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To form view-invariant representations of objects, neurons in the infe-
rior temporal cortex may associate together different views of an object,
which tend to occur close together in time under natural viewing condi-
tions. This can be achieved in neuronal network models of this process
by using an associative learning rule with a short-term temporal memory
trace. It is postulated that within a view, neurons learn representations
thatenable them to generalize within variations of that view. When three-
dimensional (3D) objects are rotated within small angles (up to, e.g., 30
degrees), their surface features undergo geometric distortion due to the
change of perspective. In this article, we show how trace learning could
solve the problem of in-depth rotation-invariant object recognition by de-
veloping representations of the transforms that features undergo when
they are on the surfaces of 3D objects. Moreover, we show that having
learned how features on 3D objects transform geometrically as the object
is rotated in depth, the network can correctly recognize novel 3D varia-
tions within a generic view of an object composed of a new combination
of previously learned features. These results are demonstrated in sim-
ulations of a hierarchical network model (VisNet) of the visual system
that show that it can develop representations useful for the recognition
of 3D objects by forming perspective-invariant representations to allow
generalization within a generic view.

1 Introduction

There is now much evidence demonstrating that over successive stages, the
visual system develops neurons that respond with view, size, and position
(translation) invariance to objects or faces (Desimone, 1991; Rolls, 1992, 2000;
Rolls & Tovee, 1995; Tanaka, Saito, Fukada, & Moriya, 1991; Tanaka, 1996;
Logothetis, Pauls & Poggio, 1995; Booth & Rolls, 1998). Rolls (1992, 2000)
has proposed a biologically plausible mechanism to explain this behavior
based on the following: (1) a series of hierarchical competitive networks
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with local graded inhibition, (2) convergent connections to each neuron
from a topologically corresponding region of the preceding layer, leading
to an increase in the receptive field size of cells through the visual processing
areas, and (3) synaptic plasticity based on a modified Hebb-like learning rule
with a temporal trace of each cell’s previous activity. The idea underlying
the trace learning rule is to learn from the natural statistics of real-world
visual input, where, for example, the successive transformed versions of
the same image tend to occur close together in time (Foldidk, 1991; Rolls,
1992; Rolls & Tovee, 1995; Rolls & Deco, 2002). Rolls’s hypothesis about
the functional architecture and operation of the ventral visual system (the
“what” pathway, in which representations of objects are formed) was tested
inamodel, VisNet, of ventral stream cortical visual processing, where it was
found that invariant neurons did indeed develop as long as the Hebbian
learning rules incorporated a trace of recent cell activity, where the trace is
a form of temporal average (Wallis & Rolls, 1997). The types of invariance
demonstrated included translation, size, and the view of an object.

This hypothesis of how object recognition could be implemented in the
brain postulates that trace rule learning helps invariant representations to
form in two ways (Rolls, 1992, 2000; Rolls & Deco, 2002). The first process
enables associations to be learned between different generic 3D views of an
object where there are different qualitative shape descriptors. One example
of different generic views is usually provided by the front and back of an
object. Another example is when different surfaces come into view, and new
surfaces define the viewed boundary, when most 3D objects are rotated in
three dimensions. For example, a catastrophic rearrangement of the shape
descriptors (Koenderink, 1990) occurs when a cup is tilted so that one can
see inside it. The second process is that within a generic view, as the object is
rotated in depth, there will be no catastrophic changes in the qualitative 3D
boundary shape descriptors, but instead the quantitative (metric) values of
the shape descriptors alter (see further Koenderink, 1990; Biederman, 1987).
For example, while the cup is being rotated within a generic view seen from
somewhat below, the curvature of the cusp forming the top boundary will
alter, but the qualitative shape descriptor will remain a cusp. In addition to
the changes of the metric values of the object boundary shape descriptors
that occur within a generic view, the surface features on a 3D object also un-
dergo geometric transforms as it rotates in depth, as described below and
illustrated in Figure 3. Trace learning could potentially help with both the
between- and within-generic view processes. That is, trace learning could
help to associate together qualitatively different sets of shape descriptors
that occur close together in time and describe the generically different views
of a cup. Trace learning could also help with the second process and learn to
associate together the different quantitative (or metric) values of shape de-
scriptors that typically occur when objects are rotated within a generic view.

