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Abstract

Single neuron recording studies have demonstrated the existence of spatial view neurons which encode information about the spatial location at

which a primate is looking in the environment. These neurons are able to maintain their firing even in the absence of visual input. The standard

neuronal network approach to model networks with memory that represent continuous spaces is that of continuous attractor neural networks.

Stringer, Rolls and Trappenberg (2005) have recently shown how idiothetic (self-motion) inputs could update the activity packet of neuronal firing

within a two-dimensional continuous attractor neural network of spatial view cells. However, this earlier study examined only the simplified

situation in which the agent could rotate on the spot or move its eyes. In this paper we show how spatial view cells could be driven by head

direction and place cells, themselves idiothetically updated. The head direction and place neurons are remapped by a competitive network with

expansion recoding which self-organises so that different neurons represent different combinations of head direction and the place where the agent

is located. The combination cells are then mapped by pattern association involving long-term synaptic potentiation but also long-term

homosynaptic depression to spatial view cells, which during training are driven by the spatial view. After training, the spatial view cells are

updated in the dark by the idiothetically driven head direction and place cells.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper we first review the properties and models of

primate hippocampal spatial view cells and of presubicular

head direction cells. Then we consider how the spatial

representations in these models could be updated by idiothetic

(self-motion) signals. Then we present a new model of how

spatial view cells could be updated by self-motion even when

the animal is located in different parts of an environment, and

how the connections in the model could self-organize as a

result of learning. Part of the interest of the new model

presented here is that the idiothetic update can be performed

without multiplicative Sigma-Pi synapses, which were used in

earlier models (Stringer, Trappenberg, Rolls, & De Araujo,

2002; Stringer, Rolls, Trappenberg, & De Araujo, 2002;

Stringer et al., 2005; Stringer, Rolls, Trappenberg, & De

Araujo, 2003; Stringer, Rolls, & Trappenberg, 2004), but

instead with Hebbian synapses. The new model thus also shows
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how these earlier models could be extended to utilize just

Hebbian synapses.
1.1. Spatial view cells and head direction cells in primates:

neurophysiology and models
1.1.1. Head direction and place cells

Single neuron recording studies have demonstrated the

existence of neurons which appear to encode information about

the position or orientation of an animal with respect to its

environment, and which are able to maintain their response

properties even in the absence of visual input. Examples of

such cells include head direction cells in rats (Muller, Ranck, &

Taube, 1996; Ranck, 1985; Taube, Muller, & Ranck, 1990;

Taube, Goodridge, Golob, Dudchenko, & Stackman, 1996) and

primates (Robertson, Rolls, Georges-François, & Panzeri,

1999) which respond maximally when the animal’s head is

facing in a particular preferred direction, and hippocampal

place cells in rats (Markus, Qin, Leonard, Skaggs, McNaugh-

ton and Barnes, 1995; Muller, Kubie, Bostock, Taube & Quirk,

1991; McNaughton, Barnes, & O’Keefe, 1983; O’Keefe &

Dostrovsky, 1971; O’Keefe, 1984) that fire maximally when

the animal is in a particular location. The ways in which visual

cues might stimulate the rodent place cells have been
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demonstrated in neurophysiological studies (Markus et al.,

1995; McNaughton et al., 1983; Muller et al., 1991; O’Keefe,

1984), and modelled in theoretical investigations (De Araujo,

Rolls, & Stringer, 2001; O’Keefe, & Burgess, 1996).

1.1.2. Spatial view cells

In primates, hippocampal spatial view cells have been

discovered that respond when the monkey is looking towards a

particular location in space (Rolls, Robertson, & Georges-

François, 1997; Rolls, Treves, Robertson, Georges-François, &

Panzeri, 1998; Robertson, Rolls & Georges-François, 1998;

Rolls, 1999). Hippocampal spatial view cells code for the

location at which a primate is looking, and hence code for

particular locations in allocentric (world-based rather than

egocentric) space (Georges-François, Rolls, & Robertson,

1999; Rolls et al., 1998). An important property of primate

spatial view cells is their ability to maintain their spatial

properties for periods of up to several minutes in the dark. For

example, some spatial view cells respond to remembered

spatial views in that they respond when the view details are

obscured, and use idiothetic cues including eye position and

head direction to trigger this memory recall operation

(Robertson et al., 1998). Another idiothetic input that drives

some primate hippocampal neurons is linear and axial whole

body motion (O’Mara, Rolls, Berthoz, & Kesner, 1994), and in

addition, the primate presubiculum has been shown to contain

head direction cells (Robertson et al., 1999).

