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Abstract
Individual cells that respond preferentially to particular objects have been found in the ventral
visual pathway. How the brain is able to develop neurons that exhibit these object selective
responses poses a significant challenge for computational models of object recognition.
Typically, many objects make up a complex natural scene and are never presented in
isolation. Nonetheless, the visual system is able to build invariant object selective responses.
In this paper, we present a model of the ventral visual stream, VisNet, which can solve the
problem of learning object selective representations even when multiple objects are always
present during training. Past research with the VisNet model has shown that the network can
operate successfully in a similar training paradigm, but only when training comprises many
different object pairs. Numerous pairings are required for statistical decoupling between
objects. In this research, we show for the first time that VisNet is capable of utilizing the
statistics inherent in independent rotation to form object selective representations when
training with just two objects, always presented together. Crucially, our results show that in a
dependent rotation paradigm, the model fails to build object selective representations and
responds as if the two objects are in fact one. If the objects begin to rotate independently, the
network forms representations for each object separately.

Keywords: Object recognition, rotating objects, inferior temporal cortex

Introduction

The ventral visual system plays a significant role in the processing of visual form and

ultimately object identification (Goodale and Milner 1992). Neurophysiological

studies suggest that these regions are organised in a hierarchical fashion, where
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neuronal responses become more complex and receptive field sizes increase towards

the latter stages of the ventral stream (Gattass et al. 1988; Levitt et al. 1994;

Gegenfurtner et al. 1997). Over successive stages, the visual system develops

neurons that respond with view, size and position (translation) invariance to objects

or faces (Hasselmo et al. 1989; Desimone 1991; Rolls et al. 1992; Perrett and Oram

1993; Kobatake and Tanaka 1994; Tovee et al. 1994; Ito et al. 1995; Booth and

Rolls 1998; Op De Beeck and Vogels 2000).

Given these findings, a major computational challenge is to understand the

fundamental mechanisms of how the ventral stream may actually form separate

neuronal representations for individual objects, despite the fact that objects are

always presented in complex natural scenes. This research investigates how the

primate visual system may build invariant representations of individual objects when

multiple objects are always present in a scene. How the visual system learns

representations of individual objects instead of just the combined scene is an

important question for natural vision. Recent research has successfully shown that it

is possible for the VisNet model of the ventral visual stream to utilise the statistics in

the training input to build separate invariant representations of objects used during

training, despite the fact that pairs of objects were always presented (Stringer et al.

2007; Stringer and Rolls 2008). Many different object pairings were required to

produce a training set where each object was combined with the other objects to

create a selection of object pairs. Crucially, during presentation the features that

make up an object occur together more frequently compared to the features that

make up different objects. The frequency with which the objects are presented

together during training denotes the level of correlation between features from

different objects. However, the features that comprise individual objects are always

seen together. It has been shown that a competitive network will operate usefully in

this situation forming invariant representations of individual objects, rather than the

combinations of objects seen during training, by a mechanism such as Continuous

Transformation learning (Stringer and Rolls 2008).

The number of different object pairs presented to the network during training

limits this training method. Although a training paradigm comprising many objects

is ecologically valid, there may be other underlying mechanisms available to assist

this type of object selective learning. In this paper we investigate, for the first time,

whether a multi-layer hierarchical model of the ventral visual pathway is able to use

independent rotation to form separate object selective representations when trained

with just two realistic 3D rotating objects always co-present on the retina.

We investigate the effects of a competitive network and also a self-organising map

(SOM) by introducing short-range excitatory connections and long-range inhibitory

connections (von der Malsburg 1973; Kohonen 1982). This lateral connectivity

uses a ‘‘Mexican-hat’’ profile and encourages spatially proximal neurons to develop

similar response properties due to their mutual excitation while neurons that are

relatively far apart will experience mutual inhibition. This drives competition to

create separate pools of functionally distinct neurons.

It was found that statistical decoupling of the learned output representations can

occur between two objects through independent rotation, even when the objects are

always presented together concurrently during training. Crucially, the features that

comprise a view of an object are always presented together and these features are not

regularly presented with a specific view of the alternate object. Independent rotation

2 J. M. Tromans et al.
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ensures that features between objects remain statistically decoupled. After learning,

separate output representations for the two objects develop.

It was observed that a SOM network architecture is able to form output neurons

that respond with complete view invariance to their preferred object. Although the

competitive network architecture was also able to form neurons with object selective

representations, they were not fully invariant over all views. Instead, these neurons

primarily responded to small regions of contiguous views of their preferred object

and a population of neurons is required to encode all the views of each object

presented during training.