The main aim of this article is to show that trace learning in an appro-
priate architecture can indeed learn the geometric shape transforms that
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are characteristic of the surface markings on objects as they rotate within
a generic view and use this knowledge in invariant object recognition. We
are able to address this particular issue here by using an object, a sphere,
in which there are no catastrophic changes between different generic views
as the object is rotated or metric changes in the defining boundary of the
object as it is rotated. We also show here that once the network has learned
the types of geometric transform characteristic of features on the surface of
3D objects, the network can generalize to novel views of the object when
the object has been shown in only a limited number of views, and the sur-
face markings are composed of new combinations of the previously learned
features.

Examples of the types of perspective transforms in the surface markings
on 3D objects that are typically encountered as the objects rotate within a
generic view and that we investigated in this article are shown in Figure 3.
The surface markings on the sphere that consist of combinations of three
features in different spatial arrangements undergo characteristic transforms
as the sphere is rotated from 0 degree toward —60 degrees and +60 degrees.
Each objectis identified by surface markings that consist of a different spatial
arrangement of the same three features (a horizontal, vertical, and diagonal
line, which becomes an arc on the surface of the object). Boundary shape
changes and shading and stereo cues are excluded from the stimuli, so that
the invariant learning must be about the surface marking transforms.

An interesting issue about the properties of feature hierarchy networks
used for learning invariant representations is whether they can generalize to
transforms of objects on which they have not been trained, that is, whether
they assume that an initial exposure is required during learning to every
transformation of the object to be recognized (Wallis & Rolls, 1997; Rolls
& Deco, 2002; Riesenhuber & Poggio, 1998). We show here that this is not
the case, for such feature hierarchy models can generalize to novel within-
generic views of an object. VisNet can achieve this when it is given invariant
training on the features from which the new object will be composed. After
the new object has been shown in some views, VisNet generalizes correctly
to other views of the object. This part of the research described here builds
on an earlier result of Elliffe, Rolls, and Stringer (2002) that was tested with
a purely isomorphic transform, translation.

2 Methods

2.1 The VisNet Model. In this section, we provide an overview of the
VisNet model. Further details may be found in Wallis and Rolls (1997), Rolls
and Milward (2000), and Rolls and Deco (2002). The simulations performed
here use the latest version of the VisNet model (VisNet2), with the same
model parameters that Rolls and Milward (2000) used. VisNet is a four-
layer feedforward network of the primate ventral visual system, with the
separate layers corresponding to V2, V4, the posterior inferior temporal cor-
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Figure 1: (Left) Stylized image of the VisNet four-layer network. Convergence
through the network is designed to provide fourth-layer neurons with infor-
mation from across the entire input retina. (Right) Convergence in the visual
system (adapted from Rolls, 1992). V1: visual cortex area V1; TEO: posterior
inferior temporal cortex; TE: inferior temporal cortex (IT).

tex, and the anterior inferior temporal cortex, as shown in Figure 1. For each
layer, the connections to individual cells are derived from a topologically
corresponding region of the preceding layer, with connection probabilities
based on a gaussian distribution. Within each layer there is competition
between neurons, which is graded rather than winner-take-all and is imple-
mented in two stages. First, to implement lateral inhibition, the activation
of neurons within a layer is convolved with a local spatial filter that oper-
ates over several pixels. Next, contrast enhancement is applied by means
of a sigmoid activation function where the sigmoid threshold is adjusted to
control the sparseness of the firing rates.

The trace learning rule (Foldidk, 1991; Rolls, 1992; Wallis & Rolls, 1997)
encourages neurons to develop invariant responses to input patterns that
tended to occur close together in time, because these are likely to be from
the same object. The rule used was

Aw; = ayr_lx;, (2.1)

where the trace ij* is updated according to

T

7= (1 —ny +ny" ", (2.2)

and we have the following definitions:
xj: jth input to the neuron
y": Trace value of the output of the neuron at time step ¢

wj: Synaptic weight between jth input and the neuron
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y: Output from the neuron
a: Learning rate, annealed between unity and zero

n: Trace value; the optimal value varies with presentation sequence
length

The parameter n may be set anywhere in the interval [0, 1], and for the
simulations described here, n was set to 0.8. (A discussion of the good per-

formance of this rule and its relation to other versions of trace learning rules
is provided by Rolls & Milward, 2000, and Rolls & Stringer, 2001.)