Part of the interest of spatial view cells is that they could

provide the spatial representation required to enable primates

to perform object-place memory, for example remembering

where they saw a person or object, which is an example of

an episodic memory, and indeed similar neurons in

the hippocampus respond in object-place memory tasks

(Rolls, Miyashita, Cahusac, Kesner, Niki and Feigenbaum,

1989; Rolls, Xiang, & Franco, 2005). Associating together

such a spatial representation with a representation of a person

or object could be implemented by an autoassociation network

implemented by the recurrent collateral connections of the

CA3 hippocampal pyramidal cells (Rolls, 1989; Rolls, 1996;

Rolls & Treves, 1998; Treves & Rolls, 1992; Treves & Rolls,

1994). Some other primate hippocampal neurons respond in the

object-place memory task to a combination of spatial

information and information about the object seen (Rolls

et al., 1989). Further evidence for this convergence of spatial

and object information in the hippocampus is that in another

memory task for which the hippocampus is needed, learning

where to make spatial responses conditional on which picture is

shown, some primate hippocampal neurons respond to a

combination of which picture is shown, and where the response

must be made (Cahusac, Rolls, Miyashita, & Niki, 1993;

Miyashita, Rolls, Cahusac, Niki, & Feigenbaum, 1989), and

this task and an arbitrary stimulus-motor response association

task are impaired by damage to the hippocampal system

(Brasted, Bussey, Murray, & Wise, 2003; Wise & Murray,

1999). A further interesting type of convergence found in the

primate hippocampus is of spatial view and reward value, for

spatial view-reward neurons have now been found that allow
the particular rewards available at different locations in a scene

to be recalled (Rolls, 2005; Rolls & Xiang, (2005a)).
1.1.3. A model of the storage and retrieval of memories

by the hippocampal system

These neurophysiological analyses are complemented

by neuronal network models of how the hippocampus

could operate to store and retrieve large numbers of memories

(Rolls, 1987; Rolls, 1989; Rolls, 1996; Treves & Rolls, 1992;

Treves & Rolls, 1994; Rolls & Treves, 1998). One

key hypothesis (adopted also by McClelland, McNaughton

and O’Reilly (1995)) is that the hippocampal CA3 recurrent

collateral connections which spread throughout the CA3

region provide a single autoassociation network that enables

the firing of any set of CA3 neurons representing one part of a

memory to be associated together with the firing of any other

set of CA3 neurons representing another part of the same

memory (cf. Marr (1971)). The number of patterns p each

representing a different memory that could be stored in the

CA3 system operating as an autoassociation network would be

as shown in Eq. (1) (see Rolls and Treves (1998); Rolls and

Deco (2002))

pz
CRC

a ln 1
a

� � k (1)

where CRC is the number of synapses on the dendrites of each

neuron devoted to the recurrent collaterals from other CA3

neurons in the network, a is the sparseness of the

representation, and k is a factor that depends weakly on the

detailed structure of the rate distribution, on the connectivity

pattern, etc., but is roughly in the order of 0.2-0.3. Given that

CRC is approximately 12,000 in the rat, the resulting storage

capacity would be greater than 12,000 memories, and perhaps

up to 36,000 memories if the sparseness a of the representation

was as low as 0.02 (Treves & Rolls, 1992, 1994). Another part

of the hypothesis is that the very sparse (see Fig. 1) but

powerful connectivity of the mossy fibre inputs to the CA3

cells from the dentate granule cells is important during learning

(but not recall) to force a new, arbitrary, set of firing onto the

CA3 cells which dominates the activity of the recurrent

collaterals, so enabling a new memory represented by the firing

of the CA3 cells to be stored (Rolls, 1989; Rolls, 1987; Treves

& Rolls, 1992). The perforant path input to the CA3 cells,

which is numerically much larger but at the apical end of the

dendrites, would be used to initiate recall from an incomplete

pattern (Rolls & Treves, 1998; Treves & Rolls, 1992). The

prediction of the theory about the necessity of the mossy fibre

inputs to the CA3 cells during learning but not recall has now

been confirmed (Lassalle, Bataille, & Halley, 2000). A way to

enhance the efficacy of the mossy fibre system relative to the

CA3 recurrent collateral connections during learning may be to

increase the level of acetyl choline by increasing the firing of

the septal cholinergic cells (Hasselmo, Schnell, & Barkai,

1995).

Another key part of the quantitative theory is that not only

can retrieval of a memory to an incomplete cue be performed
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Fig. 1. The numbers of connections onto each CA3 cell from three different

sources in the rat. (After Treves & Rolls, 1992; Rolls & Treves, 1998.)
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by the operation of the associatively modified CA3 recurrent

collateral connections, but also that recall of that information to

the neocortex can be performed via CA1 and the hippocampo-

cortical and cortico-cortical backprojections (Treves & Rolls,

1994; Rolls, 1996; Rolls, 2000; Rolls & Treves, 1998) shown

in Fig. 2. In this case, the number of memory patterns pBP that

can be retrieved by the backprojection system is

pBP z
CBP

aBPln 1
aBP

� � kBP (2)

where CBP is the number of synapses on the dendrites of each

neuron devoted to backprojections from the preceding stage

(dashed lines in Fig. 2), aBP is the sparseness of the

representation in the backprojection pathways, and kBP is a

factor that depends weakly on the detailed structure of the rate

distribution, on the connectivity pattern, etc., but is roughly in

the order of 0.2-0.3. The insight into this quantitative analysis

came from treating each layer of the backprojection hierarchy

as being quantitatively equivalent to another iteration in a

single recurrent attractor network (Treves & Rolls, 1994;

Treves & Rolls, 1991). The need for this number of

connections to implement recall, and more generally constraint

satisfaction in connected networks, provides a fundamental and

quantitative reason for why there are approximately as many

backprojections as forward connections between the adjacent

connected cortical areas in a cortical hierarchy.