Method

Learning to respond to an object with transform invariance

A simplified example of the Continuous Transformation (CT) learning process is

illustrated in Figure 1a and operates as follows. When an input pattern is presented

during learning, as represented by three active neurons in the input layer (Figure 1,

neurons 1, 2, and 3), it causes activity to propagate through the random feedforward

connections to the output layer, where one of the neurons (Figure 1, neuron 8) wins

the competition. The co-activation of neurons in the input and output layers

causes their synaptic connection to become strengthed, according to a Hebbian

learning rule,

�wij ¼ �yiyj ð1Þ

where �wij is the increment in the synaptic weight wij, yi is the firing rate of the post-

synaptic neuron i, yj is the firing rate of the pre-synaptic neuron j, and � is the

learning rate. To restrict and limit the growth of each neuron’s synaptic weight

vector, wi for the ith neuron, its length is normalised at the end of each timestep

during training as is usual in competitive learning (Hertz et al. 1991). Normalisation

is required to ensure that the same set of neurons do not always win the

competition. Neurophysiological evidence for synaptic weight normalization is

provided by Royer and Pare (2003).

As the stimulus moves from position 1 to position 2 (shown in Figure 1b), it

causes neurons 2, 3 and 4 to become active. Note that neuron 1 is no longer active.

However, neurons 2 and 3 remain active and therefore increase the likelihood that

the same neuron (neuron 8) in the output layer will become active and win the

competition within the output layer. The synaptic connections are then

strengthened once more and neuron 8 will now become associated with the

activation of input neurons 2, 3 and 4. This process is continued, as shown in

Figure 1c and is repeated as the object gradually shifts along the input layer.

In the case of a more complex model such as VisNet, input layer activation

represents the output from the pre-processing input filter stage. The Hebbian

learning rule only strengthens the synaptic connections from those V1 filters that are

activated by the particular visual form of the object view currently presented. The

weight vector of each of the first layer neurons gradually shifts during learning to

point in the same direction as the V1 input pattern(s) to which it is learning to

respond. After training, each neuron will respond in proportion to the similarity
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between the current input pattern and the input pattern(s) the neuron learned to

respond to during training; each first layer neuron computes its activation

(Equation 3) according to the dot product of its weight vector and the current

input pattern from the V1 input layer (Hertz et al. 1991).

A more comprehensive description of Continuous Transformation learning and

simulation results in the context of invariant object recognition is provided by

Stringer et al. (2006) and Perry et al. (2006).

The VisNet model

The original model architecture (VisNet) implemented by Wallis and Rolls (1997)

that is used to investigate the object selective properties learned by independent

rotation during training is based on the following: (i) A series of hierarchical

competitive networks with local graded inhibition. (ii) Convergent connections to

(a)

Output layer

Input layer

Stimulus position 1

Stimulus position 2

Output layer

Input layer

(b)

Stimulus position 3

Output layer

Input layer

(c)

10976 8

321 4 5

10976 8

3 4 521

10976 8

3 4 521

Figure 1. An illustration of how CT learning functions in a feed-forward one-layer network.
Activation of overlapping neurons during the transformation of the object from position to
position leads to the activation of the same neuron in the output layer. Connections are
strengthened according to a Hebbian learning rule after each presentation of the stimulus.
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each neuron from a topologically corresponding region of the preceding layer,

leading to an increase in the receptive field size of neurons through the visual

processing areas. (iii) Synaptic plasticity based on a Hebb-like learning rule.

In this paper, for the first time, we replaced the original competitive network

architecture within each layer with a self-organising map (SOM). That is, some

model simulations adjusted the local graded inhibition within a layer to incorporate

short-range excitation and longer-range inhibition. This type of competition within

a layer is known as a self-organising map, or SOM (von der Malsburg 1973;

Kohonen 1982).

The original VisNet model consists of a hierarchical series of four layers of

competitive networks, corresponding to V2, V4, the posterior inferior temporal

cortex, and the anterior inferior temporal cortex, as shown in Figure 2. The forward

connections to individual cells are derived from a topologically corresponding

region of the preceding layer, using a Gaussian distribution of connection

probabilities. These distributions are defined by a radius which will contain

approximately 67% of the connections from the preceding layer. The values used

are given in Table 1.

Before the objects are presented to the network’s input layer they are pre-

processed by a set of input filters which accord with the general tuning profiles of
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Figure 2. Left: Stylised image of the four layer network. Convergence through the network is
designed to provide fourth layer neurons with information from across the entire input retina.
Right: Convergence in the visual system V1: visual cortex area V1; TEO: posterior inferior
temporal cortex; TE: anterior inferior temporal cortex (IT).

Table 1. Network dimensions showing the number of connections per

neuron and the radius in the preceding layer from which 67% are received.

Dimensions Number of Connections Radius

Layer 4 32�32 100 12

Layer 3 32�32 100 9

Layer 2 32�32 100 6

Layer 1 32�32 272 6

Retina 128�128�32 – –
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simple cells in V1. The filters provide a unique pattern of filter outputs for each

transform of each visual object, which is passed through to the first layer of VisNet.

