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Abstract We show that spatial continuity can enable a

network to learn translation invariant representations of

objects by self-organization in a hierarchical model of

cortical processing in the ventral visual system. During

‘continuous transformation learning’, the active synapses

from each overlapping transform are associatively modi-

fied onto the set of postsynaptic neurons. Because other

transforms of the same object overlap with previously

learned exemplars, a common set of postsynaptic neurons

is activated by the new transforms, and learning of the new

active inputs onto the same postsynaptic neurons is facili-

tated. We show that the transforms must be close for this to

occur; that the temporal order of presentation of each

transformed image during training is not crucial for

learning to occur; that relatively large numbers of trans-

forms can be learned; and that such continuous transfor-

mation learning can be usefully combined with temporal

trace training.

Keywords Object recognition � Continuous

transformation � Trace learning � Inferior temporal cortex �
Invariant representations

Introduction

Over successive stages, the visual system develops neurons

that respond with position (i.e. translation), view, and size

invariance to objects or faces (Desimone 1991; Rolls 1992,

2000, 2007, 2008a, b, 2010; Tanaka et al. 1991; Rolls and

Deco 2002). For example, it has been shown that the

inferior temporal visual cortex has neurons that respond to

faces and objects invariantly with respect to translation

(Tovee et al. 1994; Kobatake and Tanaka 1994; Ito et al.

1995; Op de Beeck and Vogels 2000; Rolls et al. 2003),

size (Rolls and Baylis 1986; Ito et al. 1995), contrast (Rolls

and Baylis 1986), lighting (Vogels and Biederman 2002),

spatial frequency (Rolls et al. 1985, 1987), and view

(Hasselmo et al. 1989; Booth and Rolls 1998). It is cru-

cially important that the visual system builds invariant

representations, for only then can associative learning on

one trial about an object generalize usefully to other

transforms of the same object (Rolls and Deco 2002; Rolls

2008b). Building invariant representations of objects is a

major computational issue, and the means by which the

cerebral cortex solves this problem is a topic of great

interest (Rolls and Deco 2002; Ullman 1996; Riesenhuber

and Poggio 1999b; Biederman 1987; Bartlett and Sej-

nowski 1998; Becker 1999; Wiskott and Sejnowski 2002;

Rolls et al. 2008; Rolls 2009).

In this paper, we show how a quite general learning

principle, Continuous Transformation (CT) learning

(Stringer et al. 2006), could be used to build translation

invariant representations. Continuous spatial transforma-

tion learning utilizes spatial continuity of objects, in the

world, in contrast to previous approaches which have used

temporal continuity, for example, using a modified Hebb

rule with a short term temporal trace of preceding activity

(Földiák 1991; Wallis and Rolls 1997; Rolls and Milward
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2000; Rolls and Stringer 2001; Rolls and Deco 2002). The

CT-based learning we describe here can be powerful, for it

relies on spatial overlap between stimuli in small regions of

the input space, but given training exemplars throughout

the space enables transforms in quite distant parts of the

continuous input space to be associated together onto the

same population of postsynaptic neurons. We show how

continuous transformation learning could be used in the

type of hierarchical processing that is a property of cortical

architecture, in which key principles agreed by many

investigators (Fukushima 1980; Wallis and Rolls 1997;

Riesenhuber and Poggio 1999a, b, 2000; Giese and Poggio

2003; Serre et al. 2007) include feedforward connectivity,

local lateral inhibition within a layer to implement com-

petition, and then some form of associative learning. We

show by simulation how CT learning can be used to build

translation invariant representations in a hierarchical net-

work model (VisNet) of cortical processing in the ventral

visual system, and we show how CT learning can usefully

complement trace rule learning (Földiák 1991; Wallis and

Rolls 1997; Rolls and Milward 2000; Rolls and Stringer

2001; Rolls and Deco 2002). We note that in this and

previous papers with VisNet, we show that invariant object

recognition learning can occur in purely feedforward

hierarchical networks, but we have extended elsewhere the

model to include top-down backprojections to model top-

down attentional effects in visual object recognition (Deco

and Rolls 2004, 2005; Rolls 2008b), and have postulated

elsewhere that top-down backprojections could be useful to

guide learning in hierarchical networks (Rolls and Treves

1998; Rolls and Deco 2002).

In previous papers on continuous transformation learn-

ing, we investigated view invariance (Stringer et al. 2006;

Perry et al. 2006). In this paper, we address for the first time

with continuous transformation learning a type of invari-

ance learning that is fundamental to visual object recogni-

tion, namely translation invariance learning. Translation

invariance in two dimensions is a hard problem to solve

because any individual feature is likely to occur in every

possible location due to the shifts in position, and this leads

to great overlap at the feature level between the different

transforms of different objects. Hence, we consider trans-

lation invariance in two dimensions to be a stronger chal-

lenge for continuous transformation learning. In addition, it

is particularly important to test CT learning on the problem

of translation invariance learning, because the changes with

each transform can be clearly defined at the pixel level,

whereas with view transforms, the changes at the pixel level

between adjacent transforms are less clearly specified as an

object is rotated. Translation invariance thus offers a way to

assess better how far apart the transforms of objects can be

for CT learning to still operate effectively and how many

different transforms of a given object can be learned by CT

learning. Another novel aspect of the work described here is

that we also describe conceptually how invariance learning

requires different weight vectors to be learned by neurons

than are typically learned by competitive networks in which

the patterns within a cluster overlap with each other. We

show here how translation invariant representations can be

learned in continuous transformation learning by the asso-

ciative processes used in a standard competitive network

and where there may be no overlap between the patterns at

the extremes of the transform of a given object. Another

new aspect of the work described here is that we show how

continuous transformation learning can usefully comple-

ment trace rule learning to form invariant representations of

objects.

The aim of the research described here is thus to

investigate whether spatial continuity in the world can

provide a basis for the formation of translation invariant

representations that discriminate between objects. The aim

is not to investigate how many objects can be discrimi-

nated, for we agree with Pinto et al. (2008) that a more

fundamental issue in understanding visual object recogni-

tion is to understand how invariant representations can be

formed using well-controlled stimuli, rather than large

numbers of stimuli. In this paper, we show for the first time

that translation invariant object recognition can be formed

by a self-organizing competitive process utilizing purely

spatial continuity as objects transform.