The number of memories that could be recalled by the

backprojections would be maximal if the backprojection

representations were sparse, as shown above in Eq. (2). In a

recent investigation of the sparseness of the representation

provided by populations of neurons in the inferior temporal

visual cortex, it has been found that the representations are not
very sparse, with aZ0.76 (Franco, Rolls, Aggelopoulos, &

Jerez, 2005). While less is known of the sparseness in the

primate subiculum, entorhinal cortex, and perirhinal cortex

(Hölscher, Rolls, & Xiang, 2003; Rolls, Franco, & Stringer,

2005), in rodents the representation does not appear to be very

sparse in the subiculum (Sharp & Green, 1994), but can be as

sparse in the entorhinal cortex as in the hippocampus (Fyhn,

Molden, Witter, Moser, & Moser, 2004). Even if the

representations are not very sparse, the number of memories

that can be retrieved is still reasonable, as shown by the

following. The calculation performed by Treves and Rolls

(1991) and illustrated in their Fig. 5a (reproduced in Rolls and

Treves (1998) Fig. A4.2) deals with a number of cases of

dilution of the connectivity and the probability distribution of

the firing rates in each pattern. Eq. (2) only summarizes this

calculation rather approximately, and reference to the graphs is

needed for the details, as the capacity is somewhat different for

the fully connected and diluted connectivity cases. (In the

brain, the connectivity will be diluted.) For the highly diluted

limit the storage capacity does not decrease much below the

value it has for aZ0.2 as a increases. For realistic connectivity

with C/Nz0.1 (where C is the number of connections per

neuron, and N is the number of neurons), the number of

patterns pBP continues to decrease with increasing a, but

remains reasonable.

Another aspect of the theory is that the operation of the CA3

system to implement recall, and of the backprojections to

retrieve the information, would be sufficiently fast, given the

fast recall in associative networks built of neurons with

continuous dynamics (see Rolls and Deco (2002); Rolls and

Treves (1998)).
1.1.4. Continuous attractor models of spatial representations

A key challenge is to understand how classes of cells such as

head direction cells, place cells and spatial view cells, can

maintain their response properties when the animal is in

darkness, with no visual input available to guide and update the

firing of the cells. A class of network that can maintain the

firing of its neurons to represent any location along a

continuous physical dimension such as head direction is

a ‘Continuous Attractor’ neural network (CANN). A number

of researchers have modelled head direction and place cells

with ‘continuous attractor’ neural networks (Battaglia &

Treves, 1998; Redish, Elga, & Touretzky, 1996; Redish &

Touretzky, 1998; Samsonovich & McNaughton, 1997; Skaggs,

Knierim, Kudrimoti, & McNaughton, 1995; Stringer, Trappen-

berg, Rolls, & De Araujo, 2002; Stringer, Rolls, Trappenberg,

& De Araujo, 2002; Stringer et al., 2005; Stringer et al., 2004;

Zhang, 1996) which are able to maintain a localised packet of

neuronal activity representing the current state of the animal. In

these networks the excitatory recurrent collateral connections

between the neurons reflect the distance between the neurons in

the state space (e.g. head direction space) of the animal. Then,

global inhibition is used to keep the number of neurons in a

bubble of activity relatively constant, and to help to ensure that

there is only one activity packet. The properties of these
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continuous attractor networks have been extensively studied,

for example by Amari (1977); Taylor (1999).
1.1.5. Networks that combine spatial and discrete information

It has now been shown that attractor networks can store both

continuous patterns and discrete patterns, and can thus be used

to store for example the location in (continuous, physical)

space where an object (a discrete item) is present (Rolls,

Stringer, & Trappenberg, 2002). In this network, when events

are stored that have both discrete (object) and continuous

(spatial) aspects, then the whole place can be retrieved later by

the object, and the object can be retrieved by using the place as

a retrieval cue. Such networks are likely to be present in parts

of the brain such as the hippocampus which receive and

combine inputs both from systems that contain representations

of continuous (physical) space, and from brain systems that

contain representations of discrete objects, such as the inferior

temporal visual cortex. The combined continuous and discrete

attractor network described by Rolls et al. (2002) shows that in

brain regions where the spatial and object processing streams
are brought together, then a single network can represent and

learn associations between both types of input. Indeed, in brain

regions such as the hippocampal system, it is essential that the

spatial and object processing streams are brought together in a

single network, for it is only when both types of information

are in the same network that spatial information can be

retrieved from object information, and vice versa, which is a

fundamental property of episodic memory.
1.1.6. Self-organizing models of the idiothetic update

of head direction and place cells

In most continuous attractor models of head direction and

place cells the synaptic connections have been fixed or hard-

wired; that is, the synaptic weights have been set by formula to

an appropriate value. This leads to a lack of biological

plausibility, and to a lack of flexibility in terms of being able to

build representations of complex or warped state spaces of the

agent. These issues were addressed in Stringer, Trappenberg,

Rolls, and De Araujo (2002); Stringer, Rolls, Trappenberg, and

De Araujo (2002), where self-organizing continuous attractor
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network models were developed for head direction and place

cells respectively. In these papers it was shown how the

synaptic connectivity of the continuous attractor networks

could self-organize during an initial learning phase in the light,

such that, during the subsequent testing phase in the dark, the

networks were able to support a stable packet of neuronal

activity representing the current state (e.g. head direction) of

the agent which could be updated by idiothetic inputs. A

fundamental feature of these self-organizing continuous

attractor network models was their use of ‘trace’ learning

rules which incorporate a form of temporal average of recent

cell activity. Such rules are able to build associations between

different patterns of neural activities that tend to occur in

temporal proximity (Földiák, 1991; Rolls & Stringer, 2001;

Wallis and Rolls, 1997).

