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Abstract

Single neuron recording studies have demonstrated the existence of hippocampal spatial view neurons which encode information
about the spatial location at which a primate is looking in the environment. These neurons are able to maintain their firing even in
the absence of visual input. The standard neuronal network approach to model networks with memory that represent continuous
spaces is that of continuous attractor networks. It has recently been shown how idiothetic (self-motion) inputs could update the
activity packet of neuronal firing for a one-dimensional case (head direction cells), and for a two-dimensional case (place cells which
represent the place where a rat is located). In this paper, we describe three models of primate hippocampal spatial view cells, which
not only maintain their spatial firing in the absence of visual input, but can also be updated in the dark by idiothetic input. The three
models presented in this paper represent different ways in which a continuous attractor network could integrate a number of dif-
ferent kinds of velocity signal (e.g., head rotation and eye movement) simultaneously. The first two models use velocity information
from head angular velocity and from eye velocity cells, and make use of a continuous attractor network to integrate this informa-
tion. A fundamental feature of the first two models is their use of a �memory trace� learning rule which incorporates a form of tem-
poral average of recent cell activity. Rules of this type are able to build associations between different patterns of neural activities
that tend to occur in temporal proximity, and are incorporated in the model to enable the recent change in the continuous attractor
to be associated with the contemporaneous idiothetic input. The third model uses positional information from head direction cells
and eye position cells to update the representation of where the agent is looking in the dark. In this case the integration of idiothetic
velocity signals is performed in the earlier layer of head direction cells.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In primates, single neuron recording studies have dem-
onstrated the existence of spatial view cells in the primate
hippocampus that respond when the monkey is looking
towards a particular location in allocentric space (Georg-
es-François, Rolls, &Robertson, 1999; Robertson, Rolls,
&Georges-Francois, 1998;Rolls, 1999;Rolls, Robertson,
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& Georges-François, 1997; Rolls, Treves, Robertson,
Georges-François,&Panzeri, 1998). Spatial view cells up-
date their spatial representations by idiothetic inputs in
the dark, in that if the monkey moves his head and eyes
to look at the effective spatial location, then the neurons
fire (Robertson et al., 1998). Part of the interest of these
primate spatial view neurons is that they represent a place
at which a primate is looking, and could therefore be in-
volved in functions such as providing the spatial represen-
tation needed for remembering where an object is in
space, and in general for representing places at which
one is not actually located (Rolls, 1999; Rolls et al., 2002).
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An established approach to modelling neurons which
appear to encode spatial information is the continuous
attractor neural network (CANN). Continuous attrac-
tor networks have previously been used for modelling
head direction cells (Hahnloser, 2003; Redish, Elga, &
Touretzky, 1996; Sharp, Blair, & Cho, 2001; Skaggs,
Knierim, Kudrimoti, & McNaughton, 1995; Zhang,
1996) and place cells (Redish, 1999; Redish & Tour-
etzky, 1998; Samsonovich & McNaughton, 1997; Tso-
dyks, 1999). (Head direction cell properties in the rat
are described by Taube, Muller, & Ranck (1990), and
in macaques by Robertson, Rolls, Georges-François,
& Panzeri (1999)). This class of network can maintain
the firing of its neurons to represent any location along
a continuous physical dimension such as head direction,
spatial location, or spatial view. These models use excit-
atory recurrent collateral connections between the neu-
rons to reflect the distance between the neurons in the
state space (e.g., head direction space) of the animal.
Global inhibition is used to keep the number of neurons
in a bubble of activity relatively constant, and to ensure
there is only one activity packet. The properties of these
CANNs have been extensively studied, for example by
Amari (1977) and Taylor (1999). They can maintain
the packet of neural activity (i.e., the set of active neu-
rons that represent a spatial location) constant for long
periods. The recurrent weights within a continuous
attractor network can be self-organised during learning
using a Hebbian associative learning rule, as proposed
by Muller, Kubie, and Saypoff (1991). A further prop-
erty of some continuous attractor models is their ability
to perform path integration. This is the ability of the
network to update its current spatial representation
using idiothetic (self-motion) signals. Recently, we have
developed and simulated continuous attractor network
models of head direction cells (Stringer, Trappenberg,
Rolls, & de Araujo, 2002b) and place cells (Stringer,
Rolls, Trappenberg, & de Araujo, 2002a), which are
able to self-organise Sigma–Pi idiothetic synaptic con-
nection strengths (responsible for path integration) dur-
ing training of the network using a trace learning rule.

Although, spatial view cells are a conceptually new
type of representation now believed to be present in
the primate hippocampus, there has so far been no the-
oretical investigations of the nature of the representa-
tions they provide, and of how the representation of
places out-there could be updated by self-motion, that
is by idiothetic cues. As noted above, spatial view cells
do keep firing in the dark, and are updated by eye-posi-
tion changes made by monkeys (Robertson et al., 1998).
Because, as described above, CANNs are the natural
model of such spatial representations and have been ex-
tended to incorporate hypotheses about how the spatial
representations could be updated by idiothetic input,
they are the natural choice to model hippocampal spa-
tial view cells. In this paper, we provide the first models
of, and have as one of our important conceptual aims to
elucidate, how different types of neural network archi-
tecture might aim to account for the data.

The inputs used for the idiothetic update of spatial
cells in the primate hippocampus must be very different
from those in rats, for in primates the allocentric loca-
tion is idiothetically updated by eye position as well as
by head direction (Robertson et al., 1998), and no eye
position update has ever been suggested for the rat.
The aim of this paper is to consider how different types
of input that reflect eye position and head direction
information could be utilized in a path integration
CANN. A major challenge is that two idiothetic signals,
which separately reflect eye position and head direction,
need to be combined in the path integration process, and
this has not been treated in previous self-organizing con-
tinuous attractor models.