The input filters used are computed by weighting the difference of two Gaussians by

a third orthogonal Gaussian according to the following:

�xyð�, �, f Þ ¼ � e
�ð

x cos �þy sin �ffiffi
2
p
=f
Þ
2

�
1

1:6
e
�ð

x cos �þy sin �

1:6
ffiffi
2
p
=f
Þ
2

� �
e
�ð

x sin ��y cos �

3
ffiffi
2
p
=f
Þ
2

ð2Þ

where f is the filter spatial frequency, � is the filter orientation, and � is the

sign of the filter, i.e. �1. Individual filters are tuned to spatial frequency

(0.0625 to 0.5 cycles/pixel); orientation (0� to 135� in steps of 45�); and sign

ð
þ
�1). The number of layer 1 connections to each spatial frequency filter group

is given in Table 2. Past neurophysiologcal research has shown that models

based on difference-of-Gaussians functions are superior to those based on the

Gabor function or the second differential of a Gaussian (Hawken and Parker

1987).

The activation hi of each neuron i in the network is set equal to a linear sum of

the inputs yj from afferent neurons j weighted by the synaptic weights wij. That is,

hi ¼
X

j

wijyj ð3Þ

where yj is the firing rate of neuron j, and wij is the strength of the synapse from

neuron j to neuron i.

Competitive network

The original VisNet model implemented a competitive network within each layer.

Within each layer, competition is graded rather than winner-take-all, and is

implemented in two stages. To implement lateral inhibition, the activation h of

neurons within a layer are convolved with a spatial filter, I, where � controls the

contrast and � controls the width, and a and b index the distance away from the

centre of the filter

Ia,b ¼

��e�
a2þb2

�2 if a 6¼ 0 or b 6¼ 0,

1�
X
a 6¼0
b6¼0

Ia,b if a ¼ 0 and b ¼ 0 :

8><
>: ð4Þ

The lateral inhibition parameters are given in Table 3.

Self-organising map

In this paper, we have also run simulations with a self-organising map (SOM)

implemented within each layer. In the case of the SOM architecture, short-range

Table 2. Layer 1 connectivity. The numbers of connections from each spatial frequency

set of filters are shown. The spatial frequency is in cycles per pixel.

Frequency 0.5 0.25 0.125 0.0625

Number of Connections 201 50 13 8

6 J. M. Tromans et al.
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excitation and long-range inhibition forms a Mexican-hat spatial profile and is

constructed as a difference of two Gaussians as follows:

Ia,b ¼ ��I e

�
�a2þb2

�2
I

�
þ �Ee

�
�a2þb2

�2
E

�
ð5Þ

Here, to implement the SOM, the activations hi of neurons within a layer are

convolved with a spatial filter, I, where �I controls the inhibitory contrast and �E
controls the excitatory contrast. The width of the inhibitory radius is controlled by

�I while the width of the excitatory radius is controlled by �E. a and b index the

distance away from the centre of the filter. The lateral inhibition and excitation

parameters are given in Table 4.

Next, contrast enhancement is applied by means of a sigmoid activation function

y ¼ f sigmoidðrÞ ¼
1

1þ e�2�ðr��Þ
ð6Þ

where r is the activation (or firing rate) after applying the lateral inhibition or SOM

filter, y is the firing rate after contrast enhancement, and � and � are the sigmoid

threshold and slope respectively. The parameters � and � are constant within each

layer, although � is adjusted within each layer of neurons to control the sparseness of

the firing rates. The sparseness a of the firing within a layer can be defined, by

extending the binary notion of the proportion of neurons that are firing, as

a ¼
ð
PN

i¼1 yi=NÞ
2

PN
i¼1 y2

i =N
ð7Þ

where yi is the firing rate of the ith neuron in the set of N neurons (Rolls and Treves

1990, 1998). For the simplified case of neurons with binarised firing rates¼ 0/1, the

sparseness is the proportion2 [0, 1] of neurons that are active. For example, to set

the sparseness to, say, 4%, the threshold is set to the value of the 96th percentile

point of the activations within the layer. The parameters for the sigmoid activation

function are shown in Table 5. These are general robust values found to operate

well for this experiment. They are similar to the standard VisNet sigmoid parameter

Table 4. Example lateral inhibition and excitation parameters for the SOM

Layer 1 2 3 4

Excitatory radius, �E 2.1 1.65 1.2 1.8

Excitatory contrast, �E 5.35 33.15 117.57 120.12

Inhibitory radius, �I 4.14 8.1 12.0 18.0

Inhibitory contrast, �I 1.5 1.5 1.6 1.4

Table 3. Lateral inhibition parameters

Layer 1 2 3 4

Radius, � 1.38 2.7 4.0 6.0

Contrast, � 1.5 1.5 1.6 1.4
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values which were previously optimised to provide reliable performance (Stringer

et al. 2006, 2007; Stringer and Rolls 2008).

