilise the activity packet. This effect has been

explored by Stringer et al. (2002b).

However, even when the input terms ð1=NFÞ
P

j W
m
ij re

j are

relatively large, the effects of these inputs on the evolution

of hF;m may be analysed as follows. We consider the

situation in which the number of feature cells NF in the

network increases to infinity. We assume that the elements

of the weight matrices reflect underlying continuous weight

profiles Wmðxm; ymÞ which are continuous functions of space

xm; and that these profiles do not alter as NF !1: Examples

of the synaptic weight profiles learned by a relatively small

network are shown in Figs. 6 and 7. Each of the plots reflects

an underlying continuous weight profile in the relevant

feature space, with additional noise due to the synaptic

weight updates associated with the other feature space. In
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addition, we assume the weight matrix is shift invariant, i.e.

Wmðx
m
1 ; x

m
1 þ ymÞ ¼ Wmðx

m
2 ; x

m
2 þ ymÞ

for ym [ ½22p; 2p�:

ðA14Þ

This implies that the weight profile will be identical for

each postsynaptic neuron i: This shift invariance is due to the

homogeneous training of the network through all of the

locations in each feature space. We also assume the shape of

the activity packets in the two spaces xm and xn depends only

on their respective spaces, and that the shapes of the packets

reflect underlying continuous activity profiles which are

continuous functions of space xm; and do not alter as the

number offeature cells increases. This means that as NF !1;

the activity packets do not shrink relative to their spaces, and

are instead represented by a greater density of feature cells.

Let us assume that the neurons are arranged randomly in

the two different feature spaces; that is, the orderings of the

neurons in the two spaces are uncorrelated with each other.

Consider a stationary activity packet hF;m in the feature

space xm: Since the values of the noise terms re
j are

dependent on the magnitudes of the activities h
F;m
i in the first

feature space xm; we obtain the following behaviour as size

of the network increases. As NF !1; the input terms

ð1=NFÞ
P

j W
m
ij re

j for each feature cell i situated in the space

xm tend to a continuous function sðxmÞ; which varies with the

activity profile hF;m in the space xm: Now consider an

activity packet hF;m moving through different locations in

the feature space xm: In this case the input function sðxm; tÞ

will change through time. However, since the weight

matrices Wm are shift invariant, the input function sðxm; tÞ

takes the form of a fixed wave profile that follows the

activity packet profile hF;m in the space xm: That is, if we

consider an activity packet hF;m moving through the first

feature space xm; then the input sðxm; tÞ at each moving point

of the wave profile hF;m remains constant through time.

Thus, as the size of the network is increased, the input to an

activity packet hF;m in a feature space xm from the activity

packet in the other feature space xn tends towards a fixed

wave profile sðxm; tÞ which follows the movement of the

activity packet profile hF;m in the first space xm: As the

number of feature cells increases, Eq. (A13) tends towards

t
dh

F;m
i ðtÞ

dt
¼2h

F;m
i ðtÞþ

1

NF

X
j

W
m
ij r

F;m
j ðtÞþ sðxm; tÞ: ðA15Þ

As the number of feature cells NF in the network

increases, the behaviour of the network equation (A15)

tends towards that of a continuous neural field model, in

which there is a single activation function hðx; tÞ which is a

continuous function of space x and time t: To complete the

analysis of the effects of the input sðxm; tÞ on the evolution of

the activity profile hF;m; we now turn to the corresponding

neural field model, which permits us to apply the analytical

methods of Amari (1977).

A.2. Dynamics of activity packets in a continuous neural

field model

As the number of feature cells NF in the discrete network

model increases, the behaviour of the network equation.

(A15) tends towards that of a continuous neural field model

of the form

t
›hF;mðxm; tÞ

›t
¼2 hF;mðxm; tÞ þ

1

2p

ð2p

0
Wmðxm; ymÞ

� rF;mðym; tÞdym þ sðxm; tÞ; ðA16Þ

where hF;mðxm; tÞ is the neural field activation function which

is a continuous function of space xm and time t; Wmðxm; ymÞ

is a continuous weight function that describes the inter-

actions within the neural field hF;mðxm; tÞ; and rF;mðym; tÞ is

the firing rate given by the sigmoid transfer function

rF;mðxm; tÞ ¼
1

1 þ e22bðhF;mðxm;tÞ2aÞ
: ðA17Þ

Eq. (A16) has an input sðxm; tÞ; which is due to the effects

of the activity packet in the second feature space xn; and

which takes the form of a wave function that moves with the

activity profile hF;mðxm; tÞ in the space xm: The continuous

neural field formulation (A16) permits us to apply the

analytical methods of Amari (1977). The theory developed

in this section is an extension of that developed for an

infinite 1D space by Amari (1977), which assumed a step

transfer function and binary firing rates. The consideration

of a closed finite space permits a more general analysis with

arbitrary monotonic (e.g. sigmoid) transfer functions.

