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a b s t r a c t

This paper investigates how the visual areas of the brain may learn to segment the bodies of humans and
other animals into separate parts. A neural network model of the ventral visual pathway, VisNet, was
used to study this problem. In particular, the current work investigates whether independent motion
of body parts can be sufficient to enable the visual system to learn separate representations of them even
when the body parts are never seen in isolation. The network was shown to be able to separate out the
independently moving body parts because the independent motion created statistical decoupling
between them.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Visual segmentation of objects into parts is an important percep-
tual process. It is reported to happen spontaneously and pre-atten-
tively (Biederman, 1987; Cave & Kosslyn, 1993; Hoffman &
Richards, 1984; Hoffman & Singh, 1997; Kurbat, 1994; Lamberts &
Freeman, 1999; Lamote & Wagemans, 1999; Scholl, 2001; Singh,
Seyranian, & Hoffman, 1999; Van Lier & Wagemans, 1998). Neuro-
physiological research has investigated which brain areas might
be responsible for visual object segmentation into parts, and in par-
ticular segmentation of living organisms into body parts. For exam-
ple, single cell recordings in inferior temporal cortex in monkeys
revealed cells that responded to separate body parts (Pinsk, DeSi-
mone, Moore, Gross, & Kastner, 2005). Furthermore, similar body
part selective areas were identified in the human fusiform gyrus
and lateral occipitotemporal cortex (Pinsk et al., 2009; Schwarzlose,
Baker, & Kanwisher, 2005) and latest research has identified a sepa-
rate brain area specific to body parts, the extrastriate body area in
the lateral occipitotemporal cortex (Downing, Chan, Peelen, Dodds,
& Kanwisher, 2006; Downing, Jiang, Shuman, & Kanwisher, 2001).
Therefore the evidence suggests that visual objects are segmented
into parts through a spontaneous pre-attentive process, this seg-
mentation is essential to humans and animals, and neurons that
respond to parts of objects exist in the brain.
ll rights reserved.
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Even though a number of theories have been put forward trying
to explain how visual segmentation of objects into parts may oper-
ate, it is still not known in detail how representations of parts are
formed in the brain. The existing theories of visual segmentation
can be divided into two broad groups. The first one suggests that
a limited set of predefined primitives exist, and all objects are
made of different combinations of them. Therefore objects are
made out of these shapes in the same way as words are made
out of letters. These shapes are thought to be generalised cylinders
(Marr, 1982) or geons (Biederman, 1987). Such theories have how-
ever been criticised, since there are examples of segmentation that
do not correspond to these proposed intuitive parts and some of
the intuitive parts cannot be derived using any existing models
of visual object segmentation into parts (De Winter & Wagemans,
2006).

The second group of theories uses geometric rules based on the
shape of the objects in order to separate them into parts (Hoffman
& Richards, 1984; Siddiqi, Tresness, & Kimia, 1996; Singh et al.,
1999). These theories suggest that object parts may emerge
through grouping or segmentation processes based on natural con-
straints of the stimuli. Geometrical theories are based on the prin-
ciple of singularity that states that a 3D concave crease almost
always results in a 2D concave discontinuity. This leads to most
studies using 2D outline stimuli. For example, one of the predom-
inant principles of geometrical theories is the principle of transver-
sality that proposes that a sharp concavity on the on the surface of
an object is a likely segmentation point between two object parts
(Hoffman & Richards, 1984). An example would be the sharp con-
cavity at the shoulder joint where an arm attaches to the body
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trunk (Siddiqi et al., 1996). Such information as depth, colour,
shading or texture is ignored. Although the geometrical theories
can be quite successful in predicting how participants might seg-
ment 2D shapes into constituent parts, none of them can account
for all object segmentation.

None of the theories described above based on primitive shapes
and geometrical rules answer the ‘how’ question, as in explain how
the process of visual object segmentation into parts happens in the
brain. In particular how the interaction between the anatomy and
physiology of the visual brain areas with the visual stimuli results
in the formation of separate representations of the whole objects
as well as their constituent parts. Neurophysiological studies in ma-
caque monkeys (Pasupathy & Connor, 2001, 2002) have found evi-
dence that neurons in area V4 of the ventral visual pathway
respond to concave and convex boundary elements, therefore pro-
viding evidence for the geometrical theories of object segmenta-
tion. Although these studies explain where in the brain different
features of objects such as concave and convex boundary elements
are represented, they still do not answer the ‘how’ question defined
above. It is still necessary to explain how these cells develop their
response properties through synaptic learning driven by neural
activity evoked by visual stimuli during the critical period of visual
development (Hubel & Wiesel, 1963).