Stimuli

To train the VisNet model we used three 3D rotating visual stimuli to create three

separate pairings. Each pairing was run as a separate experiment and the objects

used to create the pairings comprise a Cube, Dodecahedron and custom designed

Hectoid. We used three separate pairings with three very different objects to ensure

that our results were robust. Figure 3a shows the Cube and the Hectoid, Figure 3b

shows the Cube and Dodecahedron and Figure 3c shows the Dodecahedron and the

Hectoid. In each experiment, the same stimuli were also used during testing and

were continuously rotating over 360�. Each object was designed and created in

Electric Rain’s vector based 3D modelling software, Swift 3D. Extra measures were

taken to ensure that image outlines and borders were clearly defined to avoid any

artefacts that may occur due to the size of the VisNet retina. Furthermore, ambient

lighting with diffused light sources were used to ensure that different surfaces were

shown with different illuminations.

Training procedure

The three pairings were presented to the network in separate experiments in

exactly the same manner. The following section describes the process using the

Cube and the Hectoid, but the same can also be said for the Cube and the

Dodecahedron as well as the Dodecahedron and the Hectoid.

In order to simulate independent rotation we presented different views of object

one, the Cube, with different views of object 2, the Hectoid. Specifically, we

presented each view of the Cube with ten equally spaced views of the Hectoid. This

process was repeated for the Hectoid, where every view was presented with ten

equally spaced different views of the Cube. We ensured that each view of any given

object was presented as frequently as any other view.

For example, in ‘block 1’ of training we presented a specific view of the Cube at

an angle of 1� with ten views of the Hectoid at 1�, 37�, 73�, 109�, 145�, 181�, 217�,

252�, 289�, 325� respectively. In ‘block 2’ of training we presented a specific view of

the Cube at an angle of 2� with ten views of the Hectoid at 2�, 38�, 74�, 110�, 146�,

182�, 218�, 253�, 290�, 326� respectively. This was repeated for every view of the

Cube, therefore creating 360 Cube training ‘blocks’. We also created 360 similar

Hectoid training ‘blocks’. In total, we presented 7200 object pairings to the network,

and together these comprise one epoch. We explored the performance of the

network with a SOM and competitive network architecture within each layer.

Table 5. Sigmoid parameters

Layer 1 2 3 4

Percentile 96 96 96 96

Slope � 190 40 75 26

8 J. M. Tromans et al.
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Figure 3. Example images of the three pairs of objects used to train the model. (a) Cube (left)
and Hectoid (right); (b) Cube (left) and Dodecahedron (right); (c) Dodecahedron (left) and
Hectoid (right). Each pair was presented as a separate experiment and the same objects were
used during training and testing.

Learning separate visual representations 9

N
et

w
or

k 
D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
M

s.
 P

at
ri

ce
 G

al
im

or
e 

on
 0

7/
23

/1
2

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



In all experiments, the learning rate of the model was set to 0.01 and the sparseness

was set to 0.04. Other values were explored (not presented) and receive comment in

the Discussion.

Testing procedure

To test the network’s performance, for each experiment we presented each of the

relevant objects in isolation. For example, all 360 views of either the Cube or the

Hectoid were presented separately, and we recorded the firing rates from

the output (fourth) layer. Results are displayed as polar plots and are collected

from VisNet’s output layer. The same can be said for the experiments with the

Cube and the Dodecahedron pairing as well as the Dodecahedron and the

Hectoid pairing.

Information measures

The network’s ability to recognise a specific object during testing is assessed using

two measures of information theory: single and multiple cell information. Full

details on the application of these measures to VisNet are given by Stringer et al.

(2006). These measures reflect the extent to which cells respond invariantly to an

object over a number of different views (transforms), but respond differently to

different objects. The single cell information measure is applied to individual cells in

layer 4, and measures how much information is available from the response of a

single cell about the stimlus that was presented. The single cell information measure

for each cell shows the maximum amount of information that the cell conveys about

any one object. This is computed using the following formula with details provided

by Rolls et al. (1997) and Rolls and Milward (2000). The object-specific

information I(s, R) is the amount of information the set of responses R has about

a specific object s, and is given by

Iðs, RÞ ¼
X
r2R

PðrjsÞ log2

PðrjsÞ

PðrÞ
, ð8Þ

where r is an individual response from the set of responses R. However, the single

cell information measure cannot give a complete assessment of VisNet’s

performance with respect to invariant object recognition. If all output cells learned

to respond to the same object then there would in fact be relatively little information

available about the set of objects S, and single cell information measures alone

would not reveal this. To address these issues, we also calculate a multiple cell

information measure, which assesses the amount of information that is available

about the whole set of objects from a population of neurons.