We now provide an overview of the three approaches
in this paper. Model 1 utilises recurrent connections be-
tween spatial view cells in a continuous attractor net-
work, and updates the spatial view cell firing in the
dark using idiothetic velocity signals from body or head
rotation cells and eye velocity cells. A key feature of
Model 1 is that the synaptic connections to spatial view
cells from the different classes of idiothetic cells operate
independently. Model 2 is a continuous attractor net-
work model in which the synaptic connections to the spa-
tial view cells from the different classes of idiothetic cells
are first combined multiplicatively within higher order
Sigma–Pi synapses (Koch, 1999). This allows the net-
work to learn how to shift the activity packet within
the layer of spatial view cells in the correct direction
for precise combinations of idiothetic signals. Model 3
is a feedforward network model of spatial view cells in
which the firing pattern in the spatial view cell layer is up-
dated in the dark by inputs from head direction cells and
eye position cells. Here, the key continuous attractor
dynamics, where neural activity patterns representing
the state of the agent are updated directly from idiothetic
velocity signals, occur in an earlier layer of head direc-
tion cells which sends inputs to the spatial view cell layer.
We note that head direction cells are present in the pri-
mate hippocampal system, in the presubiculum (Robert-
son et al., 1999), as are cells that represent whole body
rotation (O�Mara, Rolls, Berthoz, & Kesner, 1994). We
note that Model 3 effectively builds neurons that respond
to a combination of head direction and eye position, and
so reflect gaze angle, and thus also provides a model for
cells which reflect gaze angle recorded in the primate
parietal cortex (Xing & Andersen, 2000).

The three Models presented in this paper are aimed at
showing generically how networks could perform the
idiothetic update of a spatial view cell representation.
The generic approach leads us to describe three different
ways of solving the computational problems involved.
The neuron types and computational processes found in
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each model are closely related to knowledge of what is
represented in different brain regions, as follows.One pos-
sible brain region forModels 1 and 2 is the CA3 region of
the primate hippocampus, which contains spatial view
cells (Georges-Francois et al., 1999; Robertson et al.,
1998; Rolls, 1999; Rolls et al., 1997), which show at least
some continuing firing in the dark (Robertson et al.,
1998). The CA3 cells have a highly developed recurrent
collateral system of connections (Ishizuka, Weber, &
Amaral, 1990), which show at least associative synaptic
modification (Debanne, Gähwiler, & Thompson, 1998).
Moreover, whole body rotation cells, which provide the
firing represented in Models 1 and 2 by the head rotation
cells, are present in the primate hippocampus (O�Mara
et al., 1994). Although eye velocity-related neuronal firing
has not been reported for the hippocampus, eye velocity is
the main form in which signals in the brain related to eye
movements are represented (Berthoz, 2000; Berthoz,
Grantyn, & Droulez, 1987). Although the CA1 cells of
primates do fire better than CA3 cells during update of
spatial view cells by eyemovements in the dark, this could
be because of associative improvement of the representa-
tion at the Schaffer collateral (CA3 to CAl) synapses
(Robertson et al., 1998). The CAl region is a less likely re-
gion for implementation ofModels 1 and 2, in that it has a
less well developed recurrent collateral system than does
the CA3 system (Rolls & Treves, 1998). It is also possible
that Models 1 and 2 are implemented at a stage of neural
processing prior to the hippocampus, and that the hippo-
campal pyramidal cells reflect the inputs received from
Fig. 1. General network architecture for Model 1, the recurrent continuous
recurrent layer of spatial view cells in which the cells are mapped onto a regu
gaze of the agent. In the light, individual spatial view cells are stimulated m
position of the cell in the grid. The layer of spatial view cells receives extern
clockwise and anticlockwise rotation cells; and (iii) a population of eye velocit
whether the agent is rotating in the appropriate direction, and with a firing r
The eye velocity cells fire maximally when an animal moves its eyes in a pa
movement of the eyes. The velocity of the animal�s eyes is denoted by (v, k
direction of movement of the eyes. The eye velocity cells are mapped onto a c
has a unique direction of eye movement for which the cell fires maximally.
this preceding network. It is known that there are spatial
view cells in the parahippocampal gyrus (Rolls, 1999;
Rolls et al., 1997). With respect to Model 3, if the idio-
thetic update of the correct spatial view cell firing in the
dark is performed in the hippocampus in the way de-
scribed in thatModel, it is relevant that one hippocampal
region with feedforward rather than recurrent collateral
connectivity is the CA1 cell system. For the cells in CA1
to be updated directly by idiothetic inputs as described
for Model 3, the CA1 cells would need to receive head
direction cell inputs (which are represented by the firing
of neurons in the primate presubiculum which are them-
selves updated correctly by head rotation in the dark
(Robertson et al., 1999)), and eye position inputs.
2. Model 1: The recurrent network model with

independent idiothetic inputs

2.1. Architecture and learning in the network

The network architecture is shown in Fig. 1. When vi-
sual input is available, each spatial view cell responds
with a Gaussian profile to a view of part of the environ-
ment, and that part of the environment can be looked at
with a given gaze angle which is provided by a combina-
tion of head direction and eye position signals. The spa-
tial view cells are connected by recurrent collateral
synapses that reflect the distance in the state space (in
this case the spatial view) of any two connected cells.
attractor network model with independent idiothetic inputs. There is a
lar grid of spatial views. The spatial views are defined by the angle of
aximally when the agent has an angle of gaze corresponding to the

al inputs from three sources: (i) the visual system; (ii) a population of
y cells. The clockwise and anti-clockwise rotation cells fire according to
ate that increases monotonically with respect to the speed of rotation.
rticular direction, and have firing rates that increase with the speed of
) where v is the angular speed of movement of the eyes, and k is the
ircular grid of directions of eye movement, where each eye velocity cell



1 The scaling factor (/0/C
SV) controls the overall strength of the

recurrent inputs to the layer of spatial view cells, where /0 is a constant
and CSV is the number of synaptic connections received by each spatial
view cell from other spatial view cells.

2 For the idiothetic inputs from the rotation cells, the scaling factor
/1/C

SV · ROT controls the overall strength of the rotation idiothetic
inputs, where /1 is a constant, and the term CSV · ROT is defined as the
number of idiothetic connections received by each spatial view cell
from couplings of individual spatial view cells and rotation cells.

3 For the idiothetic inputs from the eye velocity cells, the strength of
these inputs is controlled by the scaling factor /2/(C

SV · EV), where /2

is a constant and CSV · EV is the number of idiothetic connections
received by each spatial view cell from combinations of spatial view
cells and eye velocity cells.