1.1.7. Previous models of primate hippocampal

spatial view cells

The ideas presented in Stringer, Trappenberg, Rolls and De

Araujo (2002); Stringer, Rolls, Trappenberg and De Araujo

(2002) were further developed to seek to explain the firing

properties of spatial view cells in Stringer et al. (2005). In

Stringer et al. (2005) two models of spatial view cells were

proposed that were based on self-organizing continuous

attractor networks. Both of the spatial view models presented

by Stringer et al. (2005) self-organized through modification of

their synaptic connections such that the spatial view being

represented by the continuous attractor networks could be

updated by idiothetic (self-motion) signals. In the first of these

models, the recurrent network model, the firing pattern in the

spatial view cell layer is updated in the dark by idiothetic

velocity signals from rotation cells and eye velocity cells. In

the second of these models, the feedforward model, the firing

pattern in the spatial view cell layer is updated in the dark by

positional information from head direction cells and eye

position cells. However, the two models presented in Stringer

et al. (2005) examined only the simplified situation in which

the agent could rotate on the spot or move its eyes.

2. A new model of the idiothetic update of spatial view cells

In this paper we extend the work presented in Stringer et al.

(2005) to address the more general case in which the agent is

able to move though the environment visiting different

locations. In this paper we present a model of spatial view

cells that enables the spatial view cells to respond correctly to

the spatial view even when the agent is located in different

places in its environment which result in different head

directions being required to see the spatial view. A feature of

this new model is that the idiothetic update can be performed

without multiplicative Sigma-Pi synapses, which were used in

our earlier models (Stringer, Trappenberg, Rolls, & De Araujo,

2002; Stringer, Rolls, Trappenberg, & De Araujo, 2002;

Stringer et al., 2005; Stringer et al., 2003; Stringer et al., 2004),

but instead with Hebbian synapses. The new model thus also

shows how these earlier models could be extended to utilize

just Hebbian synapses.
2.1. The architecture of the model

The neural network architecture of the new model is shown

in Fig. 3. There is a spatial view cell, which is driven by visual

input from a particular spatial view in the environment during

training in the light. (The model is described for simplicity for a

single spatial view cell, though in practice there would be a

whole population, each tuned to a different spatial view, as in

the primate hippocampus (Rolls, 1999).) The spatial view cell

also receives inputs from a layer of combination cells, which

represent particular combinations of head direction and place.

The combination cells receive inputs from a layer of head

direction cells and a layer of place cells. We note that although

we ourselves have not found place cells in the primate

hippocampus (Rolls & Xiang, (2005b)) we acknowledge that

they could be present (Ekstrom, Kahana, Caplan, Fields, Isham

and Newman, 2003; Fried, MacDonald, & Wilson, 1997; Ono,

Nakamura, Nishijo, & Eifuku, 1993), though very careful

testing is required to prove that a cell responds to the place

where the primate (including human) is located, and not to

what is being looked at (Rolls & Xiang, (2005b)). Thus the

inclusion of place cells in the current model is not

unreasonable. In addition, we believe that the current model

might apply to rodents, in the sense that rat place cells have

very directional properties when the rat is running down an

alley with a small view of the world straight ahead. Under these

conditions, the neurons may respond when the rat is running in

one direction, but not in the other (Gothard, Skaggs, &

McNaughton, 1996), and in this sense might be thought of as

spatial view cells. To test this suggestion, it would be

interesting to measure whether rat place cells respond when

the rat is running in an alley pointing to the same spatial view,

but situated in different places in the environment. In addition,

we note that one of the types of neuron that forms a key

component of the present model, neurons that respond to a

combination of place and head direction, have been found in

the rat (Cho & Sharp, 2001; Sharp & Green, 1994; Sharp,

1996). Independently of these points, an additional part of the

value of this model is that it shows how the Hebbian synapses

for the idiothetic update of position in a state space can self-

organize by learning, and thus has application to models that

use other variables in the mapping system.

In the model, the combination cells operate as a self-

organizing competitive network in which different neurons

come as a result of the learning to respond to particular

combinations of head direction and place as the agent moves to

different places in the environment and adopts different head

directions. Competitive networks are described by Hertz,

Krogh, and Palmer (1991); Rolls and Treves (1998), and Rolls

and Deco (2002), and involve competition between the neurons

by for example mutual inhibition, and for neurons with

relatively high firing after the competition, an associative

learning rule to make the weight vectors move towards the

pattern that is activating a neuron. It was found that to

encourage a wide variety of different head direction/place

combination cells to be set up, diluted connectivity from the

place and head direction cells to the combination cells was
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helpful. Once the combination cells had self-organised by

competitive learning, the spatial view cells are forced into

activity by a particular spatial view in the light, and by pattern

association learn which input patterns from the combination

cells are associated with the current spatial view. It was found

that for this pattern association learning system to operate well,

not only were increases in synaptic weights needed, but so were

decreases, in particular corresponding to homosynaptic long-

term depression (LTD). Homosynaptic LTD corresponds to

decreasing the synaptic weight if there is no post-synaptic

activity (because the neuron is not being driven by the current

spatial view) but there is presynaptic activity. The homo-

synaptic LTD allows the spatial view cell(s) to learn not to

respond to the activity of combination cells that are not

associated with the current spatial view. Homosynaptic LTD

has been found in the hippocampus (Stanton & Sejnowski,

1989).