Methods

The VisNet architecture

The model architecture (VisNet), implemented by Wallis

and Rolls (1997) and Rolls and Milward (2000), that is

used to investigate the properties of CT learning in this

paper is based on the following: (i) A series of hierarchical

competitive networks with local graded inhibition; (ii)

Convergent connections to each neuron from a topologi-

cally corresponding region of the preceding layer, leading

to an increase in the receptive field size of neurons through

the visual processing areas; and (iii) Synaptic plasticity

based on a Hebb-like learning rule.

The model consists of a hierarchical series of four layers

of competitive networks, intended to model in principle the

hierarchy of processing areas in the ventral visual stream

which include V2, V4, the posterior inferior temporal

cortex, and the anterior inferior temporal cortex, as shown

in Fig. 1. The forward connections to individual cells are

derived from a topologically corresponding region of the

preceding layer, using a Gaussian distribution of connec-

tion probabilities. These distributions are defined by a

radius which will contain approximately 67% of the
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connections from the preceding layer. The values used are

given in Table 1.

Before stimuli are presented to the network’s input

layer, they are pre-processed by a set of input filters which

accord with the general tuning profiles of simple cells in

V1. The input filters used are computed by weighting the

difference of two Gaussians by a third orthogonal Gaussian

according to the following:

Cxyðq;h; f Þ ¼ q e
�ðx coshþy sinh

ffiffi

2
p

=f
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1:6
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where f is the filter spatial frequency, h is the filter orien-

tation, and q is the sign of the filter, i.e. ±1. Individual

filters are tuned to spatial frequency (0.0625–0.5 cycles/

pixel); orientation (0�–135� in steps of 45�); and sign (±1).

Filters are thresholded to provide positive only firing rates.

Oriented difference of Gaussian filters were chosen in

preference to Gabor filters on the grounds of their better fit

to available neurophysiological data including the zero DC

response (Hawken and Parker 1987). Simple cell like

response properties were chosen rather than complex cell

like properties because it is important in feature hierarchy

networks to build neurons early in processing that respond

to combinations of features in the correct relative spatial

positions in order to provide a solution to the binding

problem (Elliffe et al. 2002; Rolls and Deco 2002). The

number of layer 1 connections to each spatial frequency

filter group is given in Table 2.

The activation hi of each neuron i in the network is set

equal to a linear sum of the inputs yj from afferent neurons j

weighted by the synaptic weights wij. That is,

hi ¼
X

j

wijyj ð2Þ

where yj is the firing rate of neuron j, and wij is the strength

of the synapse from neuron j to neuron i.

Within each layer, competition is graded rather than

winner-take-all and is implemented in two stages. First, to

implement lateral inhibition, the activation h of neurons

within a layer is convolved with a spatial filter, I, where d
controls the contrast and r controls the width, and a and b

index the distance away from the center of the filter

Ia;b ¼
�de�

a2þb2

r2 if a 6¼ 0 or b 6¼ 0;
1�

P

a6¼0
b6¼0

Ia;b if a ¼ 0 and b ¼ 0:

8

<

:

ð3Þ

The lateral inhibition parameters are given in Table 3.

Next, contrast enhancement is applied by means of a

sigmoid activation function

y ¼ f sigmoidðrÞ ¼ 1

1þ e�2bðr�aÞ ð4Þ

where r is the activation (or firing rate) after lateral inhi-

bition, y is the firing rate after contrast enhancement, and a
and b are the sigmoid threshold and slope, respectively. The

parameters a and b are constant within each layer, although

a is adjusted at each iteration to control the sparseness of the

firing rates. For example, to set the sparseness to, say 5%,

the threshold is set to the value of the 95th percentile point
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Table 1 Network dimensions showing the number of connections

per neuron and the radius in the preceding layer from which 67% are

received

Dimensions Number of connections Radius

Layer 4 32 9 32 100 12

Layer 3 32 9 32 100 9

Layer 2 32 9 32 100 6

Layer 1 32 9 32 272 6

Retina 128 9 128 9 32 – –

Table 2 Layer 1 connectivity

Frequency 0.5 0.25 0.125 0.0625

Number of connections 201 50 13 8

The numbers of connections from each spatial frequency set of filters

are shown. The spatial frequency is in cycles per pixel
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of the activations within the layer. The parameters for the

sigmoid activation function are shown in Table 4.

Model simulations that incorporated these hypotheses

with a modified associative learning rule to incorporate a

short-term memory trace of previous neuronal activity

were shown to be capable of producing stimulus-selective

but translation and view invariant representations (Wallis

and Rolls 1997; Rolls and Milward 2000; Rolls and

Stringer 2001).

In this paper, the CT learning principle implemented in

the model architecture (VisNet) uses only spatial continuity

in the input stimuli to drive the Hebbian associative

learning with no temporal trace. In principle, the CT

learning mechanism we describe could operate in various

forms of feedforward neural network, with different forms

of associative learning rule or different ways of imple-

menting competition between neurons within each layer.

Continuous transformation learning

Continuous transformation (CT) learning utilizes spatial

continuity inherent in how objects transform in the real

world, combined with associative learning of the feedfor-

ward connection weights. The network architecture is that

of a competitive network (Hertz et al. 1991; Rolls and

Deco 2002).

The continuous transformation learning process is

illustrated for translation invariance learning in Fig. 2.

During the presentation of a visual image at one position on

the retina that activates neurons in layer 1, a small winning

set of neurons in layer 2 will modify (through associative

learning) their afferent connections from layer 1 to respond

well to that image in that location. A variety of associative

rules could be used. In the simulations with CT learning

described in this paper, we use the Hebb learning rule

dwij ¼ ayixj ð5Þ

where dwij is the increment in the synaptic weight wij, yi is

the firing rate of the postsynaptic neuron i, xj is the firing

rate of the pre-synaptic neuron j, and a is the learning rate.

To bound the growth of each neuron’s synaptic weight

vector, wi for the ith neuron, its length is normalized at the

end of each timestep during training as in standard com-

petitive learning (Hertz et al. 1991). When the same image

appears later at nearby locations, so that there is spatial

continuity, the same neurons in layer 2 will be activated

because some of the active afferents are the same as when

the image was in the first position. The key point is that if

these afferent connections have been strengthened suffi-

ciently while the image is in the first location, then these

connections will be able to continue to activate the same

neurons in layer 2 when the image appears in overlapping

locations. Thus, the same neurons in the output layer have

learned to respond to inputs that have similar vector ele-

ments in common.