There is research in visual perception that suggests that the
ability to segment objects into constituent parts might be acquired
through learning and not innate. For example Maurer and Salapa-
tek (1976) found that newborns fail to fixate on stationary embed-
ded contours of internal features in objects (such as eyes on a face),
an ability that appears in 2 month old infants. Contour information
is important for the geometrical rules of object segmentation into
parts, however the research by Maurer and Salapatek (1976) sug-
gests that newborns might not be sensitive to contours innately
and that this ability might be acquired through visual experience
instead.

Similarly to the problems associated with the geometrical rules
theories, theories based on primitive shapes do not explain how
these shapes might be acquired, where in the brain they might
be stored and how they might affect visual processing either. This
paper is set to try and explain how the interaction between the vi-
sual input and the anatomy and physiology of the relevant brain
areas results in visual object segmentation into parts, therefore
providing an insight into the mechanisms underlying the geomet-
rical rules and primitive shapes theories.

Downing et al. (2001), who discovered the body specific part
of the visual cortex, the extrastriate body area, have suggested
that it might be one of the distinct modules that govern visual
processing, similar to the fusiform face area. They suggested that
different classes of objects were processed using these different
specialised modules with different underlying neural mecha-
nisms. Therefore it was argued that learning to recognise body
parts might be different to learning to recognise other objects.
Further evidence for this comes from research suggesting that
semantic knowledge of the human body might be distinct from
the knowledge of any other object categories (Shelton, Fouch, &
Caramazza, 1998). Furthermore functional neuroimaging and sin-
gle-neuron recording studies have found that the superior tem-
poral sulcus is implicated in processing biological motion as
well as body representations (Grossman et al., 2000; Howard
et al., 1996; Jellema, Baker, Wicker, & Perrett, 2000; Puce, Allison,
Bentin, Gore, & McCarthy, 1998; Wachsmuth, Oram, & Perrett,
1994). This might suggest that biological motion might play a
role in building representations of separate body parts. Chan,
Kravitz, Truong, Arizpe, and Baker (2010) also suggested that rep-
resentations of body parts in the brain depended on life-long
experiences and reflected the statistics with which the stimuli
occured.
This paper will use an existing biologically plausible computa-
tional model of the ventral visual stream, VisNet, to test a new the-
ory of how visual object segmentation into parts might happen, in
particular how separate representations of body parts might devel-
op. This theory is suggested as an explanation to the geometrical
rules and the primitive shapes theories, as in how the relevant
brain areas learn to perform visual object segmentation into body
parts. It is important to understand how representations of sepa-
rate body parts are formed in the brain, and it is hypothesised that
independent motion might enable the brain to do so.

One explanation to how separate representations of body parts
can be built in the visual system is the ‘‘biased competition
hypothesis’’ of attention. It suggests that in order to build separate
representations of individual body parts, feedback connections are
necessary, because they provide the mechanism for attentional
selection, which isolates individual body parts to enable separate
representations of them to be formed (Rolls & Deco, 2002). How-
ever, it has been reported that visual object segmentation into
parts happens pre-attentively (Biederman, 1987; Cave & Kosslyn,
1993; Hoffman & Richards, 1984; Hoffman & Singh, 1997; Kurbat,
1994; Lamberts & Freeman, 1999; Lamote & Wagemans, 1999;
Scholl, 2001; Singh et al., 1999; Van Lier & Wagemans, 1998).
Therefore the ‘‘biased competition hypothesis’’ cannot be used to
explain how the visual system learns to segment bodies into sepa-
rate parts.

Research has shown that it is possible to learn about individual
objects when multiple objects are present in the scene without the
need for an attentional mechanism using purely feedforward con-
nectivity in a hierarchical neural network model of the ventral vi-
sual pathway, VisNet (Stringer & Rolls, 2008; Stringer, Rolls, &
Tromans, 2007). Stringer and Rolls (2008) showed how the statis-
tical properties of the visual input stimuli play a crucial role in en-
abling the network to develop view invariant representations of
individual objects when multiple objects are present during train-
ing. This was achieved through statistical decoupling because fea-
tures within individual objects occurred more frequently together
than features between different objects. Stringer and Rolls (2008)
showed that, when training on all possible pairs of objects, at least
six objects were necessary in the training set for this statistical
decoupling to occur and there was no need for top-down atten-
tional influences. Therefore this study will assume that no atten-
tional influences are exerted on the ventral visual stream to aid
visual object segmentation into body parts and no feedback con-
nections will be used in the simulations.