We are interested in the conditions on sðxm; tÞ which are

necessary for the system (A16) to settle into a fixed wave

profile hF;mðxm; tÞ which represents a stable activity packet

moving through the space xm: Consider a location x
m
p ðtÞ

which tracks a particular point on the activity wave

hF;mðxm; tÞ with activation

hF;mðxmp ðtÞ; tÞ ¼ hp: ðA18Þ

Now consider the state of the system a short time dt later.

We have

hF;mðxmp ðtÞ þ dxmp ; t þ dtÞ ¼ hp; ðA19Þ

where x
m
p ðt þ dtÞ ¼ x

m
p ðtÞ þ dx

m
p : A Taylor expansion of

hF;mðx
m
p ðtÞ þ dx

m
p ; t þ dtÞ about the point ðx

m
p ðtÞ; tÞ gives

(following from Amari, 1977)

hF;mðxmp ðtÞ þ dxmp ; t þ dtÞ

¼ hF;mðxmp ðtÞ; tÞ þ
›hF;mðx

m
p ; tÞ

›xm
dxmp þ

›hF;mðx
m
p ; tÞ

›t
dt

þ higher order terms: ðA20Þ
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Substituting Eqs. (A18) and (A19) into Eq. (A20) gives

›hF;mðx
m
p ; tÞ

›xm
dxmp þ

›hF;mðx
m
p ; tÞ

›t
dt ¼ 0; ðA21Þ

for infinitesimally small dx
m
p and dt: Then from Eq. (A21)

we have

dx
m
p

dt
¼ 2

›hF;m

›t
=
›hF;m

›xm
: ðA22Þ

If we define

cp ;
›hF;mðx

m
p ðtÞ; tÞ

›xm
; ðA23Þ

then substituting Eqs. (A16) and (A23) into Eq. (A22) gives

(following from Amari, 1977)

dx
m
p

dt
¼2

1

tcp

2hpþ
1

2p

ð2p

0
Wmðxmp ;y

mÞrF;mðym;tÞdymþsðxmp ;tÞ

� �
:

ðA24Þ

For the system (A16) to settle into a fixed wave profile

hF;mðxm;tÞ moving at constant speed through the feature

space xm; the velocity of each location x
m
p ðtÞ on the activity

wave given by Eq. (A24) must be constant through time. We

note that, because the weight matrix Wm is shift invariant,

for a moving activity wave hF;mðxm;tÞ the term
Ð2p

0 Wm

ðx
m
p ;y

mÞrF;mðym;tÞdym will be constant for each location x
m
p of

the activity wave profile. Therefore, for the velocity ðdx
m
p =dtÞ

of each location x
m
p ðtÞ on the activity wave to be constant

through time, the input function sðx
m
p ;tÞ at each location x

m
p ðtÞ

of the activity wave must remain equal to some constant sp

through time. This in turn requires that the input function

sðxm;tÞ takes the form of a wave function that moves with the

activity profile hF;mðxm;tÞ in the space xm: If the input sðxm;tÞ

at a location x
m
p is randomly perturbed from its constant

value sp; then from Eq. (A24) there will be a perturbation in

the velocity of the activation profile at that location, and the

shape of the packet will be deformed.

Let us again consider the discrete system analysed above in

Appendix A.1. The random perturbations in the input terms

ð1=NFÞ
P

j W
m
ij re

j (from a fixed profile which follows the

activity packet profile in the space xm ) will be largest in small

networks, but reduce as the number of feature cells NF in the

network increases (as discussed above in Appendix A.1).

Hence, this analysis provides an explanation for the numerical

results of experiments 4a and 4b. That is, why there is less

time variation in the shape and size of the activity packets in

the different spaces, as the size of the network increases.
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