82 S.M. Stringer et al. / Neurobiology of Learning and Memory 83 (2005) 79–92
The strengths of these synaptic connections of the con-
tinuous attractor network are trained by an associative
Hebb rule while the agent explores the environment.
The correct synaptic weights are set up because spatial
view cells that are close in view space will tend to be
coactive (Zhang, 1996,Redish & Touretzky, 1998). That
is, during learning the recurrent weights wRC

ij from spa-
tial view cell j with firing rate rSVj to spatial view cell i
with firing rate rSVi are altered according to

dwRC
ij ¼ kRCrSVi rSVj ; ð1Þ

where dwRC
ij is the change of synaptic weight, and kRC is

the learning rate constant.
Nowwe consider the self-organization of the idiothetic

synaptic weights wROT
ijk from the head rotation cells. The

essence of this learning process is that when the activity
packet in the spatial view cell continuous attractor has
moved, say, in a clockwise direction, a trace term in a
set of synaptic connections between the spatial view cells
‘‘remembers’’ the direction in which the spatial view cells
have been activated, and this term is associated by learn-
ing with the current head rotation velocity cell input and
the firing of the postsynaptic spatial view cell receiving
both inputs. Then after learning, if the head rotation
velocity signal is present simultaneously with an input
from a set of spatial view cells, the asymmetry in the idio-
thetic rotation synaptic weights in a particular direction
with respect to the spatial view cells produces extra activa-
tion in one direction in the spatial view cell space, and the
packet of neuronal activity moves in the correct direction
in the spatial view (state) space.More formally, the synap-
tic weights wROT

ijk are updated at each timestep during mo-
tion through the environment in a self-organizing
learning process according to

dwROT
ijk ¼ kROTrSVi �rSVj rROT

k ; ð2Þ

where dwROT
ijk are the changes in the synaptic weights,

and where rSVi is the instantaneous firing rate of the post-
synaptic spatial view cell i, �rSVj is the trace value of the
presynaptic spatial view cell j given by Eq. (3), rROT

k is
the firing rate of rotation cell k, and kROT is the learning
rate associated with this type of synaptic connection. In
Eq. (2) �rSV is a local temporal average or memory trace
value of the firing rate of a spatial view cell given by

�rSVðt þ dtÞ ¼ ð1� gÞrSVðt þ dtÞ þ g�rSVðtÞ; ð3Þ
where g is a parameter set in the interval [0, 1] which
determines the relative contributions of the current fir-
ing and the previous trace.

Next we consider the idiothetic synaptic weights, wEV
ijk ,

to spatial view cells from the eye velocity cells k. The
learning phase involves setting up the synaptic weights
wEV

ijk for all ordered pairs of spatial view cells i and j,
and for all eye velocity cells k. As the agent moves its
eyes during learning, the synaptic weights wEV

ijk are up-
dated at each timestep according to
dwEV
ijk ¼ kEVrSVi �rSVj rEVk ; ð4Þ

where dwEV
ijk is the change of synaptic weight, rSVi is the

instantaneous firing rate of spatial view cell i, �rSVj is
the trace value of the firing rate of spatial view cell j gi-
ven by Eq. (3), rEVk is the firing rate of eye velocity cell k,
and kEV is the learning rate associated with this type of
connection. Learning rule (4) for the synapses from the
eye velocity cells operates in an analogous way to learn-
ing rule Eq. (2) for the synapses from the rotation cells.

2.2. The dynamical equations of the spatial view cells

The following equation describes the �leaky-integra-
tor� dynamics of the activation hSVi ðtÞ of each spatial
view cell i using the above terms:

s
dhSVi ðtÞ

dt
¼ �hSVi ðtÞ þ /0

CSV

X
j

ðwRC
ij � wINHÞrSVj ðtÞ

þ IVi þ /1

CSV�ROT

X
j;k

wROT
ijk rSVj rROT

k

þ /2

CSV�EV

X
j;k

wEV
ijk r

SV
j rEVk : ð5Þ

The term rSVj is the firing rate of spatial view cell j, wRC
ij is

the excitatory (positive) synaptic weight from spatial
view cell j to spatial view cell i, and wINH is a global con-
stant describing the effect of inhibitory interneurons
within the layer of spatial view cells.1

The further terms in Eq. (5) are as follows. The term IVi
represents a visual input to spatial view cell i, and s is the
time constant of the system.When the agent is in the dark,
the term IVi is set to zero. Thus, in the absence of visual in-
put there are two key input terms driving the cell activa-
tions in Eq. (5) as follows. First, there are idiothetic
inputs from the rotation cells,

P
j;kw

ROT
ijk rSVj rROT

k , where
rROT
k is the firing rate of rotation cell k, andwROT

ijk is the cor-
responding overall effective strength of connection from
this cell.2 Second, there is an idiothetic input from the
eye velocity cells

P
j;kw

EV
ijk r

SV
j rEVk , where rEVk is the firing

rate of eye velocity cell k and wEV
ijk is the corresponding

overall effective strength of connection.3



Table 1
Parameter values for Model 1

Learning rates kRC, kROT, and kEV 0.001
Trace parameter g 0.9
s 1.0
/0 50,000
/1 164,500
/2 1,175,000
wINH 0.06
c 0.5
aHIGH 0.0
aLOW �20.0
b 0.1
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Once the activations of the spatial view cells have
been computed, the firing rates of the cells are then given
by the sigmoid transfer function

rSVi ðtÞ ¼ 1

1þ e�2bðhSVi ðtÞ�aÞ
; ð6Þ

where a and b are the sigmoid threshold and slope,
respectively.

2.3. Stabilization of the activity packet within the

continuous attractor network of spatial view cells when the

agent is stationary

The recurrent synaptic weights within the continuous
attractor network may not be formed perfectly if the
training is not performed with perfect regularity for every
node in the continuous attractor. (In this sense the synap-
tic weights have static noise.) This in turn can lead to drift
of the activity packet within the continuous attractor net-
work of spatial view cells when there are no visual cues
available. Although this drift is a property in the dark
of rat head direction and place cells (see (Knierim, Kudri-
moti, & McNaughton, 1998)) and of spatial view cells in
primates (Robertson et al., 1998), the drift needs to be
kept small if the network is to be useful. Stringer et al.
(2002b) proposed that in real nervous systems the prob-
lem of drift may be minimized by enhancing the firing
of neurons that are already firing. This might be imple-
mented through mechanisms for short term synaptic
enhancement (Koch, 1999), or through the effects of neu-
ronal voltage dependent ion channels such as those influ-
enced by NMDA receptors. The non-linearity of the
activation function of neurons with NMDA receptors re-
sults in these receptors only contributing to neuronal fir-
ing once the neuron is sufficiently depolarized (Wang,
1999). The effect is to enhance the firing of neurons that
are already reasonably well activated.

In Model 1 of spatial view cells, we simulate these ef-
fects by resetting the sigmoid threshold ai for each spa-
tial view cell i at each timestep depending on the firing
rate of spatial view cell i at the previous timestep. That
is, at each timestep t + dt we set

ai ¼
aHIGH if rSVi ðtÞ < c;

aLOW if rSVi ðtÞ P c;

(
ð7Þ

where c is a firing rate threshold. This helps to stabilize
the current position of the activity packet within the
continuous attractor network of spatial view cells. The
sigmoid slopes are set to a constant value, b, for all
cells i.