The details of the model are as follows.
2.2. Cell types and properties

The head direction cells have firing which reflect the current

head direction of the agent. In the simulations, each head

direction cell i has a unique head direction qi for which the cell

fires maximally. The firing rate rHD
i of each head direction cell i
may be set to be the following Gaussian function of the

displacement of the head from the optimal firing direction of

the cell (Muller et al., 1996; Taube et al., 1996; Robertson

et al., 1999)

rHD
i Z exp K sHD

i

� �2
=2 sHD
� �2

� �
; (3)

where sHD is the absolute difference between the actual head

direction q (in degrees) of the agent and the optimal head

direction qi for head direction cell i, and sHD is the standard

deviation. sHD is given by

sHD Z MIN jqiKqj; 360KjqiKqj
� �

: (4)

It is known that the firing rates of head direction cells in both

rats (Muller et al., 1996; Taube et al., 1996) and macaques

(Robertson et al., 1999) are approximately Gaussian.

The place cells have firing which reflect the current location

of the agent within the square environment. Place cells fire

maximally at particular locations. Hence, each place cell i is

assigned a unique location (xi, yi) in the environment at which

the cell is stimulated maximally by the visual cues. Then the

firing rate rP
i of each place cell i is set according to the

following Gaussian response profile

rP
i Z exp K sP

i

� �2
=2 sP
� �2

� �
; (5)
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where sP
i is the distance between the current location of the

agent (x, y) and the location at which cell i fires maximally (xi,

yi), and sP is the standard deviation. sP
i is given by

sP
i Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxiKxÞ2 C ðyi KyÞ2

q
: (6)

The combination cells receive inputs from the head

direction cells and place cells. The activation of each

combination (COMB) cell i is given by

hCOMB
i Z

X
j

w1
ijr

HD
j C

X
j

w2
ijr

P
j (7)

where w1
ij are the weights from head direction cell j to

combination cell i, and w2
ij are the weights from place cell j to

combination cell i. The firing rates of the combination cells

with the highest activations are set to 1, while the firing rates of

the remaining combination cells are set to 0. In the simulations,

the top 1 per cent of cells were kept active, and the sparseness a

was therefore 0.01. In the simulations, diluted connectivity of

these connections was used, to facilitate the setting up of

neurons that responded to different combinations of head

direction and place. The numbers of cells, and the numbers of

synaptic connections between them, are given in Table 1.

During training in the light, the spatial view cell is driven by

visual input from a particular spatial view in the environment.

In the simulations, the spatial view cell is driven by visual input

from a location on the North wall (xZ0.5, yZ1.0). This gives

rise to a spatial view field on the North wall about this position.

The firing rate rSV of the spatial view cell is set to be a Gaussian

function of the displacement of the current head direction (i.e.

gaze angle) of the agent from the head direction at which the

agent would be looking towards the centre of the spatial view

field. Of course, the head direction at which the agent would be

looking towards the centre of the spatial view field depends on

the current location of the agent. For example, it can be seen

that when the agent is in location 1 (xZ0.25, yZ0.75), the

spatial view cell fires maximally when the agent has a head
Table 1

Parameter values for model

Number of head direction cells 2500

Number of place cells 50!50Z2500

Number of combination cells 2500

Number of training epochs 50

Learning rate k1 0.001

Learning rate k2 0.001

Learning rate k3 0.001

Number of w1 connections

received by each combination cell

50

Number of w2 connections received

by each combination cell

50

Number of w3 connections received

by each spatial view cell

2500

Sparseness of firing rates in layer

of combination cells

0.01

Standard deviation sHD 108

Standard deviation sP 0.1

Standard deviation sSV 108

Sigmoid threshold a 0.14

Sigmoid slope b 20.0
direction of 45 degrees. However, when the agent is in location

2 (xZ0.75, yZ0.75), the spatial view cell fires maximally

when the agent has a head direction of 3158. Therefore, during

training in the light, the firing rate of the spatial view cell is

given by

rSV Z exp K sSV
� �2

=2 sSV
� �2

� �
; (8)

where sSV is the absolute difference between the actual head

direction q (in degrees) of the agent and the head direction at

which the agent would be looking towards the centre of the

spatial view field, and sSV is the standard deviation.