2.2 Training and Test Procedure. The stimuli were designed to allow
higher-order representations (of combinations of three features) to be built
from lower-order feature representations (of pairs of features) (see Elliffe
et al., 2002). The stimuli take the form of images of surface features on 3D
rotating spheres, with each image presented to VisNet’s retina being a 2D
projection of the surface features of one of the spheres. (For the actual sim-
ulations described here, the surface features and their deformations were
what VisNet was trained and tested with, and the remaining blank surface
of each sphere was set to the same gray scale as the background.) Each
stimulus is uniquely identified by two or three surface features, where the
surface features are (1) vertical, (2) diagonal, and (3) horizontal arcs and
where each feature may be centered at three different spatial positions, des-
ignated A, B, and C, as shown in Figure 2. The stimuli are thus defined
in terms of what features are present and their precise spatial arrange-
ment with respect to each other. We refer to the two- and three-feature
stimuli as pairs and triples, respectively. Individual stimuli are denoted
by three numbers that refer to the individual features present in positions
A, B, and C, respectively. For example, a stimulus with positions A and
C containing a vertical and diagonal bar, respectively, would be referred
to as stimulus 102, where the 0 denotes no feature present in position B.
In total, there are 18 pairs (120, 130, 210, 230, 310, 320, 012, 013, 021, 023,
031, 032, 102, 103, 201, 203, 301, 302) and 6 triples (123, 132, 213, 231, 312,
321).

Further image construction details are as follows, with an illustration of
the images used shown in Figure 3. In the experiments presented later, the
end points of the individual surface features subtend an angle of approx-
imately 10 degrees with respect to the center of the spheres. In addition,
each pair of spatial positions (A, B, C) subtends an angle of approximately
15 degrees with respect to the centers of the spheres. The 2D projections
of the stimuli are scaled to be 128 x 128 pixels, and these are placed on a
blank background and preprocessed by a set of input filters before the final
images are presented to VisNet’s 128 x 128 pixel input retina. The input
filters accord with the general tuning profiles of simple cells in V1 (see Rolls
& Milward, 2000, for more details).
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Figure 2: Details of the 3-dimensional visual stimuli used in the rotation invari-
ance experiments of section 3. Each stimulus is a sphere that is identified by its
unique combination of two or three surface features. There are three possible
types of features that take the form of (1) a vertical arc, (2) a diagonal arc, and
(3) a horizontal arc and lie on the surfaces of the spheres (a blank space is de-
noted by 0). These three features can be placed in any of three relative positions
A, B, and C, which are themselves separated by 15 degrees of arc.

To train the network, each stimulus is presented to VisNet in a random-
ized sequence of five orientations with respect to VisNet’s input retina,
where the different orientations are obtained from successive in-depth rota-
tions of the stimulus through 30 degrees. That is, each stimulus is presented
to VisNet’s retina from the following rotational views: (i) —60 degrees,
(ii) —30 degrees, (iii) 0 degree (central position with surface features facing
directly toward VisNet’s retina), (iv) 30 degrees, and (v) 60 degrees. Figure 3
shows representations of the six visual stimuli with three surface features
(triples) presented to VisNet during the simulations. Each row shows one
of the stimuli rotated through the five different rotational views in which
the stimulus is presented to VisNet. At each presentation, the activation
of individual neurons is calculated, then the neuronal firing rates are cal-
culated, and then the synaptic weights are updated. Each time a stimulus
has been presented in all training orientations, a new stimulus is chosen
at random, and the process is repeated. The presentation of all the stim-
uli through all five orientations constitutes one epoch of training. In this
manner, the network is trained one layer at a time starting with layer 1
and finishing with layer 4. In the investigations described here, the num-
bers of training epochs for layers 1 through 4 were 50, 100, 100, and 75,
respectively.
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Figure 3: Representations of the six visual stimuli with three surface features
(triples) presented to VisNet during the simulations. Each stimulus is a sphere
that is identified by a unique combination of three surface features (a vertical,
diagonal, and horizontal arc) that occur in three relative positions A, B, and C.
Each row shows one of the stimuli rotated through the five different rotational
views in which the stimulus is presented to VisNet. From left to right, the rota-
tional views shown are —60 degrees, —30 degrees, 0 degree (central position),
30 degrees, and 60 degrees.