As can be seen in Fig. 2, the process can be continued

for subsequent shifts, provided that a sufficient proportion

Table 3 Lateral inhibition parameters

Layer 1 2 3 4

Radius, r 1.38 2.7 4.0 6.0

Contrast, d 1.5 1.5 1.6 1.4

Table 4 Sigmoid parameters

Layer 1 2 3 4

Percentile 99.2 98 88 91

Slope b 190 40 75 26

(a)
Output layer

Input layer

Stimulus position 1

Stimulus position 2

Output layer

Input layer

(b)

Fig. 2 An illustration of how CT learning would function in a

network with a single layer of forward synaptic connections between

an input layer of neurons and an output layer. Initially the forward

synaptic weights are set to random values. The top part a shows the

initial presentation of a stimulus to the network in position 1.

Activation from the (shaded) active input cells is transmitted through

the initially random forward connections to stimulate the cells in the

output layer. The shaded cell in the output layer wins the competition

in that layer. The weights from the active input cells to the active

output neuron are then strengthened using an associative learning

rule. The bottom part b shows what happens after the stimulus is

shifted by a small amount to a new partially overlapping position 2.

As some of the active input cells are the same as those that were

active when the stimulus was presented in position 1, the same output

cell is driven by these previously strengthened afferents to win the

competition again. The rightmost shaded input cell activated by the

stimulus in position 2, which was inactive when the stimulus was in

position 1, now has its connection to the active output cell

strengthened (denoted by the dashed line). Thus the same neuron in

the output layer has learned to respond to the two input patterns that

have similar vector elements in common. As can be seen, the process

can be continued for subsequent shifts, provided that a sufficient

proportion of input cells stay active between individual shifts
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of presynaptic neurons stay active between individual

shifts. This learning process in a hierarchical network can

take place at every level of the network (Wallis and Rolls

1997; Rolls and Deco 2002; Rolls and Stringer 2006; Rolls

2008b). Over a series of stages, transform invariant (e.g.

location invariant) representations of images are success-

fully learned, allowing the network to perform invariant

object recognition. A similar CT learning process may

operate for other kinds of transformation, such as change in

view or size.

This paper describes the first investigation of CT

learning of translation invariant representations. We show,

with supporting simulations, that CT learning can imple-

ment translation invariance learning of objects, can learn

large numbers of transforms of objects, does not require

any short term memory trace in the learning rule, requires

continuity in space but not necessarily in time, and can

cope when the transforms of an object are presented in a

randomized order.

Trace learning

CT learning is compared in Experiment 2 with another

approach to invariance learning, trace learning, and we

summarize next the trace learning procedure developed and

analyzed previously (Földiák 1991; Rolls 1992; Wallis and

Rolls 1997; Rolls and Milward 2000; Rolls and Stringer

2001). Trace learning utilizes the temporal continuity of

objects in the world (over short time periods) to help the

learning of invariant representations. The concept here is

that on the short time scale, of e.g. a few seconds, the

visual input is more likely to be from different transforms

of the same object, rather than from a different object. A

theory used to account for the development of view

invariant representations in the ventral visual system uses

this temporal continuity in a trace learning rule (Wallis

and Rolls 1997; Rolls and Milward 2000; Rolls and

Stringer 2001). The trace learning mechanism relies on

associative learning rules, which utilize a temporal trace of

activity in the postsynaptic neuron (Földiák 1991; Rolls

1992). Trace learning encourages neurons to respond to

input patterns which occur close together in time, which

are likely to represent different transforms (positions) of

the same object. Temporal continuity has also been used in

other approaches to invariance learning (Stone 1996;

Bartlett and Sejnowski 1998; Becker 1999; Einhäuser et al.

2002; Wiskott and Sejnowski 2002).

The trace learning rule (Földiák 1991; Rolls 1992;

Wallis and Rolls 1997; Rolls and Milward 2000) encour-

ages neurons to develop invariant responses to input pat-

terns that tended to occur close together in time, because

these are likely to be from the same object. The particular

rule used (see Rolls and Milward (2000)) was

dwj ¼ ays�1xs
j ð6Þ

where the trace ys is updated according to

ys ¼ ð1� gÞys þ gys�1 ð7Þ

and we have the following definitions

xj: jth input to the neuron.

ys: Trace value of the output of the neuron at time step

s.

wj: Synaptic weight between jth input and the neuron.

y: Output from the neuron.

a: Learning rate. Annealed to zero.

g: Trace value. The optimal value varies with presen-

tation sequence length.

The parameter g may be set anywhere in the interval

[0,1], and for the simulations described here, g was set to

0.8. A discussion of the good performance of this rule,

principles by which it can be set to optimal values, and its

relation to other versions of trace learning rules are pro-

vided by Rolls and Milward (2000), Rolls and Stringer

(2001), and Wallis and Baddeley (1997).

The CT learning procedure described previously has two

major differences from trace learning. First, the visual

stimuli presented to the retina must transform continuously,

that is there must be considerable similarity in the neurons

in layer 2 activated in the competitive process by close

exemplars in layer 1. Secondly, in CT learning, the syn-

aptic weights are updated by an associative learning rule

without a temporal trace of neuronal activity. Thus, without

the need for a temporal trace of neuronal activity, different

retinal transforms of an object become associated with a

single set of invariant cells in the upper layers. We also

argue that CT learning can complement trace learning, as

trace but not CT learning can associate completely differ-

ent retinal images that tend to occur close together in time.

Invariance learning vs conventional competitive

learning

Before presenting results from this study, it is first useful to

illustrate a fundamental difference in the weight structure

required to solve an invariance task and that required to

solve the kind of categorization task that competitive net-

works have more commonly been used for.

In competitive learning as typically applied, the weight

vector of a neuron can be thought of as moving toward the

center of a cluster of similar overlapping input stimuli

(Rumelhart and Zipser 1985; Hertz et al. 1991; Rolls and

Treves 1998; Rolls and Deco 2002). The weight vector

points toward the center of the set of stimuli in the cate-

gory. The different training stimuli that are placed into the

same category (i.e. activate the same neuron) are typically

Exp Brain Res (2010) 204:255–270 259
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overlapping in that the pattern vectors are correlated with

each other. Figure 3a illustrates this.