The spatial view cell also receives inputs from the layer of

combination cells. During testing in the absence of visual input,

the activation of the spatial view cell is driven by the inputs

from the combination cells, and is given by

hSV Z
X

j

w3
j rCOMB

j (9)

where w3
j are the weights from combination cell j to the spatial

view cell. Once the activation of the spatial view cell has been

computed according to Eq. (9), the firing rate of the cell is then

given by the sigmoid transfer function

rSV Z
1

1 CeK2bðhSVKaÞ
; (10)

where a and b are the sigmoid threshold and slope,

respectively.
2.3. Training procedure and learning rules

An underlying assumption of the model is that during

learning, when visual cues are available to the agent, the

visual inputs dominate other excitatory inputs to the spatial

view cell. In particular, in the light, the spatial view cell is

stimulated maximally by a particular view. The initial

learning phase with visual cues available is able to set up

the synaptic weights such that, during subsequent testing in

the dark, the spatial view cell maintains the same firing

properties that it had in the dark. In particular, the spatial

view cell fires maximally when the agent is looking towards

the centre of the spatial view field.

The training and testing environment is a unit square

containment area as shown in Fig. 4. During training and

testing, the agent is rotated clockwise through 3608 on the

spot in two different locations within the square containment

area. The spatial view cell is driven by visual input from a

location on the North wall (xZ0.5, yZ1.0). This gives rise

to a spatial view field on the North wall about this position.

When the agent is in location 1 (xZ0.25, yZ0.75), the agent

will be looking towards the centre of the spatial view field

and the spatial view cell will fire maximally when the agent

has a head direction of 458. However, when the agent is in

location 2 (xZ0.75, yZ0.75), the agent will be looking

towards the centre of the spatial view field and the spatial

view cell will fire maximally when the agent has a head

direction of 3158.
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Fig. 4. The training and testing environment is a unit square containment area. During training and testing, the agent is rotated clockwise through 3608 on the spot in

two different locations within the square containment area. The spatial view cell is driven by visual input from a location on the North wall (xZ0.5, yZ1.0). This

gives rise to a spatial view field on the North wall. When the agent is in location 1 (xZ0.25, yZ0.75), the agent will be looking towards the centre of the spatial view

field and the spatial view cell will fire maximally when the agent has a head direction of 458. However, when the agent is in location 2 (xZ0.75, yZ0.75), the agent

will be looking towards the centre of the spatial view field and the spatial view cell will fire maximally when the agent has a head direction of 315 degrees.
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One epoch of training constitutes one revolution in each of

the two training locations. In the simulations, the agent

performed 50 training epochs.

During training, the weights w1
ij from head direction cell j to

combination cell i were updated according to an associative

Hebb learning rule

dw1
ij Z k1rCOMB

i rHD
j (11)

where rCOMB
i is the firing rate of combination cell i, rHD

j is the

firing rate of head direction cell j, dw1
ij is the change of synaptic

weight, and k1 is the learning rate constant.

Similarly, the weights w2
ij from place cell j to combination

cell i were updated according to an associative Hebb learning

rule

dw2
ij Z k2rCOMB

i rP
j (12)

where rCOMB
i is the firing rate of combination cell i, rP

j is the

firing rate of place cell j, dw2
ij is the change of synaptic weight,

and k2 is the learning rate constant.

After each timestep of the learning phase, the w1
ij and w2

ij

weights are rescaled according to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

ðw1
ijÞ

2 C
X

j

ðw2
ijÞ

2

s
Z 1; (13)

where the sums are over all head direction cells and place cells

j. This ensures that the weight vectors of all combination cells

are normalised to length 1. This is important for the layer of

combination cells to operate effectively as a competitive
network (Hertz et al., 1991; Rolls and Deco, 2002; Rolls and

Treves, 1998).

The weights w3
j from combination cell j to the spatial view

cell are updated according to a learning rule which combines

associative LTP with homosynaptic LTD

dw3
j Z k3ðrSV KhrSViÞrCOMB

j (14)

where rSV is the firing rate of the spatial view cell, !rSVO is

the average value of rSV which was set to 0.5 in the simulations,

rCOMB
j is the firing rate of combination cell j, dw3

j is the change

of synaptic weight, and k3 is the learning rate constant.
3. Simulation results

Values for the model parameters used in the simulations are

given in Table 1.

Fig. 5 shows the firing rate of the spatial view cell during

training in the light. Results for location 1 are presented in the

left column, while results for location 2 are presented in the

right column. Top row: firing rate of spatial view cell as a

function of head direction q during training in the light. It can

be seen that when the agent is in location 1 (xZ0.25, yZ0.75),

the spatial view cell fires maximally when the agent has a head

direction of 458. However, when the agent is in location 2 (xZ
0.75, yZ0.75), the spatial view cell fires maximally when the

agent has a head direction of 3158. Bottom row: firing rate of

spatial view cell as a function of position on the wall perimeter,

towards which the agent is looking during training in the light.

It can be seen that when the agent is in either location 1 or 2, the

spatial view cell fires maximally when the agent is looking
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Fig. 5. Firing rate of a spatial view cell during training in the light. Results for location 1 are presented in the left column, while results for location 2 are presented in

the right column. Top row: firing rate of the spatial view cell as a function of head direction q during training in the light. It can be seen that when the agent is in

location 1 (xZ0.25, yZ0.75), the spatial view cell fires maximally when the agent has a head direction of 458. However, when the agent is in location 2 (xZ0.75, yZ
0.75), the spatial view cell fires maximally when the agent has a head direction of 3158. Bottom row: firing rate of the spatial view cell as a function of location on the

wall, towards which the agent is looking during training in the light. It can be seen that when the agent is in either location 1 or 2, the spatial view cell fires maximally

when the agent is looking towards the centre of the spatial view field on the North wall (xZ0.5, yZ1.0).
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towards the centre of the spatial view field on the North wall

(xZ0.5, yZ1.0).