It is expected that similar statistical decoupling to the one de-
scribed by Stringer and Rolls (2008) might enable separate repre-
sentations of body parts to develop in the ventral visual stream if
the target body parts are engaged in independent motion. However
the problem of learning about individual body parts is harder than
learning about individual objects in a complex scene. In the study
of Stringer and Rolls (2008), individual objects were presented in
different combinations with each other, which enabled the statis-
tical decoupling to happen. In the case of body parts no such recon-
figuration can happen, as all body parts are always present
together. However it is predicted that the effect of independent
motion might be similar to the effect of different object couplings
in the study of Stringer and Rolls (2008). This is because although
the body parts are always seen together, as long as the body parts
are moving independently, there will be statistical decoupling be-
tween the positions in which the different body parts are seen. This
forces the output layer to form separate representations of the dif-
ferent body parts.

In the simulations described below two body parts, two arms
will be used. It is expected that independent motion of the two
arms will ensure that each transform of one arm will be seen with
all the possible transforms of the other arm. Therefore the features



Fig. 1. Two black rounded rectangles representing arms rotating around the cental
fixed hinge point in 40 equal steps. The black shapes represent the top locations and
the grey shapes represent the bottom locations of the arms. In the first simulation
the arms were rotating simultaneously in lock-step so that each rotation of one arm
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within one transform of an arm will be seen together more often
than features between arms. Therefore independent motion is ex-
pected to help the network to learn about the individual arms as
well as still form a representation of the whole object consisting
of the two arms.

It is predicted that when two body parts (in the simulations de-
scribed below they were arms) are moving together, neurons in the
output layer of the network will fail to separate them out. These
neurons will respond with transform invariance to both arms.
However when the two arms start to move independently, VisNet
will be able to separate them out through statistical decoupling. It
is expected that there will be two orthogonal populations of cells in
the output layer, each of which will respond just to their preferred
arm. It is also expected that there will be a population of cells that
will still respond to both arms and thus will have learnt to respond
to the whole object consisting of the two arms in this instance.
was always seen with the same rotation of the other arm during training. In the
second simulation the two arms moved independently, so that all 1600 (40 � 40)
combinations of transforms of the two arms were seen during training.
2. Method

2.1. Learning to recognise independently moving body parts

The problem addressed in this paper is how VisNet can form
separate representations of two arms always presented together
during training. Previous research (Stringer & Rolls, 2008) has
shown that in order for the network to learn separate representa-
tions of objects when different combinations (e.g. pairs) of multiple
objects are present during training, the stimulus set has to contain
at least six objects. In this way features within objects will appear
together more often than features between objects and statistical
decoupling will enable the network to form separate representa-
tions of the objects. However, in the present study the training
set consists of two arms only and they are always presented
together.

In the study of Stringer and Rolls (2008), the objects were rotat-
ing together over 90�, therefore no independent motion was pres-
ent. It is hypothesised that introducing independent motion to the
two arms in the present study will act in a similar way to increas-
ing the number of objects in the training set to 6 or more in the
study of Stringer and Rolls (2008). Each view of one arm will be
presented with each view of the other arm, so that features within
a transform of an arm will be presented together more often than
features between the two arms. This will force some individual
neurons in the output layer to learn to respond to either one arm
or the other. Cells which respond to both arms will also remain
and they will have learnt to respond to the whole object.
2.2. Objects

The arms were represented by two black rounded rectangles
rotating around the cental fixed hinge point in 40 equal steps on
a grey background as shown in Fig. 1.

To study whether the lack of independent motion leads to the
network failing to learn about the two arms individually, the arms
were animated to rotate simultaneously in lock-step starting from
the top (Fig. 1). This ensured that each view of one arm was always
seen with the same view of the other arm during rotation. This re-
sulted in 40 frames of animation.

Independent motion was animated by creating 1600 frames
whereby each of the 40 translations of one arm was presented with
each of the 40 translations of the other arm as the arms were rotat-
ing in 40 equal steps.

The two sets of stimuli described above were created and ani-
mated using Adobe Flash CS4. The frames were exported as JPG
images.
2.3. Transformation invariance learning

A leading computational theory of how the ventral visual path-
way in the brain may develop neurons that respond to objects with
transform (e.g. view or location) invariance is Continuous Transfor-
mation (CT) learning. CT learning uses an associative (Hebbian)
synaptic modification rule (Stringer, Perry, Rolls, & Proske, 2006)
that can exploit the image similarity across successive transforms
(e.g. views) of a continuously transforming object in order to devel-
op output neurons which respond to the object over a large num-
ber of transforms. Because CT learning is based on the standard
Hebbian learning rule, it is biologically plausible.