For the formation of invariant representations (by e.g.

trace or CT learning), there are multiple occurrences of an

object at different positions in the space. The object at each

position represents a different transform (whether in posi-

tion, size, view etc) of the object. The different transforms

may be uncorrelated with each other, as would be the case

for example with an object translated so far in the space

that there would be no active afferents in common between

the two transforms. Yet we need these two orthogonal

patterns to be mapped to the same output. It may be a very

elongated part of the input space that has to be mapped to

the same output in invariance learning. These concepts are

illustrated in Fig. 3b. In this paper, we show how contin-

uous transformation learning as well as trace learning can

contribute to solving translation invariance learning. Con-

tinuous transformation learning uses spatial continuity

among the nearby positions of the object training exem-

plars to help produce the invariant object representations

required. We emphasize that the network architecture and

training rule can be identical for standard competitive

learning and for continuous transformation learning. It is

the training and style of learning that differs, with standard

competitive learning pointing a synaptic weight vector

toward the prototype of a set of training patterns, whereas

continuous transform learning maps a continuous part of an

elongated input space to the same output.

In conventional competitive learning, the overall weight

vector points to the prototypical representation of the

object. The only sense in which after normal competitive

training (without translations etc) the network generalizes

is with respect to the dot product similarity of any input

vector compared to the central vector from the training set

that the network learns. Continuous transformation learn-

ing works by providing a set of training vectors for each

object that overlap and between them cover the whole

space over which an invariant transform of the object must

be learned. Indeed, it is important for continuous spatial

transformation learning that the different exemplars of an

object are sufficiently close that the similarity of adjacent

training exemplars is sufficient to ensure that the same

postsynaptic neuron learns to bridge the continuous space

spanned by the whole set of training exemplars of a given

object. This will enable the postsynaptic neuron to span a

very elongated space of the different transforms of an

object.

Simulations: stimuli

The stimuli used to train the networks were 64 9 64 pixel

images, with 256 gray levels, of frontal views of faces,

examples of which have been shown previously (Wallis

and Rolls 1997). In some of the experiments described

here, just two face stimuli were used, as these are sufficient

to demonstrate some of the major properties of CT

learning.

Simulations: training and test procedure

To train the network, each stimulus is presented to the

network in a sequence of different transforms, in this paper,

positions on the retina. At each presentation of each

transform of each stimulus, the activation of individual

neurons is calculated, then their firing rates are calculated,

and then the synaptic weights are updated. The presentation

of all the stimuli across all transforms constitutes 1 epoch

of training. In this manner, the network is trained one layer

at a time starting with layer 1 and finishing with layer 4. In

all the investigations described here, the number of training

epochs for layers 1–4 was 50. The learning rates a in Eqs. 5

and 6 for layer 1 were 3.67 9 10-5, and for layers 2–4

were 1.0 9 10-4.

Two measures of performance were used to assess the

ability of the output layer of the network to develop neu-

rons that are able to respond with translation invariance to

individual stimuli or objects (see Rolls and Milward

(2000)). A single cell information measure was applied to

individual cells in layer 4 and measures how much infor-

mation is available from the response of a single cell about

which stimulus was shown independently of position. A

multiple cell information measure, the average amount of

information that is obtained about which stimulus was

shown from a single presentation of a stimulus from the

responses of all the cells, enabled measurement of whether

across a population of cells information about every object

in the set was provided. Procedures for calculating the

Fig. 3 a Conventional competitive learning. A cluster of overlapping

input patterns is categorized as being similar, and this is implemented

by a weight vector of an output neuron pointing toward the center of

the cluster. Three clusters are shown, and each cluster might after

training have a weight vector pointing toward it. b Invariant

representation learning. The different transforms of an object may

span an elongated region of the space, and the transforms at the far

ends of the space may have no overlap (correlation), yet the network

must learn to categorize them as similar. The different transforms of

two different objects are represented
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multiple cell information measure are given in Rolls et al.

(1997a) and Rolls and Milward (2000). In the experiments

presented later, the multiple cell information was calcu-

lated from only a small subset of the output cells. There

were five cells selected for each stimulus, and these were

the five cells which gave the highest single cell information

values for that stimulus.

We demonstrate the ability of CT learning to train the

network to recognize different face stimuli in different

positions. The maximum single cell information measure is

Maximum single cell information

¼ log2ðnumber of stimuliÞ: ð8Þ

For two face stimuli, this gives a maximum single (and

multiple) cell information measure of 1 bit, and for four

face stimuli 2 bits. The single cell information is maximal

if, for example, a cell responds to one object (i.e. stimulus)

in all locations tested and not to the other object or objects

in any location. The multiple cell information is maximal if

all objects have invariant neurons that respond to one but

not the other objects.

Results

Experiment 1: the effect of stimulus spacing

The aim of this experiment was to demonstrate translation

invariance learning using a Hebb learning rule with no

temporal trace. It was predicted that the CT effect would

break down if the distance between nearest transforms was

increased, as this would break the spatial continuity

between the transforms of stimuli. This experiment inves-

tigated whether this occurred and how great the shift nee-

ded to be for the type of stimuli used before the CT

learning started to fail.

Networks were created and trained with two test faces,

on an 11 9 11 square grid of training locations. Different

distances between each training location were used in

different simulations. The distances between locations in

different simulations were 1, 2, 3, 4, and 5 pixels. Networks

were trained with the Hebb rule (Eq. 5).

Figure 4 shows the performance for different spacings

measured with the single and multiple cell information

measures. The single cell measure shows for the 256 most

invariant cells in layer 4 (which contains 1,024 cells) how

much information each cell provided about which of the

two stimuli was shown, independently of the location of the

stimuli. Thus, a cell with one bit of information discrimi-

nated perfectly between the two stimuli for every one of the

11 9 11 = 121 training locations, responding for example

to one object in all 121 locations and not responding to the

other object in any location. The multiple cell information

shows that different neurons are tuned to each of the

stimuli used. Both parts of Fig. 4 show that the perfor-

mance decreases as the distance between adjacent training

locations increases.

We now consider the average results of five simulation

runs in each spacing condition, together with control

results. (Each simulation run had different random seeds

for the connectivity and connection weights.) For each

simulation, the number of fully invariant cells in the output

layer (i.e. those with 1 bit of stimulus-specific information)

was averaged across all networks within a condition. These

results are plotted in the left-hand panel of Fig. 5. Given

that no invariant cells were found in any of the networks in

the untrained condition, it is clear that the network showed

a strong improvement after training when stimulus loca-

tions were only one pixel apart. However, when the sepa-

ration between training locations was increased to 2 pixels

spacing or more (i.e. 3, 4 and 5), no fully invariant cells

were found.
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Fig. 4 Left Single cell information measures showing the perfor-

mance of layer 4 neurons after training with the Hebb rule, with

separate curves for networks trained with different distances (in

pixels) between the training locations. The performance of the 256

most selective cells in layer 4 is shown, and perfect performance is

one bit. Right The multiple cell information measures shows the

performance of ensembles of neurons with the different distances

between training locations
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The right-hand panel of Fig. 5 shows the mean cumu-

lative multiple cell information contained in the responses

for the ten best cells (i.e. five cells for each stimulus that

contain the most stimulus-specific information about that

stimulus) averaged across the five networks for each sep-

aration. The plot shows results from both trained and

untrained (control) networks and shows that the trained

network performs well with training locations spaced 1

pixel apart, moderately with the training locations spaced 2

pixels apart and much less well if the training locations are

3 or more pixels apart. Consistent with this, in the control

untrained condition with merely random mappings,

although some groups of cells do provide some information

about which stimulus was shown, the amount of informa-

tion for in particular one and two pixel spacings for the test

locations is very much less than with training.