Procedures for calculating the multiple cell information measure are described

by Rolls et al. (1997) and Rolls and Milward (2000). In brief, from a single

presentation of an object, we calculate the average amount of information obtained

from the responses of all the cells regarding which object is shown. This is achieved

through a decoding procedure that estimates which object s0 gives rise to the

particular firing rate response vector on each trial. A probability table of the real

10 J. M. Tromans et al.
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objects s and the decoded objects s0 is then constructed. From this probability table,

the mutual information is calculated as

IðS, S0Þ ¼
X
s,s0

Pðs, s0Þ log2

Pðs, s0Þ

PðsÞPðs0Þ
: ð9Þ

Multiple cell information values are calculated for the subset of cells which,

according to the single cell analysis, have the most information about which object is

shown. In particular, the multiple cell information is calculated from the first five

cells for each object that had the most single cell information about that object. This

results in a population of 10 cells given that there are two objects in the simulations

presented below. Previous research (Stringer and Rolls 2000) found this to be a

sufficiently large subset to demonstrate that invariant representations of each object

presented during testing were formed, and that each object could be uniquely

identified.

VisNet simulation results

In each experiment we trained the model with one of the three different pairings:

Cube and Hectoid; Cube and Dodecahedron; Dodecahedron and Hectoid. Each

pairing was presented as a separate experiment. In each experiment the objects

within each pairing either rotated dependently together in lock-step during training

or rotated independently during training. In the case of the Cube and the Hectoid

pairing, we did this for both a self-organising map (SOM) architecture and a

competitive network architecture. For the other two pairings, we only explored the

network’s performance with a self-organising map (SOM) architecture. Three

different objects pairs were used in order to ensure that our results were robust.

We present the following results, showing that the network was unable to form

separate representations of the objects when trained together in the dependent

rotation condition. This was the case for both the SOM and the competitive network

architectures. However, in the independent rotation condition, the network was able

to form object selective representations for each of the objects, despite the fact that

the objects were always presented rotating together during training. The effect of the

SOM compared to the competitive network is explored in the context of this novel

result.

Main results with SOM architecture

Figure 4 shows cell response polar plots of a 8� 8 subset of the cells in the output

layer after training using a SOM network architecture with the Cube and the

Hectoid. Both the dependent and independent paradigms are presented. The figure

is split into four quadrants forming two rows and two columns. Each quadrant

comprises a subset of neurons from the model’s output layer where 8� 8 neurons

are represented by 64 polar plots. Each degree in the polar plot represents an

associated view of the test object. Firing rates are represented by the distance from

the centre point. The left hand column comprises two plots that show the results of

testing with the Cube and the right hand column comprises two plots that show
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results of testing with the Hectoid. The top row of plots comprises results from the

dependent rotation training paradigm and the bottom row comprises results from

the independent rotation training condition. Within each paradigm (dependent or

independent rotation), the same cells are plotted when testing on both the Cube and

the Hectoid.

It is clear that in the dependent rotation condition, cell response profiles exhibit a

large degree of overlap between the two objects. That is, cells that respond

invariantly to the Hectoid also respond in-kind to the Cube, as if they were the same

object. The network has not formed object selective representations, failing to build

separate representations for the Cube and the Hectoid. However, in the

Figure 4. Cube-Hectoid pairing results with SOM network architecture. The figure shows the
responses of a 8� 8 subset of output layer cells after training with the dependent and
independent rotation paradigms and testing with the Cube and Hectoid presented
individually. The figure is divided into four quadrants. The left-hand column presents two
plots comprising the cell responses when tested on the Cube and the right-hand column
presents two plots comprising cell responses when tested with the Hectoid. The top row
presents results after the dependent rotation training paradigm, and the bottom row presents
results after the independent rotation training paradigm. Crucially, for the purposes of
comparison, the same set of cells are shown within each training paradigm (rows) when tested
with the Cube or the Hectoid. In the dependent rotation paradigm, cells learn to respond to
both objects as if they were one with almost complete view invariance, and fail to build object
specific responses. In the independent rotation paradigm, object selective responses form,
that are also view invariant. Specifically, when the Cube and the Hectoid rotate independently
during training, the cells in the lower left corner of the 8�8 array learn to respond to the
Cube and the cells in the top right corner learn to respond to the Hectoid.

12 J. M. Tromans et al.
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independent rotating paradigm, most individual output cells have learned to

respond invariantly to either the Cube or the Hectoid (but not both), despite the fact

that the objects were always presented together during training. Crucially, the

network has formed object selective representations for each object where cells

respond to their preferred object and not to the alternative object.

Figures 5 and 6 show the same results but for the Cube and the Dodecahedron,

and the Dodecahedron and the Hectoid, respectively. It can clearly be seen that the

response plots reflect the results found with the Cube and the Hectoid. That is, in

the dependent rotation condition VisNet fails to develop object selective

representations, while in the case of the independent rotation, cells in the output

layer learn to respond exclusively to their preferred object. In the case of the Cube

and the Dodecahedron, cells that respond preferentially to the Cube did not develop

complete invariance and instead there is another cluster of cells that respond to the

remaining views (not shown).