2.4. Simulation results with Model 1

The operation and properties of Model 1 were inves-
tigated numerically by simulation. The model parame-
ters used in the simulations are given in Table 1.
During a training phase, the agent either rotated its
head, or moved its eyes. For this simulation the agent
rotated on one spot, so that the spatial view of the envi-
ronment corresponded to the gaze angle, which is de-
fined as the algebraic sum of the head direction and
eye position values. The training was performed for
every spatial view with a fixed eye position during head
rotation in both directions with a constant velocity (to
train the idiothetic head rotation synaptic weights);
and for every spatial view during eye movement in eight
principal directions with a constant velocity and a fixed
head direction (to train the idiothetic eye rotation syn-
aptic weights). The simulation training procedure was
to set s = 1, and then to set the scaling of the recurrent
synaptic weights to produce stable packets of neural
activity, and then to set the scaling of the idiothetic
weights to move the packet without disrupting it. It
was not critical for any of the parameters to be adjusted
within a small tolerance. All the Models were robust in
this sense.

Fig. 2 shows performance after training. On the left it
is shown that if there are no visual and idiothetic inputs,
there is a stable firing rate profile within the continuous
attractor network of spatial view cells. It is shown in the
right plot that the spatial view activity packet moves in
the correct direction (in the absence of visual inputs)
when the agent: (i) rotates its head clockwise; (ii) moves
its eyes upwards; and (iii) simultaneously rotates its
head clockwise and moves its eyes upwards. This impor-
tant result demonstrates that, after the synaptic weights
have been set up through learning, the two different
types of idiothetic inputs to the layer of spatial view
cells, from the rotation cells, and from the eye velocity
cells, are able to operate together as the agent rotates
and moves its eyes in the dark.

To clarify how the network is able to perform this
path integration, we show examples of the recurrent
and idiothetic synaptic weights after training in Fig. 3.
The recurrent weights between the spatial view cells in
the continuous attractor are symmetric with respect to
any one neuron. (Neuron 25 was chosen.) This is a con-
dition for stability of the continuous attractor activity



Fig. 2. Firing rate profiles from Model 1 within the continuous attractor network of spatial view cells during the testing phase with the agent in the
dark. The grid shows the horizontal and vertical coordinates at which the different spatial view cells have their optimal firing. (Left) Stable firing rate
profile within the network of spatial view cells before the agent starts to move. (Right) Maximum firing rates that occurred during movement of the
agent in the testing phase. (The maximum firing rate is calculated over all timesteps for each spatial view cell.) First, the agent rotated its head in the
clockwise direction. Next the agent moved its eyes vertically upwards. Finally, the agent simultaneously rotated its head in the clockwise direction
and moved its eyes vertically upwards.

Fig. 3. Synaptic weight profiles from Model 1 plotted along a
horizontal line through the centre of the spatial view area. The plot
compares the recurrent and idiothetic synaptic weight profiles as
follows. The first graph shows the recurrent weights wRC

ij , where the
pre-synaptic spatial view cell j is the neuron set to fire maximally when
the agent�s angle of gaze is at the centre of the spatial view area during
the learning phase, and the post-synaptic spatial view cells i are those
neurons set to fire maximally at various positions along the horizontal
line through the centre of the area. The second graph shows the
idiothetic weights wROT

ij from the clockwise rotation cell, where the pre-
and post-synaptic spatial view cells j and i are as above. The third
graph shows the idiothetic weights wEV

ijk from the eye velocity cell which
fires maximally when the agent�s eyes move horizontally to the right
(i.e., k = 90�), and where the pre- and post-synaptic spatial view cells j
and i are as above.
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packet in the absence of any inputs (whether visual or
idiothetic). The width of the profile of the synaptic
weights from any one neuron reflects the Gaussian tun-
ing to spatial view of the spatial view cells.

The idiothetic weights from the clockwise rotation
cell and spatial view neuron 25 are shown, and are
asymmetric. This asymmetry is essential to the process
by which for example clockwise rotation inputs drive
spatial view cells towards the right of the current activity
packet. The idiothetic weights from the rightward eye
velocity cell and spatial view neuron 25 are also shown,
and are again asymmetric. This asymmetry is essential
to the process by which for example rightward eye rota-
tion drives spatial view cells towards the right of the cur-
rent spatial view cell activity packet. (An account of how
this occurs is provided in Section 2.1, and further details
of how this type of idiothetic path integration operates
in the simpler cases of head direction and place cells
are provided by Stringer et al. (2002a) and Stringer et
al. (2002b).)

2.5. The problem of training with combined movements

In the above simulations with Model 1, the network
was trained with the agent either rotating its head, or
moving its eyes, but not performing both kinds of move-
ment together. However, a serious problem occurs when
the agent is free to perform more than one movement at
a time during learning. For example, consider the case
where the agent may rotate its head clockwise and move
its eyes vertically upwards at the same time. In this case
the network will associate the overall movement of the
agent�s spatial view, which will be a diagonal path in a
direction of 45� as shown in the right plot of Fig. 2, with
each of the two separate idiothetic velocity signals,
clockwise head rotation, and vertical eye movement.
However, the association is made for each kind of idio-
thetic signal independently. This means that in the
above situation, the clockwise rotation cells will develop
a tendency to drive the activity packet in a direction of
45�, even when the eye velocity cells are not firing. Sim-