Fig. 6 shows the firing rate of spatial view cell during testing

in the dark. Results for location 1 are presented in the left

column, while results for location 2 are presented in the right

column. Top row: firing rate of spatial view cell as a function of

head direction q during testing in the dark. Bottom row: firing

rate of spatial view cell as a function of position on the wall

perimeter, towards which the agent is looking during testing in

the dark. By comparing with Fig. 5, it is evident that during

testing in the dark, the firing rates of the spatial view cell are

similar to what they were during training in the light. In

particular, the spatial view cell fires maximally when the agent

is looking towards the centre of the spatial view field on the

North wall (xZ0.5, yZ1.0). The plots in the left and right

columns are with the agent in two different locations, and these

activate different sets of head direction and place combination

cells. The plots are not symmetrical just due to small

imperfections in the way in which the head direction and

place combination cells self-organize.
4. Discussion

After the model has been trained, the spatial view cells can

be updated by whatever combination of place cell and head

direction cells is currently active. The head direction and place
cells can themselves be idiothetically updated by movements

made in the dark, in for example the ways described by

Stringer, Rolls, Trappenberg, and De Araujo (2002); Stringer,

Trappenberg, Rolls, and De Araujo (2002). Thus the model

shows how spatial view cells could learn the correct

combinations of head direction and place cell firing to account

for the spatial view cells being updated by idiothetic

movements in the dark (Robertson et al., 1998).

It was found that to enable the combination neurons to self-

organise so that different neurons responded to different

combinations of place cell and head direction cell firing a

number of factors were useful. First, if each neuron in the

combination layer received approximately equal numbers of

inputs from the head direction and place cell populations, then

this increased the chance that combination cells were formed.

If by chance connectivity a neuron in the combination layer

received inputs mainly from head direction cells, then it was

likely to self-organize to respond to head direction and not to a

combination of head direction and place. Having neurons

genetically specified to receive approximately a given number

of input connections from a given source may be one solution

to this (Rolls & Stringer, 2000). Second, having diluted random

connectivity from the place and head direction cells to the

combination cells helped each combination cell to form

representations that were distinct from each other. As noted

by Rolls and Deco (2002); Rolls and Treves (1998), the diluted
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right column. Top row: firing rate of the spatial view cell as a function of the head direction q during testing in the dark. Bottom row: firing rate of the spatial view cell

as a function of the location on the wall towards which the agent is looking during testing in the dark. By comparing with Fig. 5, it is evident that during testing in the

dark, the firing rates of the spatial view cell are similar to those during training in the light. In particular, the spatial view cell fires maximally when the agent is
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connectivity typical of forward connections in the brain, where

the connectivity may rarely be over 5%, may be advantageous

for this type of computation. Third, with approximately equal

numbers of inputs from the place cell and head direction cell

sources to a given combination cell, it was further important

that the sparseness of each of these inputs was approximately

the same. Very unequal sparsenesses again made the self-

organization unbalanced, in that the input with the less sparse

representation tended to dominate the types of cell that formed

in the combination layer. The magnitude of the inputs to the

combination cells have to be approximately comparable, and

this could be achieved in a number of ways involving the

number of connections from each source, their mean strength,

and their sparseness. Fourth, it was useful to keep the

sparseness of the representation in the combination cell layer

fairly low, so that many different types of combination neuron

formed. Fifth, it was important, as in all competitive networks

(Hertz et al., 1991; Rolls & Deco, 2002; Rolls & Treves, 1998),

to make sure that no cells dominated the learning, by using

some form of weight normalization on each neuron in the

competitive network. Vector length normalization was used in

the simulations described here, but more biologically plausible

methods utilizing heterosynaptic long-term depression are

available (Rolls & Deco, 2002; Rolls & Treves, 1998). Sixth, it

is a key concept of the architecture shown in Fig. 3 that

combination cells, which act as expansion recoding devices

(Rolls & Deco, 2002; Rolls & Treves, 1998), are necessary to
solve the mapping from place cell and head direction cell

representations to spatial view cell representations, because

otherwise the inputs are too compressed. The expansion

recoding provided by the combination cells enables spatial

view cells to learn using simple associative learning rules to

respond correctly to the different combinations of place cell

and head direction cell firing that together define the conditions

when a particular spatial view is currently visible.

Once the combination cells had self-organised by competi-

tive learning, the spatial view cells are forced into activity by a

particular spatial view in the light, and by pattern association

learn which input patterns from the combination cells are

associated with the current view. It was found that for this

pattern association learning system to operate well, not only

were increases in synaptic weights needed, but so were

decreases, in particular corresponding to homosynaptic long-

term depression (LTD). Homosynaptic LTD corresponds to

decreasing the synaptic weight if there is no post-synaptic

activity (because the neuron is not being driven by the current

spatial view) but there is presynaptic activity. The homo-

synaptic LTD allows the spatial view cell(s) to learn not to

respond to the activity of combination cells that are not

associated with the current spatial view. This is important, as

some cells in the combination layer self-organised to respond

just to place, or just to head direction, and this type of

representation is not useful for the mapping to spatial view, for

which combinations of head direction and place are important.
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Inherent in the use of homosynaptic LTD is the concept that if a

visual input for a particular spatial view is not being received

by the spatial view neuron, then it must be forced into low

activity. This could be arranged during learning by having

strong inputs from spatial views to the spatial view neurons,

and strong mutual inhibition between the spatial view neurons,

so that if they are not being activated by a visual input then they

would be inhibited by other neurons into having low activity.