Information analysis plots are provided for when the SOM network was trained

with object pairs rotating independently and rotating dependently. Information

results with the Cube-Hectoid, Cube-Dodecahedron and Dodecahedron-Hectoid

pairings are presented in Figures 7–9, respectively.

Figure 5. Cube-Dodecahedron pairing results with SOM network architecture. Conventions
as in Figure 4. This figure shows that in the dependent case, the network has failed to build
object selective responses while in the independent case, the network has learned to develop
object selective responses. Although the cells responding preferentially to the Cube do so for
the majority of its views, they do not represent all 360 views. Instead, a separate pool of cells
(not shown in this figure) respond to the remaining views.
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In all three figures, the left-hand plot shows the single cell information analysis.

This was calculated to confirm whether the network had developed neurons that

responded exclusively to their preferred object over all 360 views. In the case of the

Cube-Hectoid pairing, it may be observed that in the case of independent rotation,

72 neurons provided maximal information of 1 bit. Conversely, in the case of

dependent rotation, the amount of information is much lower. Similar results are

presented for the other two pairings, although in the case of the Cube-

Dodecahedron pairing (Figure 8), fewer cells provide maximal information in the

independent rotation condition because there were fewer completely invariant

responses for the Cube. This can be observed in Figure 5.

In summary, the single cell information analysis plots confirm that

independent rotation is enough to cause cells to develop object selective

responses that are also invariant. Crucially, in the dependent rotation paradigm,

cells are unable to build object selective representations, and fail to discriminate

between the objects due to the statistical coupling between them present in the

training input.

For all three Figures 7–9, the right-hand plot shows multiple cell information

analysis measures. In the independent rotation paradigm, a very small number of

cells are required to reach the maximum information of 1 bit, confirming that the

Figure 6. Dodecahedron-Hectoid pairing results with SOM network architecture.
Conventions as in Figure 4. This figure shows that in the dependent case, the network has
failed to build object selective responses while in the independent case, the network has
learned to develop object selective responses.
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network learns to represent both objects used during training. In the dependent

rotation condition more cells are required and maximum information is never

achieved because cells in the network have failed to separate the two objects used

during training.

Figure 7. Cube-Hectoid pairing information analysis with the SOM network architecture.
Single (left-hand plot) and multiple (right-hand plot) cell information results obtained when
the trained SOM network was tested with the Cube and Hectoid rotating separately. Results
are presented for both the independent (unbroken line) and dependent rotation (dashed line)
paradigms. The single cell information measure for all 4th layer neurons ranked in order of
the amount of information they convey about the objects is shown. In the independent
rotation paradigm, the network develops many object selective and invariant neurons
attaining the maximum level of single cell information of 1 bit. The dependent rotation
condition produces less information and no cells reached the maximal information. The
multiple cell information measure reaches the maximum level of 1 bit in the independent
condition. This confirms that the network represents both trained objects and maximal
information is obtained. The dependent condition provides a comparison, where the network
has failed to separate the two objects presented during training.

Figure 8. Cube-Dodecahedron pairing information analysis with the SOM network
architecture. It may be observed that after independent rotation during training, the single
cell information is relatively low. This is because cells did not learn to respond to all 360 views
of the Cube and were less invariant.
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In summary, the network produces markedly different responses in the

independent rotation paradigm when compared to the dependent paradigm. In

the dependent rotation condition, the network learns to build combined

representations for both objects after it had been trained. That is, cells learn to

respond to both objects, such as the Cube and the Hectoid, with a high degree of

invariance, but with no object selectivity. Crucially, in the independent rotation

condition, the network forms invariant and object selective representations for

both objects. This novel result is also explored in the context of a competitive

network next.

Competitive Network trained with Cube and Hectoid

Figure 10 shows four plots each consisting of an 8� 8 sample of cells in the model’s

output layer after training using a competitive network architecture. Each set of

polar plots show the responses of the output layer neurons when tested with the

Cube and the Hectoid rotating individually, for both the dependent and

independent training paradigms. Similar to Figure 4, the left hand column shows

results when tested with the Cube and the right hand column shows results when

tested with the Hectoid. The top row presents results after training with the

dependent rotation paradigm and the bottom row presents results after training with

the independent rotation paradigm.

In the case of the dependent rotation condition, the network was trained with

both objects rotating together in lock-step and tested with each object separately.

The results show that the cells learn to respond invariantly to both objects but fail to

build object selective representations. That is, cells respond to both the Cube and

the Hectoid, regardless of viewing angle. There are no cells that fire exclusively to

just one of the objects.

Figure 9. Dodecahedron-Hectoid pairing information analysis with the SOM network
architecture. In the independent condition, maximal information is obtained in both the
single cell and multiple cell analyses. In the dependent rotation condition, the network
performs badly and is unable to build object selective representations. This results in very
little information in both the single cell and multiple cell analyses.