S.M. Stringer et al. / Neurobiology of Learning and Memory 83 (2005) 79–92 85
ilarly, the eye velocity cells which are tuned to eye move-
ment vertically upwards will learn to drive the activity
packet in a direction of 45�, even when the head rotation
cells are not firing. In the next section we present Model
2, which is able to solve the problem of combined move-
ments during learning by associating specific combina-
tions of movement signals with the shift of the activity
packet in the continuous attractor network of spatial
view cells.
3. Model 2: The recurrent network model with combined

idiothetic inputs

3.1. Architecture and learning in the network

The network architecture of Model 2 is shown in
Fig. 4. There are two key differences between Model 1
and 2. First, although the layer of spatial view cells re-
ceives idiothetic signals from head rotation cells and eye
velocity cells, with Model 2 the inputs from the different
idiothetic cell types are combined multiplicatively with-
in Sigma–Pi synapses. Second, the idiothetic cells must
Fig. 4. General network architecture for Model 2, the recurrent
continuous attractor network model with combined idiothetic inputs.
As described for Model 1, there is a recurrent layer of spatial view cells
which receives external inputs from three sources: (i) the visual system;
(ii) a population of clockwise and anti-clockwise rotation cells; and (iii)
a population of eye velocity cells. However, with Model 2 the inputs
from the different idiothetic cell types (rotation cells and eye velocity
cells) are combined multiplicatively within Sigma–Pi synapses wROTEV.
Also, for Model 2 the idiothetic cells fire maximally for different speeds
of movement, as well as for different kinds of movement. Specifically,
the rotation cells fire according to whether the agent is rotating in the
appropriate direction, with each rotation cell firing maximally for a
specific speed of rotation. Similarly, the eye velocity cells fire
maximally when an animal moves its eyes in a particular direction,
with each eye velocity cell firing maximally for a particular speed of eye
movement.
behave somewhat differently for Model 2. For Model 2,
the idiothetic cells must fire maximally for different
speeds of movement, as well as for different kinds of
movement. Specifically, the head rotation cells fire
according to whether the agent is rotating in the appro-
priate direction, with each rotation cell firing maximally
for a specific speed of rotation. Moreover, the model re-
quires the population of rotation cells to cover all pos-
sible speeds of rotation, including some cells firing
maximally when the agent is not rotating. Similarly,
the eye velocity cells fire maximally when an animal
moves its eyes in a particular direction, with each eye
velocity cell firing maximally for a particular speed of
eye movement in a given direction. The model requires
the population of eye velocity cells to cover all possible
speeds of eye movement, including some cells firing
maximally when the agent is not moving its eyes.

During learning the recurrent synaptic weightswRC
ij be-

tween the spatial view cells are updated according to the
same associative (Hebb) rule (1) used in Model 1. How-
ever, for Model 2 the different idiothetic signals are com-
bined multiplicatively within higher order Sigma–Pi
synapses. Thus, for Model 2 the idiothetic synaptic
weightswROTEV

ijkl are updated at each timestep according to

dwROTEV
ijkl ¼ kROTEVrSVi �rSVj rROT

k rEVl ; ð8Þ

where dwROTEV
ijkl are the changes in the synaptic weights,

and where rSVi is the instantaneous firing rate of the post-
synaptic spatial view cell i, �rSVj is the trace value of the
presynaptic spatial view cell j given by Eq. (3), rROT

k is
the firing rate of rotation cell k, rEVl is the firing rate of
eye velocity cell l, and kROTEV is the learning rate asso-
ciated with this type of synaptic connection. Learning
rule (8) is able to associate the co-firing of head rotation
cell k and eye velocity cell l with the shift of the activity
packet from spatial view cell j to spatial view cell i. This
multiplicative combination of the different idiothetic
velocity signals within the idiothetic synapses wROTEV

ijkl

permits the agent to perform more than one type of
movement (e.g., head rotation and eye movement) at a
time during learning.

3.2. The dynamical equations of the spatial view cells

We now describe the behaviour of the layer of spatial
view cells for Model 2. The activation hSVi ðtÞ for each
spatial view cell i is updated according to the equation

s
dhSVi ðtÞ

dt
¼ �hSVi ðtÞ þ /0

CSV

X
j

ðwRC
ij � wINHÞrSVj ðtÞ þ IVi

þ /1

CSV�ROT�EV

X
j;k;l

wROTEV
ijkl rSVj rROT

k rEVl : ð9Þ

In the absence of visual input, the activity packet within
the continuous attractor network of spatial view cells is
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driven by the last term of Eq. (9) which represents the
idiothetic inputs from particular combinations of head
rotation cells and eye velocity cells.4 In Eq. (9) the idio-
thetic signals are combined into a single multiplicative
term rROT

k rEVl . This multiplicative form for the idiothetic
input to the continuous attractor network of spatial
view cells introduces a logical AND function between
the different idiothetic signals. Thus, when the network
is tested in the dark, the activity packet is shifted accord-
ing to which exact combination of idiothetic signals are
present.

3.3. Simulation results with Model 2

For Model 2 the agent must perform every possible
combination of movements (e.g., head rotation in both
clockwise and anticlockwise directions, and eye move-
ment in all directions) with its fixation position moving
through every visual location in the spatial view area. In
particular, each movement combination is defined by
not only which kinds of movements (e.g., clockwise head
rotation and vertical eye movement) are being made, but
also the velocities of the different component move-
ments. However, since the agent may typically only per-
form combinations of movements from within a
relatively small portion of the space of all different com-
binations of movements, in practice the network would
only need to be trained on this small subspace of combi-
nations of movements.

Briefly, the learning phase for Model 2 proceeded in a
number of stages, where for each stage of training the
agent performed a particular combined movement.
The combined movements involved a combination of a
head rotation (in either the clockwise or anticlockwise
directions), with an eye movement (in one of the eight
principle compass directions). However, for each com-
bined movement, the speeds of the separate components
(i.e., head rotation or eye movement) may each be either
zero or a constant non-zero value. This ensured that the
network was trained on different combinations of head
rotation and eye movements.

The results of the numerical simulations of Model 2
are shown in Fig. 5, and are similar to those shown
earlier for Model 1. Thus the simulations confirmed
that Model 2 was able to correctly update the firing
in the network of spatial view cells in the absence of
visual input, as the agent rotated its head and moved
its eyes, even when Model 2 had been trained on con-
current head rotation and eye velocity idiothetic
inputs.
4 The term CSV · ROT · EV is defined as the number of idiothetic
connections received by each spatial view cell from couplings of
individual spatial view cells, rotation cells, and eye velocity cells.
3.4. The problem of generalisation over different speeds of

movement

Although the approach of combining the different
kinds of idiothetic signals within higher order Sigma–
Pi synapses allows Model 2 to cope with the agent per-
forming combined movements during learning, Model 2
requires significantly more training than Model 1. This
is because Model 2 is unable to generalize over different
speeds of movement. That is, training Model 2 at one
speed of movement, say slow clockwise rotation, will
not allow the model to generalize to other speeds of
movement, e.g., fast clockwise rotation, during testing.
In the next section we present Model 3, which is able
to solve the problem of combined movements during
learning, without the need for training with all possible
combinations of speeds, by incorporating multiple con-
tinuous attractor networks, each of which integrates a
single kind of idiothetic signal.
4. Model 3: The feedforward network model

4.1. Architecture and learning in the network

Model 3 is a model of spatial view cells in which the fir-
ing pattern in the spatial view cell layer is updated in the
dark by inputs from head direction cells and eye position
cells. In this case, the spatial view cells receive inputs car-
rying information about the current positional state of
the agent (in terms of head direction and eye position)
rather than information about the rate of change of the
state of the agent. The integration of idiothetic velocity
signals is performed in an earlier layer as described below,
while the spatial view cells are driven by forward inputs
carrying information about the positional state of the
agent. In particular, spatial view cells are driven by
appropriate combinations of head direction and eye posi-
tion. Model 3, while itself in terms of the architecture
illustrated in Fig. 6 is a feedforward model, does rely in
the dark on inputs from a layer of head direction cells,
where the head direction cells, themselves, operate as a
continuous attractor network that integrates idiothetic
head rotation velocity signals. The self-organisation and
operation of this earlier layer of head direction cells is de-
scribed in Stringer et al. (2002b).