These results demonstrate that continuous transforma-

tion learning, which uses only a Hebb rule, can produce

translation invariant representations in a hierarchical model

of visual processing. When training locations are separated

by a single pixel, the networks are clearly able to produce a

number of cells that respond to the stimuli invariantly of

location. That this effect is due to CT learning can be

demonstrated by the fact that as the training locations are

moved further apart performance dramatically decreases.

The reason for the decrease in performance with two or

more pixel spacings for the training locations is that the

same postsynaptic neuron is not likely to be active for

adjacent training locations, as described in Fig. 2. The

results also indicate that for a 64 9 64 image of a face, the

CT training should ideally encompass adjacent locations

for the training and that the training locations should not be

more than 2 pixels apart.

Experiment 2: how many locations can be trained?

The aim of the next simulations was to investigate how CT

learning operates as the number of training locations over

which translation invariant representations of images must

be formed increases.

A series of networks was trained with stimuli presented

on grids of training locations of various sizes. Each net-

work was trained on the two face stimuli using 11 9 11,

13 9 13, 15 9 15, and 17 9 17 grids of training locations.

Given the findings of experiment 1, the training locations

were a single pixel apart. Networks trained with the Hebb

rule in the CT condition, and with the trace rule, were

compared. As in experiment 1, five networks were created

with different random seeds and run on each condition.

The mean number of cells with fully translation

invariant representations (i.e. those with 1 bit of informa-

tion with the single cell information measure) in the output

layer of each network is shown in Fig. 6. Prior to training,

no network had any cells with full translation invariance.

Hence, all invariant cells in trained networks were due to

learning. The results with the Hebb rule training condition

shown in Fig. 6 in the lower curve show that with 121

training locations (the 11 9 11 condition), training with

CT only produces many fully translation invariant cells in

layer 4 and that the number decreases gradually as the

number of training locations increases. Even with 169

training locations (the 13 9 13 condition), many cells had

perfect translation invariance. With 225 (15 9 15) or more

training locations, training with the Hebb rule produced

very few cells with perfect translation invariance.

Figure 6 shows that training with the trace rule produced

better performance than with the Hebb rule. Training with
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Fig. 5 Left Plots of the mean number of fully invariant cells (i.e. cells

with 1 bit of stimulus-specific information) averaged across all five

networks after training over varying amounts of separation between

training locations. Right Plots of the mean cumulative multiple cell

information averaged across all five networks both before

(‘Untrained’) and after (‘Trained’) training with varying amounts of

separation between training locations. Multiple cell information was

measured across the ten best cells in the output layer of each network,

which were selected by rank ordering the cells based on their

stimulus-specific information for each stimulus in turn, and choosing

the five best for that stimulus
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the trace rule (provided that there is a small separation

between training locations) allows the network to benefit

from the CT effect, because the trace rule has a Hebbian

component, and adjacent training locations are likely to

activate the same postsynaptic neuron because of similarity

in the input representations when the images are one pixel

apart. But in addition, the trace rule shows that the addi-

tional effect of keeping the same postsynaptic neuron eli-

gible for learning by virtue of closeness in time of

exemplars of the same training object does help the net-

work to perform better than with Hebb rule training, as

shown in Fig. 6. The value of the trace parameter g was set

in the above simulations to 0.8. This produces a drop in the

trace value to 1/e (37%) in 4–5 trials. We systematically

explored whether longer traces would be useful in the

simulations in which the 121 locations were presented (in

11-long sequences permuted from the 121 transforms) and

showed that somewhat better performance than that illus-

trated in Fig. 6 could be produced by increasing the value

of g up to 0.95. For example, with g = 0.95, which cor-

responds to trace decay to 37% in approximately 20 trials,

the mean number of fully invariant cells (with a width of

the training area of 11) was 83, compared to 73 with

g = 0.8.

The aforementioned results were for cells that discrim-

inated perfectly between the training images over all

training locations. We now investigate how much larger the

training areas can be (and thus the receptive field sizes) if

the criterion of perfect discrimination (i.e. for every trained

location) is relaxed. We used as a measure the number of

locations at which the response to the preferred stimulus

for a neuron (as indicated by the maximal response at any

location) was more than a criterion amount above the

largest response to the other stimulus at any location. This

was designated as the size of the cell’s receptive field (RF).

The results did not depend closely on the exact value of the

criterion amount (with values of 0.1 and 0.01 producing

similar results), and the criterion amount was 0.01 for the

results shown. (The scale is that the firing rate of the

neurons is in the range 0.0–1.0.) The sizes of the receptive

fields of neurons after training with up to 2,025 (45 9 45)

locations are shown in Fig. 7. The largest receptive field

found was 605 pixels in size, and the mean value with

training with 45 9 45 locations was approximately 300

locations. (605 pixels for a square receptive field would

correspond to a grid of approximately 24 9 24 pixels,

which is a relatively large translation for a 64 9 64 image.)

(In the untrained control condition, with grid sizes of

25 9 25 or greater, there were almost no layer 4 cells that

showed selectivity by the above criteria.) Examples of the

receptive fields found for layer 4 neurons are shown in

Fig. 8 and include many adjacent locations because of the

nature of continuous transformation learning illustrated in

Fig. 2.

Experiment 3: effects of training order

In principle, continuous transformation learning need not

have the nearest exemplars of any image presented in any

particular order, as it is the similarity in the inputs pro-

duced by the spatially closest images that drives the

learning (see Fig. 2) rather than the temporal order of

presentation. We tested this by performing simulations in

which the complete set of training locations used in any

epoch were presented in a permuted sequence for one

image and then for the other. This is termed the ‘permuted’
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condition and is compared with the smooth movement

along successive rows that is the default (‘smooth’) train-

ing condition. We also compared these training conditions

with a ‘saccadic’ condition in which 11 locations were

presented smoothly, followed by a jump to a new location

for a further set of 11 smooth transitions, etc. (In the

saccadic algorithm, care was taken to ensure that every

location was visited once in every training epoch.) These

permuted and saccadic training conditions were investi-

gated not only for their theoretical interest, but also

because they provide a way of systematically investigating

the types of training condition that may occur in real-world

environments, in which saccadic eye movements are usu-

ally made.