Two measures of performance were used to assess the ability of the output
layer of the network to develop neurons that are able to respond with view
invariance to individual stimuli or objects (see Rolls & Milward, 2000). A
single cell information measure was applied to individual cells in layer
4 and measures how much information is available from the response of
a single cell about which stimulus was shown independently of view. A
multiple cell information measure, the average amount of information that
is obtained about which stimulus was shown from a single presentation
of a stimulus from the responses of all the cells, enabled measurement of
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whether, across a population of cells, information about every object in the
set was provided. Procedures for calculating the multiple cell information
measure are given in Rolls, Treves, and Tovee (1997) and Rolls and Milward
(2000). In the experiments presented later, the multiple cell information was
calculated from only a small subset of the output cells. There were five cells
selected for each stimulus, and these were the five cells that gave the highest
single cell information values for that stimulus.

3 Results

The aim of the first experiment was to test whether the network could learn
invariant representations of the surface markings on objects seen from dif-
ferent within-generic views and whether the learning would generalize to
new views of objects (triples) after pretraining on feature subsets (pairs). To
realize this aim, the VisNet network was trained in two stages. In the first
stage, the 18 feature pairs were used as input stimuli, with each stimulus
being presented to VisNet’s retina in sequences of five orientations as de-
scribed in section 2.2. During this stage, learning was allowed to take place
only in layers 1 and 2. This led to the formation of neurons that responded
to the feature pairs with some rotation invariance in layer 2. In the second
stage, we used the six feature triples as stimuli, with learning allowed only in
layers 3 and 4. During this second training stage, the triples were presented
to VisNet’s input retina only in the first four orientations, i through iv. After
the two stages of training were completed, we examined whether the output
layer of VisNet had formed top-layer neurons that responded invariantly
to the six triples when presented in all five orientations, not just the four in
which the triples had been presented during training. To provide baseline
results for comparison, the results from experiment 1 were compared with
results from experiment 2, which involved no training in layers 1,2 and 3,4,
with the synaptic weights left unchanged from their initial random values.

In Figure 4, we present numerical results for the two experiments de-
scribed. On the left are the single cell information measures for all top
(fourth) layer neurons ranked in order of their invariance to the triples,
and on the right side are multiple cell information measures. To help in-
terpret these results, we can compute the maximum single cell information
measure according to

Maximum single cell information = log, (number of triples), (3.1)

where the number of triples is six. This gives a maximum single cell infor-
mation measure of 2.6 bits for these test cases. The information results from
experiment 1 shown in Figure 4 demonstrate that even with the triples pre-
sented to the network in only four of the five orientations during training,
layer 4 is indeed capable of developing rotation-invariant neurons that can
discriminate effectively among the six different feature triples in all five ori-
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Figure 4: Numerical results for experiments 1 and 2: (Left) Single cell infor-
mation measures. (Right) Multiple cell information measures. There were six
stimuli each shown in five rotational views (6s 5r). In experiment 1, the first two
layers were trained on feature pairs in all transforms, and layers 3 and 4 were
trained on the six triple stimuli in four of the five transforms. For comparison,
experiment 2 shows the performance with no training.

entations, that is, with correct recognition from all five perspectives. Indeed,
from the single cell information measures, it can be seen that a number of
cells have reached the maximum level of performance in experiment 1. In
addition, the multiple cell information for experiment 1 reaches the max-
imal level of 2.6 bits, indicating that the network as a whole is capable of
perfect discrimination between the six triples in any of the five orientations.
The finding that some single neurons showed perfect performance on all
five instances of every one of the six stimuli (as shown by the single cell
information analysis of Figure 4) provides evidence that the network can
indeed generalize to novel deformations of stimuli when the first two layers
have been trained on the component feature combinations, but the top two
layers have been trained on only some of the transforms of the complete
stimuli.