Training the combination cell to spatial view cell connections

without LTD, or with heterosynaptic LTD, did not produce

such efficient learning of combination cell to spatial view cell

connectivity as training with homosynaptic LTD.

We note that there are reports of some neurons responding

to combinations of head direction and place in rodents, found

for example when rodents traverse a linear runway. In this

situation, a place cell may fire when the rat is running in one

direction, and can see one view of the environment, but may

not fire when the rat is running in the opposite direction and has

a different view of the environment (McNaughton et al., 1983;

Muller, Bostock, Taube, & Kubie, 2004). In a sense, these

neurons described in rodents almost code for spatial view,

except that they are not place independent, as are primate

spatial view cells. By adding the final pattern association stage

to the combination cells, the network shown in Fig. 3 associates

together different place-specific head direction/place combi-

nation cells that fire when the animal has a particular spatial

view from different places in the environment. In addition,

hippocampal neurons that respond to the place where a

macaque is located have been described (Hori, Tabuchi,

Matsumura, Tamura, Eifuku and Nishijo, 2003; Ludvig, Tang,

Gohil, & Botero, 2004), and such place neurons, if their

responses are independent of spatial view, could provide the

representation of place that is part of the model described here.

The relation between rodent place cells in directional

environments such as a runway, in which the place cells have

(head) directional properties, and primate spatial view cells,

deserves further comment. A primate spatial view cell responds

when the primate is looking at a given location in the

environment, and does this when the monkey is in different

places in the environment, provided that the primate is looking

at the spatial view location (Robertson et al., 1998; Rolls, 1999;

Rolls et al., 1997; Rolls et al., 1998). It would be very

interesting to try an experiment with rats in which the rat was

running in a runway towards a particular wall of the room, and

a place field was located at the halfway point of the runway

arm. The runway arm would be displaced laterally to a different

place in the room, but reoriented so that it still faced towards

the same wall location, which would be mainly what would be

visible to the rat when running up the runway. It would then be

interesting to know whether the rat place cell still responded,

when the rat was approximately halfway along the runway, but

in a new place in the room. If so, this would draw out the

similarity between spatial view cells in primates, and place

cells when dominated by extramaze cues in rodents. Further,

such a result would be in line with the hypothesis and model of

De Araujo et al. (2001), which shows that the difference in the

field of view of rodents (which may be 2708) and primates
(which with the fovea has high precision for a small viewing

angle), may help to account for apparent differences between

rodent place cells and primate spatial view cells. In particular,

if the rodent place cell encoded the location of several cues

separated by a large angle in the environment, this would

effectively define a place. If a primate spatial view cell also

encoded the location of several cues in the environment but

now separated by a small angle, this would effectively define a

spatial view cell. By performing the experiment just described

with a rodent running in a narrow runway, effectively the visual

environment would be dominated by the extramaze cues on for

example the wall at the end of the runway, and under these

conditions, a rat place cell might be seen to be in some respects

quite similar to a primate spatial view cell.

Finally, we note that spatial view cells may have a

number of functions. One could be in navigation, in which

forming associations between a particular spatial view and

whole body movements (which are known to be represented

in the primate hippocampus (O’Mara et al., 1994), and an

example of which might be turning to the right), would be

helpful in route finding. This would utilize the autoassocia-

tive memory properties of the hippocampus described in the

first part of this paper. A second could be in the memory for

where objects have been seen in space, a prototypical

exemplar of event or episodic memory. Evidence that

supports this is that during the performance of an episodic

memory task, some macaque hippocampal neurons code for

the spatial location, some for the object being shown, and

some, combination neurons, responding to particular combi-

nations of an object and the place where it was shown ‘out

there’ in space, in the room (Rolls, Xiang, & Franco, 2005).

A third appears to be in the memory of the particular rewards

associated with different locations in a scene, in that some

hippocampal neurons respond to the spatial locations in a

number of scenes at which one type of reward is located, and

other neurons respond to the locations in a number of scenes

where a different type of reward is located (Rolls & Xiang,

2004). Moreover, the majority of these neurons reverse the

location in the scene to which the neurons respond when the

rewards available at the different locations reverse. More-

over, these neurons are especially involved in spatial view/

scene location associations with rewards, and not with

object-reward associations, in that these neurons do not

respond differentially to a rewarded and punished stimulus in

an object-reward visual discrimination task. Further, scene

memory of this type is impaired by excitotoxic lesions of the

primate hippocampus (Murray, Baxter, & Gaffan, 1998).

Thus there is increasing evidence on how spatial view

neurons in the primate hippocampus may be used in a number

of different types of memory task including object and reward

associations to places ‘out there’, and potentially in spatial

view to response associations (cf. Miyashita et al. (1989);

Cahusac et al. (1993)). The new model presented here shows

how primate spatial view cells could be updated in the dark by

idiothetic signals derived from idiothetically updated head

direction and place cells.
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