To test this, three sets of simulations were run in which

five networks were trained with the two face stimuli over a

11 9 11 grid of training locations with one pixel spacing

for the training locations. The mean number of fully

invariant cells (i.e. representing 1 bit of stimulus-specific

information) in the output layer is shown in Fig. 9. The

figure shows that though more invariant cells are produced

on average in the ‘smooth’ condition, any difference

between the three conditions is well within the standard

error of both sets of data, and the networks trained with

‘saccadically’ and ‘permuted’ training conditions still

continue to produce a large number of fully invariant cells.

A one-way repeated-measures ANOVA (where the random

seed used to initialize network weights and connections is

the random factor) revealed that there was no significant

difference between the three conditions (F(2,12) = 0.395;

p = 0.682). Thus, these simulations show that the temporal

order of presentation is not a crucial factor in whether the

networks can be successfully trained to form translation

invariant representations by CT learning. The implications

of this are considered in the Discussion.

Experiment 4: how many stimuli can be trained?

The number of locations over which invariance can be

trained is only one measure of the success of the model.

While it is important that the network should respond

invariantly over as many locations as possible, it is also of

importance to investigate how many different stimuli it is

capable of discriminating with translation invariance. The

networks presented thus far have been trained to discrim-

inate between only two faces. This is something of a

simplification relative to previous studies of translation

invariance in VisNet, where a minimum of seven faces

have been used (see, for instance, Wallis and Rolls 1997;

Rolls and Milward 2000). However, in those investigations

of translation invariance learning with the trace rule, the

distance between adjacent training locations was typically

large (e.g. 32 pixels) (a condition in which continuous

transformation learning will not operate), and the number

of trained locations was for example nine.

In experiment 4, we investigated to what extent trans-

lation invariant representations of more than two stimuli
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Fig. 8 Mesh plots of the

receptive fields of two output

cells from networks trained on a

45 9 45 grid of locations. The

z-axis gives the cell response at

a given training location

Fig. 9 The mean number of fully invariant cells found in the output

layer of networks trained with one of three methods of stimulus

presentation (bars display the standard error of the mean). In the

‘smooth’ condition, stimuli always moved top a neighboring locations

at every timestep. In the ‘saccadic’ condition, the stimuli made

periodic jumps in location. In the ‘permuted’ condition, the stimuli

permuted through the locations in random order
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could be learned under conditions in which CT learning

can operate as shown earlier, using a distance between the

training locations of one pixel. We chose to use a 5 9 5

grid of training locations, and in addition to the two faces

used already, more faces taken from the set illustrated by

Wallis and Rolls (1997). We compared the results of Hebb

rule learning with the untrained control condition.

The results in Fig. 10 show that many cells have the

maximum value of the single cell information about the

face shown when the network is trained on a problem with

25 locations (in a 5 9 5 grid) for up to four faces. To

obtain the maximum value, a neuron had to respond to one

of the faces better than to any other at every one of the 25

training locations. We checked that for the experiments

with 2 or 3 faces, there were neurons that were tuned in this

way to each of the faces. Beyond this, some cells still had

the maximum value of the single cell information when

trained on 4, 5, or 6 faces, but performance had started to

decrease, and was low for 7 faces (see Fig. 10).

These findings show that the networks were able to learn

to discriminate perfectly up to 3 faces for every one of 25

training locations for each face and that performance

started to decrease with larger numbers of stimuli.

Discussion

The results described here show that continuous transfor-

mation learning can provide a basis for forming translation

invariant representations in a hierarchical network model-

ing aspects of the ventral visual stream. The evidence that

continuous transformation learning was the process

responsible for learning is that invariant representations

were produced when the training rule was purely

associative (Hebbian) (Eq. 5), and that the learning was

strongly impaired if similarity between the nearest exem-

plars was reduced by increasing the spacing between the

training locations of the 64 9 64 pixel face images by

more than two pixels (Experiment 1). The exact number of

pixels at which the CT effect breaks down will depend on

the statistics of the images used, with images in which

there are only low spatial frequencies predicted to allow

larger training separations for the nearest locations. CT

learning of view invariant representations has been estab-

lished (Stringer et al. 2006), and this is the first demon-

stration of its use for learning translation invariant

representations of objects. It is important to investigate the

application of continuous transformation learning to

translation invariance learning, for this is inherently more

difficult than the view invariance in one axis that has been

studied previously (Stringer et al. 2006; Perry et al. 2006).

Translation invariance is more difficult in that the training

needs to encompass shifting of the features in two

dimensions, X and Y. That is, any one feature that is part of

an object can occur in any one of the grid coordinates in

two dimensions in which the 2D translation invariance is

being learned. Two-dimensional translation invariance is

what was learned in all of the Experiments described in the

paper. Translation invariance is crucial to useful shape

recognition in biological systems, and it is therefore of

fundamental importance to verify that CT learning can

solve this class of problem.

The results show that the number of training locations

over which translation invariant representations can be

produced using CT learning is quite large, with evidence

for translation invariant representations for up to 605 pixels

in size in experiment 2. (605 pixels for a square receptive

field would correspond to a grid of approximately 24 9 24

pixels).

The capacity with CT training for large numbers of

training locations is of interest in relation to previous

investigations with the trace rule, in which performance

was good with 7 faces for 9 locations, but decreased

markedly as the number of training locations was increased

to 25 locations (Rolls and Milward 2000). However, in the

previous investigations with the trace rule, the spacing

between nearest training locations was large, e.g. 32 pixels.