The general network architecture of Model 3 is as
shown in Fig. 6. The layer of spatial view cells receives
external inputs from three sources: (i) the visual system;
(ii) a population of head direction cells; and (iii) a pop-
ulation of eye position cells.

During learning the recurrent synaptic weights wRC
ij

between the spatial view cells may be updated according
to the same learning rule as described for Model 1. That
is, the recurrent synaptic weights wRC

ij are updated by the
associative (Hebb) rule (1). The synaptic weights wID

ikl to



Fig. 5. Firing rate profiles from Model 2 (the recurrent continuous attractor network model with combined idiothetic inputs) from neurons within
the continuous attractor network of spatial view cells during the testing phase with the agent in the dark. The grid shows the horizontal and vertical
coordinates at which the different spatial view cells have their optimal firing. (Left) Stable firing rate profile within the network of spatial view cells
before the agent starts to move. (Right) Maximum firing rates that occurred during movement of the agent in the testing phase. (The maximum firing
rate is calculated over all timesteps for each spatial view cell.) First, the agent rotated its head in the clockwise direction. Next the agent moved its
eyes vertically upwards. Finally, the agent simultaneously rotated its head in the clockwise direction and moved its eyes vertically upwards.

Fig. 6. General network architecture for Model 3, the feedforward network model for combining head direction and eye position signals to provide
spatial view representations. There is a layer of spatial view cells which receives external inputs from three sources: (i) the visual system; (ii) a
population of head direction cells; and (iii) a population of eye position cells. Individual head direction cells fire maximally when the agent has a
particular head direction h. The population of head direction cells are mapped onto a circular grid of head directions, where each head direction cell
has a unique head direction for which the cell fires maximally. The eye position cells fire maximally for a particular angular position (orientation) of
the agent�s eyes, which is denoted by (xh, xv), where xh and xv are the horizontal and vertical angles, respectively. The eye position cells are mapped
onto a regular grid of eye positions, where individual eye position cells are stimulated maximally when the eye position of the agent corresponds to
the position of the cell in the grid.
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spatial view cells from combinations of head direction
cells and eye position cells in the earlier layers are up-
dated according to

dwID
ikl ¼ kIDrSVi rHD

k rEPl ; ð10Þ
where dwID

ikl is the change of synaptic weight, rSVi is the
firing rate of the postsynaptic spatial view cell i, rHD

k is
the firing rate of head direction cell k, rEPl is the firing
rate of eye position cell l, and kID is the learning rate
constant. This rule has the effect of associating a partic-
ular combination of head direction and eye position of
the agent with a particular spatial view representation.

4.2. The dynamical equations of the spatial view cells

We now describe in more detail the firing behaviours
of the spatial view cells for Model 3. In the equations of
the model presented below, for the sake of generality we
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include recurrent connections within the layer of spatial
view cells. However, the recurrent connections are not
essential, and the model can operate with or without
the recurrent connections. We assume the behaviour of
the layer of spatial view cells is governed by the follow-
ing �leaky-integrator� dynamical equations. The follow-
ing equation describes the dynamics of the activation
hSVi ðtÞ of each spatial view cell i:

s
dhSVi ðtÞ

dt
¼ �hSVi ðtÞ þ /0

CSV

X
j

ðwRC
ij � wINHÞrSVj ðtÞ

þ IVi þ /1

CHD�EP

X
k;l

wID
ikl r

HD
k rEPl : ð11Þ

The term rSVj is the firing rate of spatial view cell j, wRC
ij is

the excitatory (positive) synaptic weight from spatial
view cell j to spatial view cell i, and wINH is a global con-
stant describing the effect of inhibitory interneurons
within the layer of spatial view cells.5 However, a key
feature of Model 3 is that the recurrent connections
within the layer of spatial view cells are not required,
and so /0 may in fact be set to zero. In this case the
model operates in a feedforward manner, with no recur-
rent connections within the layer of spatial view cells.
Further terms in Eq. (11) are as follows. The term IVi
represents a visual input to spatial view cell i, and s is
the time constant of the system. When the agent is in
the dark, the term IVi is set to zero. Thus, in the absence
of visual input the key input term driving the cell activa-
tions in Eq. (11) becomes /1

CHD�EP

P
k;lw

ID
ikl r

HD
k rEPl , where

rHD
k is the firing rate of head direction cell k, rEPl is the
firing rate of eye position cell l, and wID

ikl is the corre-
sponding overall effective strength of the connection
from these cells.6

Eq. (11) for calculating the cell activation assumes the
inputs from the head direction cells and eye position
cells operate in a multiplicative manner using Sigma–
Pi synaptic connections. Sigma–Pi neurons sum the
products of the contributions from two or more sources
(see Koch (1999, Section 21.1.1), Rolls & Treves (1998)).
The reason for using Sigma–Pi synaptic connections, in-
stead of a more usual additive summation of the inputs,
is as follows. Consider, for example, the agent both
rotating its head and moving its eyes such that its angle
of gaze moves along a horizontal track within the
1 · 1 unit containment area described above, where
1 unit is equal to, say, 35�. During the learning phase
5 The scaling factor (/0/C
SV) controls the overall strength of the

recurrent inputs to the layer of spatial view cells, where /0 is a constant
and CSV is the number of synaptic connections received by each spatial
view cell from other spatial view cells.