An idealised version of the CT learning process outlining the
theoretical principle is illustrated in Fig. 2 and operates as follows.
The network shown has an input layer where stimuli are pre-
sented, and an output layer where transform invariant representa-
tions develop through learning. The output layer operates as a
competitive network, where individual cells send inhibitory pro-
jections to the other cells in this layer, and thereby compete with
each other. Initially, the weights of the feedforward synaptic con-
nections are set to random values. Then, during learning, a stimu-
lus is initially presented in position 1 (shown in Fig. 2a) and is
represented by three active neurons in the input layer (neurons
1, 2, and 3). Activity propagates through the random feedforward
connections to the output layer, where one of the neurons, say
neuron 8, wins the competition. The simultaneous activation of
neurons in the input and output layers causes the synaptic connec-
tions between them to become strengthened according to a Heb-
bian learning rule

dwij ¼ ayixj ð1Þ

where dwij is the increment in the synaptic weight wij, yi is the firing
rate of the post-synaptic neuron i, xj is the firing rate of the pre-syn-
aptic neuron j, and a is the learning rate. To restrict and limit the
growth of each neuron’s synaptic weight vector, wi for the ith neu-
ron, its length is normalised at the end of each timestep during
training as is usual in competitive learning (Hertz, Krogh, & Palmer,
1991). This is necessary to ensure that one or a few neurons do not
always win the competition. If there was no normalization of syn-
aptic weights during a simple Hebbian learning procedure, just a
few neurons may eventually learn to respond strongly to nearly
all of the input patterns. Neurophysiological evidence for synaptic
weight normalization is provided by Royer and Parè (2003).

As the stimulus moves from position 1 to position 2 (shown in
Fig. 2b), it causes activation in the input layer to also move along



Fig. 2. An illustration of how CT learning functions in a feedforward one-layer
network. Activation of overlapping neurons during the transformation of the object
from position to position leads to the activation of the same neuron in the output
layer. Connections are strengthened according to a Hebbian learning rule after each
presentation of the stimulus.
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one neuron at a time. Therefore, when the stimulus is in position 2,
it causes neurons 2, 3 and 4 to become active. The overlap in the
input space allows two neurons in the input layer to remain active
(neurons 2 and 3) during both transformations. The activation of
the same neurons in the input layer causes the same neuron in
the output layer (neuron 8) to become active again because the
connections have already been strengthened when the stimulus
was in position 1. The simultaneous activation of the output neu-
ron, with input neurons 2, 3 and the additional input neuron 4
causes their synaptic connections to become strengthened accord-
ing to the Hebbian leaning rule. Therefore, the activation of neuron
8 will now become associated with the activation of neurons 2, 3
and 4. As the stimulus continues to move from one position to
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the next, the process repeats itself and the same neuron in the out-
put layer remains activated. This output neuron becomes a posi-
tion invariant neuron. A more comprehensive description of
Continuous Transformation learning and simulation results in the
context of invariant object recognition is provided by Stringer
et al. (2006) and Perry et al. (2006).

An alternative to CT learning is trace learning, which has been
applied to the problem of visual invariance before by Foldiak
(1991) and Wallis et al. (1993). The trace rule is designed to enable
neurons to learn from the temporal statistics of the natural visual
inputs, which in short time periods are likely to be about the same
object. However the simulations described in this paper rely on
spatial and not temporal continuity of the transforms of the stimuli
and therefore the CT learning rule was chosen.

Another alternative to CT learning is the Slow Features Analysis
(SFA) algorithm proposed by Wiskott and Sejnowski (2002) as a
mechanism of visual invariance learning. However unlike CT learn-
ing, which is based on a standard Hebbian learning rule, the SFA
algorithm is not biologically plausible as the authors do not explain
how the proposed computations might be performed by neurons in
the brain.
2.4. The VisNet model

The VisNet model architecture that is used in this paper is based
on the following: (i) A series of hierarchical competitive networks
with local graded inhibition. (ii) Convergent connections to each
neuron from a topologically corresponding region of the preceding
layer, leading to an increase in the receptive field size of neurons
through the visual processing areas. (iii) Synaptic plasticity based
on a Hebb-like learning rule. Model simulations have shown Vis-
Net to be capable of producing object-selective but translation
and view invariant representations (Rolls & Milward, 2000; Rolls
& Stringer, 2001; Stringer et al., 2006; Wallis & Rolls, 1997).