In the results described here, we have found that CT

learning can learn with large numbers of training locations

(Experiment 2) with two faces. In experiment 4, we

showed that with 25 training locations, the number of

stimuli that can be trained to have perfect translation

invariant responses is 3, with performance starting to

decline with more faces. On the other hand, the trace rule

can cope with more stimuli, provided that the number of

training locations is not very large (e.g. 9). What factors

might underlie these performance differences?
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CT translation invariance training relies on close train-

ing locations, as otherwise the similarity in the input rep-

resentations is too small to support similar firing of the

same postsynaptic neurons by the same stimulus at adja-

cent locations (Experiment 1). We note that low spatial

frequencies will tend to reflect spatial continuity as an

object transforms and may therefore be especially useful in

supporting the operation of CT learning. In this context, it

is of interest that the low-pass spatial frequency filtering

that happens early during development could in fact be

useful in helping representations built using the CT effect

to be set up. Indeed, in the initial development of the

training protocols used with CT learning, we explicitly

trained with only the two low spatial frequencies present

and found that this could facilitate CT learning (although

all the investigations reported here and elsewhere (Stringer

et al. 2006; Perry et al. 2006) used all four spatial fre-

quency filter banks, as this can potentially help discrimi-

nation between objects).

One factor that may limit the performance of CT

translation invariance learning is that if neurons in the

network learn to represent a feature in an image such as an

eye, then it is possible that a similar feature in another face

will become spatially aligned with the feature from the first

face when that image is moved continuously across the

retina during training. Those neurons would then learn to

respond to the same feature in different faces, and this

would limit the discrimination capacity. (This is not a

problem with trace learning when the step size is large, as

then it is unlikely that two similar features from two dif-

ferent faces will overlap and lead to a CT association.) One

possible solution to this issue in hierarchical object rec-

ognition networks is to learn rather specific feature com-

bination representations in an early layer, so that the

feature combination neurons will be different for different

objects. CT learning (and also trace learning) could then

learn translation invariant representations of the feature

combination representations that are now different for the

different faces / objects. It will be interesting to explore to

what extent training in this regime will allow invariant

representations to be formed using CT training for larger

numbers of objects.

From the investigations described here and elsewhere, it

appears that CT learning is useful under conditions where

training images are available with small continuous dif-

ferences between images, and under these conditions CT

learning supports the learning of many transforms of

objects. On the other hand, trace learning can operate well

with larger numbers of training objects (up to e.g. 7, Rolls

and Milward (2000)), though with fewer locations (with up

to 25 tested). We suggest that a combination of these two

learning processes could be useful. If for each object there

is a set of closely spaced transforms, CT learning can

provide usefully invariant representations for these. On the

other hand, if these spatially similar ranges of views are

separated by major discontinuities, such as occur with

catastrophically different views of 3D objects as new sur-

faces come into view (Koenderink 1990) (such as the

inside of a jug or the other side of a card), then trace

learning can associate together the catastrophically differ-

ent views. Further, temporal contiguity, a property of the

transforms of real objects in the world, may help to break

the associativity implied by CT learning when this is not

appropriate for defining an object. Indeed, a danger of CT

learning is that some images of different objects might be

sufficiently similar that two different objects become

associated. The lack of temporal contiguity may in this

case help to break apart the representations of different

objects.

It would be of interest to explore how continuous spatial

transformation and temporal trace training may comple-

ment each other further. It would, for example, be useful to

investigate how the capacity of the network scales up with

size when trained with each approach and with a combi-

nation of both. One point is that the stimulus-specific

information or ‘surprise’ conveyed by neurons in VisNet

(e.g. 1 bit as shown in Fig. 4) is in the same range as that in

the macaque inferior temporal visual cortex, in which the

mean was 1.8 bits, though the exact value depends greatly

on the number of stimuli in the set, and on how sparse vs

distributed the representation is (Rolls et al. 1997b). The

representational capacity of individual neurons in VisNet

and the macaque inferior temporal visual cortex is thus not

inherently different. What does differ is the size of the

system. In the macaque visual system, if the inferior tem-

poral cortex had an area of 150 mm2 in each hemisphere, a

thickness of 2 mm, and a cell density of 20,000 neurons per

mm3 (Rolls and Deco 2002), this would imply that IT

cortex contains in the order of 1.2 9 107 neurons. The

number of neurons in the final layer of VisNet is 1,024, so

the real visual system is likely to be scaled up by at least an

order of 104 times relative to VisNet. Depending on how

VisNet does scale up, the suggestion is that it could per-

form invariant object recognition for large numbers of

objects. Indeed, there appears to be no fundamental reason

why the VisNet architecture will not scale up, in that when

a related hierarchical architecture for invariant recognition

is scaled up, it has been tested successfully with more than

1,000 images and is described as having performance as

good as the best computer vision systems (Serre et al.

2007). To investigate this further, Rolls (in preparation)

produced a new version of VisNet with 16 times as many

neurons in each layer, so that the number of neurons in

each layer was now 128 9 128, and the image presented

was 256 9 256 on a 512 9 512 gray background. Con-

sistent with this, the radius of the excitatory connection
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feedforward topology shown in Table 1 was increased

by 4. It has been demonstrated that the scaled-up version of

VisNet can compute perfect translation invariant repre-

sentations over at least 1,089 locations for 5 objects (100%

correct, 2.32 bits of information for the single and multiple

cell information analyses), which compares favorably with

the 300 locations with 2 stimuli and 25 locations for 3 faces

reported in this paper for VisNet with the standard size

shown in Table 1. We conclude that the demonstration of

principle, that translation invariant representations can be

formed by CT learning, described in this paper is not

limited to the values found with standard VisNet but can

scale up. Continuous spatial transformation learning is thus

an interesting learning principle for translation invariant

representations.

Another point of comparison that could influence how

the system scales up is the sparseness of the representa-

tion. In the study described here, we set the sparseness as

shown in Table 4. In further investigations, we showed

that the performance of VisNet when trained using, CT

learning is robust with respect to the exact values of the

sparseness used. For example, in additional simulations,

we showed that the performance of the system was little

affected by varying the sigmoid threshold parameter used

in layer 1 from the standard value of 0.992 shown in

Table 4 in the range 0.99 to 0.1. When the value was 0.1,

90% of the neurons in layer 1 had high activity to any

one stimulus, yet good performance was found because a

few cells were still well tuned to respond to only some of

the stimuli, providing reasonable discrimination perfor-

mance. Thus, CT learning does not appear to impose

strong constraints on the sparseness values used in order

to obtain good training.