6 The scaling factor /1/(C
HD · EP) controls the overall strength of

the inputs from the head direction cells and eye position cells, where /1

is a constant and CHD · EP is the number of connections received by
each spatial view cell from combinations of head direction cells and eye
position cells.
the agent may fixate at any particular location along
the horizontal line either with any head direction or with
any horizontal eye position. Therefore, if the model used
simple independent Hebbian associative learning be-
tween the head direction cells and spatial view cells,
and between the eye position cells and spatial view cells,
then every head direction cell could become associated
with every spatial view cell, and also every eye position
cell could become associated with every spatial view cell.
In this situation the synapses would be functionally use-
less, and if the spatial view cells were driven during the
subsequent testing phase in the dark simply by the sum
of the two separate contributions from the head direc-
tion cells and eye position cells, then the resulting spatial
view cell firing rates would not be capable of accurately
reflecting the true spatial view of the agent. In order for
the firing rates of the spatial view cells to reflect the true
spatial view of the agent, the spatial view cell activations
must respond to the inputs from the head direction cells
and eye position cells in a manner somewhat analogous
to a logical AND function, and this is achieved by the
Sigma–Pi formulation implemented in Eq. (11) above.
That is, each spatial view cell will be strongly stimulated
only for appropriate combinations of head direction and
eye position.

Once the activations of the spatial view cells have
been computed, the firing rates of the cells are then given
by the sigmoid transfer function (6).

4.3. Simulation results with Model 3

In the case of Model 3, the agent must simply assume
every possible combination of head direction and eye
position during the learning phase. This is because the
learning process for Model 3 simply involves associating
every possible combination of head direction and eye
position of the agent with the corresponding fixation
location. However, it should be noted that the learning
described here for Model 3 is only the learning required
to self-organise the recurrent synaptic connections wRC

ij

within the network of spatial view cells, and the idio-
thetic connections wID

ikl to the spatial view cells from
the head direction cells and eye position cells. In fact,
Model 3 assumes the existence of a separate layer of
head direction cells which performs path integration
over head rotation inputs, and this could operate as de-
scribed by Stringer et al. (2002b).

The results of the numerical simulations of Model 3
are shown in Fig. 7, and are similar to those shown ear-
lier for Models 1 and 2. Thus, the simulations confirmed
that Model 3 was able to correctly update the firing in
the network of spatial view cells in the absence of visual
input, as the agent rotated its head and moved its eyes,
even when Model 3 had been trained on different combi-
nations of head direction and eye position signals, inde-
pendently of velocity.



Fig. 7. Firing rate profiles from Model 3 (the feedforward network model for combining head direction and eye position signals to provide spatial
view representations) from the spatial view cells during the testing phase with the agent in the dark. The grid shows the horizontal and vertical
coordinates at which the different spatial view cells have their optimal firing. (Left) Stable firing rate profile within the network of spatial view cells
before the agent starts to move. (Right) Maximum firing rates that occurred during movement of the agent in the testing phase. (The maximum firing
rate is calculated over all timesteps for each spatial view cell.) First, the agent rotated its head in the clockwise direction. Next the agent moved its
eyes vertically upwards. Finally, the agent simultaneously rotated its head in the clockwise direction and moved its eyes vertically upwards.
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5. Discussion

In this paper, we have introduced the first neural net-
work models of spatial view cells in the primate hippo-
campus. A key difficulty involved in building models
of spatial view cells is the general problem of how a con-
tinuous attractor network might integrate a number of
different kinds of velocity signal (e.g., head rotation
and eye movement) simultaneously. This difficulty has
not been addressed by earlier self-organizing path
integration models of, for example, head direction cells
(Redish et al., 1996; Skaggs et al., 1995; Stringer et al.,
2002b; Zhang, 1996), and place cells (Redish & Tour-
etzky, 1998; Samsonovich & McNaughton, 1997; Strin-
ger et al., 2002a). The three spatial view cell models
presented in this paper introduce three different ways
in which a continuous attractor network could integrate
a number of different kinds of velocity signal
simultaneously.

In Model 1 (Fig. 1) the continuing firing in the dark, a
short term memory operation, of the continuous attrac-
tor network is maintained by the recurrent collateral
synapses wRC

ij . The idiothetic inputs from the head rota-
tion cells (with rates rROT) that co-occur with the chang-
ing spatial view cell firing rSV (diagnosed by a trace term
in the recurrent collateral synapses of the spatial view
cells) in the light become associated together using
Sigma–Pi synapses wROT

ijk . In a similar way, the idiothetic
inputs from the eye velocity cells (with rates rEV) that
co-occur with the changing spatial view cell firing rsv

(diagnosed by a trace term in the recurrent collateral
synapses of the spatial view cells) in the light become
associated together using Sigma–Pi synapses wEV

ijk . We
showed that not only does this idiothetic update occur
in the dark, but also that the two sets of idiothetic
weights could be learned separately, and would later
add correctly when both head rotation and eye velocity
were present. However, in the simulations with Model 1,
the network was trained with the agent either rotating its
head, or moving its eyes, but not performing both kinds
of movement together. However, a serious problem oc-
curs when the agent is free to perform more than one
movement at a time during learning, in that, as de-
scribed above, combined head and eye movements be-
come associated with each type of idiothetic synapse.

Model 2 is a continuous attractor network model
which is able to solve the problem of combined move-
ments during learning by associating specific combina-
tions of idiothetic movement velocity signals with the
shift of the activity packet in the continuous attractor
network of spatial view cells. In particular, in Model 2
the synaptic connections to the spatial view cells from
the different classes of idiothetic cells are combined mul-
tiplicatively within higher order Sigma–Pi synapses. This
allows the network to learn how to shift the activity
packet within the layer of spatial view cells in the correct
direction for precise combinations of idiothetic signals.
However, although the approach of combining the dif-
ferent kinds of idiothetic signals within higher order Sig-
ma–Pi synapses allows Model 2 to cope with the agent
performing combined movements during learning,
Model 2 requires significantly more training than Model
1. This is because Model 2 is unable to generalise over
different speeds of movement.