16 J. M. Tromans et al.
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Results from the independent rotation condition show a markedly different profile

to that of the dependent rotation condition. In the independent rotation condition,

the network has developed cells that exclusively respond to contiguous portions of

the view-space of just their preferred object. That is, cells do not respond to more

than one object. These cells do not respond completely invariantly to their preferred

object and instead represent a portion of the total view-space. All views of the

preferred object are encoded in this manner, such that a group of cells together are

able to exclusively identify a specific object from any viewing angle. Both the Cube

and the Hectoid are fully represented in this way.

We calculated information analysis measures on the competitive network

architecture to help quantify the network’s performance after training. Figure 11

shows the single and multiple cell information analysis plots when the network was

trained with object pairs rotating independently and rotating dependently. Because

the competitive network did not build invariant representations, the information

analysis measures provide low levels of information, even in the case of the

Figure 10. Results with competitive network architecture. The figure shows the responses of a
8� 8 subset of output cells after training with the dependent and independent rotation
paradigms and testing with the Cube and Hectoid individually. Conventions as for Figure 4.
In the dependent rotation paradigm, cells learn to respond to both objects as if they were one,
with complete view invariance to all 360 views, and fail to build object specific responses.
In the independent rotation paradigm, object selective responses form. However, cells do not
develop complete view invariance, primarily responding to contiguous views of their
preferred object.
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independent rotation paradigm. The left-hand plot shows the single cell information

analysis and it may be observed that although the independent rotation paradigm

provides more information than the dependent condition, it does not reach the

maximum information of 1 bit because cells do not respond invariantly to their

preferred object.

In the independent rotation paradigm, even though cell response plots presented

in Figure 10 reveal cells respond exclusively to their preferred object and not to the

alternative object, the multiple cell information analysis produces low levels of

information. This is also the case for the dependent motion condition. Maximum

information is achieved when cells respond invariantly and exclusively to their

preferred object. As such, low levels of information can be attributed to the lack of

object selectivity in the dependent rotation paradigm, and the lack of invariance

achieved in the independent rotation paradigm.

The effect of the SOM width

We explored the effect of the SOM width by varying the radii of the excitatory and

inhibitory components of the SOM filter. To investigate the overall effect the SOM

filter width has on the learning and self-organisation of the network, we maintained

a constant ratio between the excitatory and inhibitory components. A range of SOM

widths were explored. Figure 12 presents the firing responses of output layer cells,

after training the network with the cube and Hectoid rotating independently during

training. In particular, the figure shows results with narrow and wide SOM filters

alongside the original, intermediate, SOM width results, initially presented in

Figure 4. The values for the intermediate SOM width are presented in Table 4 and

Figure 11. Information analysis with the competitive network architecture. Single (left-hand
plot) and multiple (right-hand plot) cell information results obtained when the trained
competitive network was tested with the Cube and Hectoid rotating separately. Results are
presented for both the independent (unbroken line) and dependent rotation (dashed line)
paradigms. The single cell information measure for all 4th layer neurons ranked in order of
the amount of information they convey about the objects is shown. Although in the
independent rotation paradigm the network was able to form object selective responses, both
training conditions produced lower levels of information for both the single and multiple cell
information analysis. This can be attributed to the lack of object selectivity in the dependent
rotation paradigm, and the lack of invariance achieved in the independent rotation paradigm.
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are three times as wide as the ‘narrow’ SOM width. The ‘wide’ SOM width is five

times as wide as the narrow SOM width. Corresponding information results are

shown in Figure 13.

These results show that when the SOM width is relatively narrow, the network

builds invariant responses to one object, but not the other. However, as the width of

Figure 12. Cube-Hectoid pairing results after independent rotation during training with three
different SOM widths: narrow, intermediate and wide. Conventions as in Figure 4. When the
SOM width is relatively narrow, fully invariant cells develop for the Hectoid but not for the
Cube. However, as the SOM width is increased, the number of invariant cells also increases.
With an intermediate SOM width, object selective and fully invariant cells form for both the
Cube and the Hectoid. When the SOM width is relatively wide, the output cells learn to
represent both objects invariantly but fail to produce object selective responses. The same set
of cells are shown within each training paradigm.
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the SOM increases so does the number of object selective invariant neurons for both

objects. When the SOM width becomes too wide, output cells respond invariantly to

all views of both objects at the same time. That is, they are not object selective.

Possible causes for these results are mentioned in the Discussion.

Discussion

Previous results from VisNet have shown that separate object representations can

develop in the output layer when there is a sufficient level of decoupling between a

large number of individual objects presented as random pairs during training.

Crucially, there must be a large enough superset of objects to pick from when

creating the different object pairings (Stringer et al. 2007; Stringer and Rolls 2008).

The aim of this research was to establish whether independent rotation might play

an important role for helping the primate visual system to build separate

representations of just two objects always presented together. We also investigated

the differences in performance between a self-organizing map architecture and

competitive network.