Further results from experiment 1 are presented in Figure 5, where we
show the response profiles of a top-layer neuron to the six triple-feature
stimuli. This neuron has achieved excellent invariant responses to the six
triple-feature stimuli. The performance was perfect in that the response
profiles are independent of the orientation of the sphere but differentiate
between triples in that the responses are maximal for triple 132 and minimal
forall other triples. In particular, the cell responses are maximal for triple 132
presented in all five of the orientation transforms. The perfect performance
of the neuron occurred even though the network was being tested with five
transforms of the stimuli, with only four transforms having been trained in
layers 3 and 4.

We performed a control experiment to show that the network really had
learned invariant representations specific to the kinds of 3D deformations
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Figure 5: Numerical results for experiment 1: Response profiles of a top-layer
neuron to the 6 triples in all 5 orientations.

undergone by the surface features as the objects rotated in depth. The de-
sign of the control experiment was to train the network on “spheres” with
nondeformed surface features and then to test whether the network failed
to operate correctly when it was tested with objects with the features present
in the transformed way that they appear on the surface of a real 3D object.
The training set of 2D feature triples was generated from the view of each
feature triple present at 0 degree, which was 2D translated without defor-
mation to the position on a sphere at which it would appear if the sphere
had been rotated. It was found that when VisNet was first trained on un-
deformed triple stimuli and then tested on the true 3D triple images, that
performance was poor, as shown by the single and multiple cell informa-
tion measures, and by the fact that most layer 4 neurons did not respond to
all five instances of each rotated triple stimulus. The results of this control
experiment thus showed that the network had learned invariant represen-
tations specific to the kinds of 3D deformations undergone by the surface
features as the objects rotated in depth in the first experiment.

4 Discussion

In this article, we were able to show first how trace learning can form neu-
rons that can respond invariantly to the perspective transforms that surface
markings on 3D objects show when the object is rotated within a generic
view. The invariant learning was specifically about surface markings, in that
boundary curvature changes were excluded by the use of spherical objects.
Thus, VisNet can learn how the surface features on 3D objects transform as
the object is rotated in depth and can use knowledge of the characteristics
of these transforms to perform 3D object recognition.
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Second, the results show that this could occur for a novel view of an
object that was not an interpolation from previously seen views. This was
possible given that the low-order feature combination sets from which an
object was composed had been learned in early layers of VisNet previously.
That is, it was shown that invariant learning on every possible transform
of the triple-feature stimuli is not necessary. Once the invariance has been
trained for the feature pairs, then just a few presentations of the triples
(needed to train the weights from the intermediate to the higher layers) are
needed, and the invariance is present not because of any invariant learn-
ing about the triples but because of invariant learning about the feature
pairs.

The approach inherent in a feature hierarchy system such as that exem-
plified by VisNet is that the representation of an object at an upper level
is produced by a combination of the firing of feature-sensitive neurons at
lower levels that themselves have some invariant properties (Rolls & Deco,
2002). The concept is thus different from that suggested by Edelman (1999),
who used existing invariant representations of different whole objects as a
basis set for new whole objects. Effectively, a new whole object neuron at
the whole object representation level in the network was trained to respond
to linear combinations of the activity of the other pretrained object neurons.
Provided that the new object was similar to some of the pretrained objects,
the interpolation worked. The system we propose effectively learns invari-
ant representations of low-order feature combinations at an early stage of
the network. Then at an upper level, the system is trained on a new object
constituted by an entirely new combination of lower-level neurons firing.
The system then generalizes invariantly to different transforms of the new
object. The system we describe is more closely related to the hierarchical
nature of the cortical visual system and is also more powerful in that the
new object need not be very similar at the object level to any previously
learned object. It must just be composed of similar features.
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