Model 3 is able to solve the problem of combined
movements during learning, without the need for train-
ing with all possible combinations of speeds, by utilizing
earlier networks which perform the path integration on
each of the idiothetic signals, to produce position signals
which can then by the look-up table (which is essentially



7 For Model 1, training once through all possible tracks in spatial
view space, first with eye velocity, and second with head rotation, is
needed for perfect performance. For Model 2 the training is similar
except that all combinations of the two velocity signals are needed
during training for perfect performance.
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Model 3) look up the correct position on spatial view
space (Fig. 6). During training, the Sigma–Pi synapses
learn the postsynaptic spatial view firing that occurs
for all possible combinations of the eye position and
head direction inputs. Model 3 is thus a feedforward
model, has no need for recurrent collateral synapses in
the spatial view cell network, and does not itself perform
path integration. The Sigma–Pi synapses are needed be-
cause each particular combination of head and eye posi-
tion firing must activate the correct spatial view cell, as
each spatial view cell is tuned to its own gaze angle (the
direction of the spatial view). A disadvantage of Model
3, which highlights an advantage of Models 1 and 2, is
that Models 1 and 2 have a continuous attractor spatial
view network which can be initially activated by visual
cues in a particular environment, so that idiothetic cues
can then move the activity packet in the correct direc-
tion in that spatial view environment. Model 3 as simu-
lated did not have its recurrent connections in the spatial
view network enabled, so there is nothing to keep active
in the dark the spatial view environment triggered ini-
tially by the visual cues. Thus, in Model 3 particular
combinations of eye and head position signals might
look up a representation in a different environment, if
the spatial view network was trained in several different
environments or charts (Battaglia & Treves, 1998; Sam-
sonovich & McNaughton, 1997; Stringer, Rolls, &
Trappenberg, 2004; Tsodyks, 1999). Model 3 could be
simulated again to utilize the recurrent connections in
the spatial view network to hold the environment active
in the dark, and then utilize the position signals to look
up the next position in that environment without jump-
ing to another chart.

In terms of predictions, Model 1 could be rejected if it
can be shown in a particular environment that spatial
view path integration learning can take place with simul-
taneous combinations of eye velocity and head rotation
velocity inputs. Model 2 was developed to solve this
problem. Model 2 requires different velocities of the
eye and head rotation velocity inputs to be represented
by different neurons, to operate correctly with different
velocities. If the firing rate of a single population of neu-
rons was proportional to the speed of for example head
rotation velocity, then Model 2 would not operate cor-
rectly for different velocities of input. Neurons tuned
to particular velocities are needed. In contrast, Model
1 requires the firing rates of its idiothetic input neurons
to be proportional to the velocity.

The actual biophysical mechanisms that are needed
to implement the self-organization by learning of the
idiothetic connections in all three Models must, neces-
sarily given the computational structure of the problem
to be solved, include three or four terms. In Model 1
they are the postsynaptic spatial view cell firing, the pre-
synaptic spatial view cell (traced) firing, and the presyn-
aptic head rotation cell (or eye velocity cell) firing. In
Model 2 they are the postsynaptic spatial view cell firing,
the presynaptic spatial view cell (traced) firing, the pre-
synaptic head rotation cell firing, and the presynaptic
eye velocity cell firing. In Model 3 they are the postsyn-
aptic spatial view cell firing, the presynaptic head direc-
tion cell firing, and the presynaptic eye position cell
firing. In all three Models the multiplicative interactions
required, namely Sigma–Pi operation or synaptic
strength modulation, could be performed by presynaptic
contacts. However, multiplicative interactions of the
type needed in these Models might be achieved in a
number of other biophysically plausible ways described
by Goodridge and Touretzky (2000); Jonas and Kacz-
marek (1999); Koch (1999, Section 21.1.1); and Rolls
and Deco (2002).

We now discuss the learning dynamics of the models.
The models presented in this paper use unbounded asso-
ciative learning rules, where the size of the synaptic
weights continues to increase indefinitely during train-
ing. In addition, regular training through the spatial
view space was provided.7 However, the situation be-
comes more complex when one considers irregular train-
ing, in which the gaze of the agent moves erratically and
unevenly through the spatial view space. In this case, if
the agent�s gaze spends more time during training in a
particular part of the spatial view space, then (because
we specified a non-normalizing associative learning rule)
the recurrent weights will be larger in this region, and
the activity packet will be attracted there even when
the agent�s gaze is stationary. We did not address the
normalization of synaptic weights to deal with irregular
training in this paper because we have addressed it pre-
viously in the context of a self-organizing continuous
attractor model of head direction cells (Stringer et al.,
2002b). In that paper, it was shown that normalizing
each synaptic weight vector during irregular training
led to a smooth synaptic weight profile within the con-
tinuous attractor network which supported good perfor-
mance, with the small resulting drift of the activity
packet being eliminated by implementing the post-syn-
aptic threshold mechanism specified in Eq. (7). Associa-
tive long-term heterosynaptic depression is a mechanism
that could be involved in such weight normalization
(Oja, 1982; Rolls & Treves, 1998).

Hahnloser (2003) has suggested using an error correc-
tion process, and a special purpose network architecture
(with separate head direction subnetworks required for
each direction of idiothetic signal) which can lead to a
convergent learning scheme in a one-dimensional head
direction cell system. One disadvantage of that ap-
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proach is that it is less biologically plausible than the
networks described in this paper, because it requires er-
ror correction learning (Rolls & Deco, 2002; Rolls &
Stringer, 2001). Another disadvantage is that the archi-
tecture is dedicated to the particular problem of head
direction cells. Moreover, the stability of the activity
packets in the two rings of head direction cells, and
the ability of the model to perform accurate path inte-
gration, are dependent on finely balanced synaptic inter-
actions implemented between the two rings. The two
rings are each responsible for driving the activity pack-
ets in opposite directions, and so counterbalance each
other as they work together to control the movement
of the activity packets. The synaptic connections within
and between the two rings are self-organised during
learning using an error correction learning rule. This er-
ror correction rule compares the current firing rate of
each head direction cell with the visual signal to that cell
(where the visual signal reflects the true head direction
of the agent). The required asymmetry in all the syn-
apses arises because a continuous dynamical system
involving time delays is used. In contrast Models 1 and
2 described here contain a single CANN, in which each
cell receives a number of different types of idiothetic
(self-motion) input. This design has enabled the network
to be extended easily to more than one type of idiothetic
input, as described in this paper, and that would be very
difficult for the approach taken by Hahnloser (2003), be-
cause every type and even every direction within a type of
idiothetic input would appear to need two separate count-
erbalancing recurrent networks.

The parts of the brain involved in the representation
of space may receive a variety of different kinds of idio-
thetic and motor efference copy signals, which must be
integrated together. To date, CANN models of path
integration have focussed on head direction cells and
place cells, and have not needed to address how multiple
self-motion signals could be combined. However, the
need for path integration networks which are able to
cope with the simultaneous integration of different types
of self-motion signal comes to the fore when developing
models of spatial view cells found in the primate hippo-
campus. This paper presents the first CANN models of
this kind of cell, and opens up the general question of
how CANN path integration networks might learn to
integrate multiple simultaneously active self-motion
signals.
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