We emphasize that continuous transformation learning

is a different principle to methods that utilize the temporal

continuity of objects in the visual environment (over short

time periods) to help the learning of invariant representa-

tions (Földiák 1991; Rolls 1992; Wallis and Rolls 1997;

Rolls and Milward 2000; Rolls and Stringer 2001; Stone

1996; Bartlett and Sejnowski 1998; Becker 1999; Einhäuser

et al. 2002; Wiskott and Sejnowski 2002). As discussed

earlier, trace learning may usefully complement CT

learning; and correspondingly, CT learning may be present

when training with a trace rule if the training stimuli are

sufficiently similar. It is shown for example in Fig. 6 that

training with the trace rule produces better performance

than with the Hebb rule. Part of the reason for this may be

that, due to the diluted connectivity of the network, there

may be some breaks in the spatial continuity of the input to

cells at any stage of the network, and in these cases, by

keeping the postsynaptic neurons eligible for learning on

the short time scale, the trace rule may enable such dis-

continuities to be bridged.

Experiment 3 showed that translation invariant repre-

sentations can be learned by CT learning when the order of

stimuli is permuted, that is, the different views of an object

occur in random temporal order during training. This

emphasizes that it is spatial similarity that drives CT

learning and that no temporal contiguity is necessary. In

fact, even if visual fixation shifts rapidly and randomly to

produce large translations of an object or face by saccades,

CT learning can still develop invariant representations of

the individual objects.

One prediction of continuous transformation learning is

that invariant transform learning could occur under con-

ditions when there is only spatial similarity between the

training images, but temporal contiguity of images of the

same object is broken by, for example, interleaving views

of different objects during training. This has been tested

psychophysically in humans, and it has been found that

some view invariant learning can occur under these inter-

leaved training conditions (Perry et al. 2006). We now

make a corresponding prediction for the learning of

translation invariant representations of objects. However,

in the study by Perry et al. (2006), human learning was

better if adjacent views of an object occurred in temporal

succession, and this as well as other evidence (Wallis and

Bulthoff 2001; Wallis 1998, 2002; Stone 1998) suggests

that temporal continuity is a useful factor in helping

humans to learn view invariant representations of objects.

Indeed, we suggest that in the natural world temporal

continuity is usually present with spatial continuity too.

Thus, while the results in this paper establish that spatial

continuity (as in CT learning) is sufficient to support

translation invariance learning, we regard it as a mecha-

nism that complements temporal continuity (as in trace)

learning, with the strengths of each described elsewhere in

this Discussion. Further, spatial continuity is usually

present when there is temporal continuity, and that statis-

tical fact about the natural world, together with the findings

described in this paper, indicate that continuous spatial

transformation learning is likely to play a role in the

learning of invariant representations. We have been able to

demonstrate that CT learning can usefully add to trace

learning in the following simulations with the scaled-up

version of VisNet (Rolls, in preparation). When training

with the trace rule with 5 objects at 169 training locations,

we found better invariance learning on a 33 9 33 pixel

grid (where the spacing is on average 2.5 pixels between

training locations) than on a 65 9 65 pixel grid (where the

spacing is 5 pixels between training locations) (p \ 0.004

Mann–Whitney U-test, U = 0, with an average of 2.14 vs.

1.49 bits of information respectively about which of each

of the stimuli was present). This shows that with 5 pixels

between each training location, CT can make a smaller

contribution to the training than when there are on average
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2.5 pixels between each training location. This experiment

thus shows that CT learning can usefully contribute to

temporal trace learning when there is sufficient spatial

continuity to allow the CT effect to operate.

An important aspect of the architecture of VisNet is that

it can generalize to some transforms of an object that have

not been trained. Indeed, part of Rolls’ hypothesis (1992) is

that training early layers (e.g. 1–3) with a wide range of

visual stimuli will set up feature analysers in these early

layers which are appropriate later on with no further

training of early layers for new objects. For example,

presentation of a new object might result in large numbers

of low-order feature combination neurons in early layers of

VisNet being active, but the particular set of feature

combination neurons active would be different for the new

object. The later layers of the network (in VisNet layer 4)

would then learn this new set of layer 3 neurons active as

the new object. However, if the new object was then shown

in a new location, the same set of layer 3 neurons would be

active because they respond with spatial invariance to

feature combinations, and given that the layer 3–4 con-

nections had already been set up by the new object, the

correct layer 4 neurons would be activated by the new

object in its new untrained location and without any further

training. This principle was shown to apply for translation

invariance learning with the trace rule (Elliffe et al. 2002)

and with view invariance learning with continuous trans-

form learning learning (Stringer et al. 2006). However,

there are limitations to how much translation invariance

can occur in the networks, and there is evidence that

behaviorally translation invariance may be limited (Nazir

and O’Regan 1990; Kravitz et al. 2008; McKyton et al.

2009), and that neurons in the primate inferior temporal

visual cortex do not automatically generalize their

responses to novel locations when learning new shapes

(Cox and DiCarlo 2008). We were able to confirm that

some generalization over location does occur with CT

learning as follows. In the scaled-up version of VisNet

(Rolls, in preparation), we trained 5 objects in 9 locations

in translations in a coordinate range of 13 9 13 pixels

across the input. The training locations were at the center,

the four cardinal points, and the four corners, of this

coordinate range, i.e. in a 3 9 3 arrangement, with an

average translation of 4.3 pixels between each training

location. We then tested in all 169 coordinates in that range

(in 160 of which the image had not been placed before).

We found that many cells in layer 4 discriminated the 5

stimuli perfectly at 100% correct across all 169 locations,

by responding to one but to none of the other stimuli across

all 169 locations with a single cell information value of 2.3

bits. In an untrained control, no cells discriminated per-

fectly between the stimuli, with most cells showing poor

discrimination between the stimuli. Thus, translation

invariance learning using CT does show some generaliza-

tion across position (across for example 4 pixels in the

scaled-up version of Visnet), for reasons of the type

described elsewhere.

In conclusion, the results described in this paper are the

first to demonstrate the use of continuous spatial transfor-

mation learning to build translation invariant representations

of objects in a hierarchical object recognition network. We

further propose that continuous transformation learning

could contribute to learning in any sensory system in the

brain with continuity (e.g. spatial continuity) in the sensory

space, for instance the somatosensory system, or the hip-

pocampus (Rolls et al. 2006). Indeed, CT learning is very

likely to operate in such systems given certain parameters,

including a synaptic learning rate that is sufficiently high and

continuous spatial variation of the sensory input. The con-

tinuous spatial transformation learning works because with

the natural statistics of images in the world, and the spatial

filtering performed in the visual system, images of a given

object that are shifted by a small distance will tend to acti-

vate the same postsynaptic neuron, and it is this that enables

continuous transformation learning to operate. We empha-

size that this continuous spatial transformation learning can

occur with no temporal continuity at all, as shown by

invariance learning that can be specific for a particular object

even when the different transforms of different objects are

interleaved in the order in which they are presented.
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