In this paper, we confirm that the network is able to successfully form object

selective representations when trained with objects that rotate independently. This

applied to both a SOM architecture and a competitive network architecture.

In the independent rotation paradigm, different views of one object, say the Cube,

were presented with different views of the Hectoid. Because the features that make

up a specific view of an object are always presented together 100% of the time, they

are maximally correlated. On the other hand, these features are not well correlated

Figure 13. Information analysis of Cube-Hectoid pairing results after independent rotation
during training, with the SOM architecture with three different widths. Single (left-hand plot)
and multiple (right-hand plot) cell information results are shown for the narrow (dashed line),
intermediate (unbroken line) and wide (dotted line) SOM widths when tested with the Cube
and Hectoid rotating separately after training. A small amount of information is available in
the narrow SOM width condition, while maximal information is achieved in the intermediate
SOM width condition. Zero information is obtained when the SOM is wide because cells
learn to respond in an identical manner to both the Cube and the Hectoid.
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to any of the features of the alternate object. That is, during training, a particular

view of an object was presented with ten different views of the alternate object.

Particular pairs of views are seen together relatively infrequently. The decoupling

between the different views of the two objects is sufficient for a particular output cell

to strengthen its connection with a specific view of the Cube, without necessarily

strengthening connections associated with a particular view of the Hectoid.

When the objects rotate together in lock-step, both network architectures failed to

build representations specific to either object. Instead, VisNet built a single

representation, as if both objects were in fact one. This result is a consequence of the

statistical coupling between the objects that occurs due to the dependent motion.

With dependent motion, each view of the Cube is always presented with the same

view of the Hectoid. If a particular view of the Cube happens to strongly activate a

given output neuron due to the initially random feedforward synaptic weights, then

not only will the synaptic weights from the Cube view strengthen, but the weights

from the Hectoid view will too. After multiple training epochs, the output neuron

will learn to respond equally well to views of both objects as if they are one.

The CT learning effect is able to bind together views that share a high degree of

spatial overlap and helps form view invariant cells. We only observed view invariant

cells in the case of the SOM architecture. The competitive network architecture

produced contiguous blocks of activation over a limited range of object views

spanning about 45�. A network exhibiting these types of cell responses requires a

population of cells to encode the whole view-space. In the case of the SOM

paradigm, there were mutually excitatory lateral connections that cause cells with

similar response properties to form close together. For example, assume that Cell A

responds to a contiguous range of views of an object, from 90� to 135�. Assume that

Cell B responds preferentially to a range of views of the same object spanning 100�

to 145�. These two cells will form close together and as training progresses, cell A

will cause cell B to become active when view 90 is presented during training, and

similarly, cell B will cause cell A to become active when view 145 is present during

training. The synaptic connections will strengthen according to Hebbian learning

and this may have an effect of broadening the tuning profiles of both cells until the

network reaches a trained state where both cells respond invariantly over the whole

range of views.

The sparseness of the network defined in Equation 7 was identified as one of the

key parameters for developing object selective invariant representations with the

SOM network paradigm. When the sparseness value was raised to high levels it

promoted excessive broadening of the cell response profiles. Cells began to respond

to both objects with increasing invariance. It was observed that a sparseness value of

0.04 creates broad response profiles that remain object selective. At this sparseness

value, the SOM filter is able to distribute neurons successfully, therefore developing

functional maps where a single cell response is similar to the average response of its

neighbours. The network was robust to different learning rates.

We also explored the effect of different SOM filter widths. The primary effect of

the SOM is to cause cells with similar response properties to develop close together

in the output layer and cells with different responses to form in separate clusters.

Adjacent cells influence one another reciprocally, gradually becoming active to the

particular views that their neighbours respond to best. This has the general effect of

amplifying the Hebbian learning mechanism and broadens the cells’ response
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profiles so that they learn to respond to an increasing number of similar views. Even

with the narrow SOM, this effect still helps build invariant responses in the output

layer relative to a competitive network with comparable parameters. As the SOM

increases in width, the network learns to build increasingly invariant responses.

However, when the SOM is very wide it forces the output cells to respond to all

views of both objects due to overwhelming levels of mutual excitation between cells.

In summary, we have presented a mechanism for how the visual system could self-

organise when presented with complex natural scenes, using only independent

movement as a method to build view invariant, object specific, representations.

Early research with VisNet focussed on presenting just one object at a time (Stringer

and Rolls 2000). More recent research required a large superset of a number of

different objects from which to present random object pairings. For the first time,

we have shown that it is possible for the network to develop completely view

invariant, object selective, responses when trained with only two objects. Crucially,

the objects must move independently from one another. We also implemented a

SOM network architecture for the first time within each layer of the VisNet model,

and have shown that this causes cells with similar response profiles to form close

together and develop completely view invariant responses. This observation is

documented in vivo, where neurons in IT cortex responding preferentially to similar

features, can be grouped together (Tsunoda et al. 2001; Kiani et al. 2007).
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