The model consists of a hierarchical series of four layers of com-
petitive networks, corresponding to V2, V4, the posterior inferior
temporal cortex, and the anterior inferior temporal cortex, as
shown in Fig. 3. The forward connections to individual cells are de-
rived from a topologically corresponding region of the preceding
layer, using a Gaussian distribution of connection probabilities.
These distributions are defined by a radius which will contain
approximately 67% of the connections from the preceding layer.
The values used are given in Table 1.

Before the objects are presented to the network’s input layer
they are pre-processed by a set of input filters which accord with
the general tuning profiles of simple cells in V1. The filters provide
a unique pattern of filter outputs for each transform of each visual
larger receptive field s 

centricity / deg 
50 20 8.0 3.2 .3 

TE 

TEO 

V4 

V2 

V1 

LGN 

combinations of features
configuration sensitiv e 

view dependent 

view independenc e 

is designed to provide fourth layer neurons with information from across the entire
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Table 1
Network dimensions showing the number of connections per neuron and the radius
in the preceding layer from which 67% are received.

Dimensions Number of connections Radius

Layer 4 32 � 32 100 12
Layer 3 32 � 32 100 9
Layer 2 32 � 32 100 6
Layer 1 32 � 32 272 6
Retina 128 � 128 � 32 – –

Table 3
Lateral inhibition parameters.

Layer 1 2 3 4

Radius, r 1.38 2.7 4.0 6.0
Contrast, d 1.5 1.5 1.6 1.4
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object, which is passed through to the first layer of VisNet. The in-
put filters used are computed by weighting the difference of two
Gaussians by a third orthogonal Gaussian according to the
following:

Cxyðq; h; f Þ ¼ q e
� x cos hþy sin hffiffi

2
p

=f

� �2

� 1
1:6

e
� x cos hþy sin h

1:6
ffiffi
2
p

=f

� �22
4

3
5e
� x sin h�y cos h

3
ffiffi
2
p

=f

� �2

ð2Þ

where f is the filter spatial frequency, h is the filter orientation, and
q is the sign of the filter, i.e. ±1. Individual filters are tuned to spatial
frequency (0.0625–0.5 cycles/pixel); orientation (0–135� in steps of
45�); and sign �

þ1ð Þ. The number of layer 1 connections to each spa-
tial frequency filter group is given in Table 2. Past neurophysiolog-
cal research has shown that models based on difference-of-
Gaussians functions are superior to those based on the Gabor func-
tion or the second differential of a Gaussian (Hawken & Parker,
1987).

The activation hi of each neuron i in the network is set equal to a
linear sum of the inputs yj from afferent neurons j weighted by the
synaptic weights wij. That is,

hi ¼
X

j

wijyj ð3Þ

where yj is the firing rate of neuron j, and wij is the strength of the
synapse from neuron j to neuron i.

Within each layer, competition is graded rather than winner-
take-all, and is implemented in two stages. First, to implement lat-
eral inhibition, the activation h of neurons within a layer are con-
volved with a spatial filter, I, where d controls the contrast and r
controls the width, and a and b index the distance away from the
centre of the filter

Ia;b ¼
�de�

a2þb2

r2 if a–0 or b–0;
1�

P
a–0
b–0

Ia;b if a ¼ 0 and b ¼ 0:

8>><
>>:

ð4Þ

The lateral inhibition parameters are given in Table 3.
Next, contrast enhancement is applied by means of a sigmoid

activation function

y ¼ f sigmoidðrÞ ¼ 1
1þ e�2bðr�aÞ ð5Þ

where r is the activation (or firing rate) after lateral inhibition, y is
the firing rate after contrast enhancement, and a and b are the sig-
moid threshold and slope respectively. The parameters a and b are
constant within each layer, although a is adjusted to control the
Table 2
Layer 1 connectivity. The numbers of connections from each spatial frequency set of
filters are shown. The spatial frequency is in cycles per pixel.

Frequency 0.5 0.25 0.125 0.0625

Number of connections 201 50 13 8
sparseness of the firing rates. For example, to set the sparseness
to, say, 5%, the threshold is set to the value of the 95th percentile
point of the activations within the layer. The parameters for the sig-
moid activation function are shown in Table 4.

These are standard VisNet sigmoid parameter values which
have been previously optimised to provide reliable and robust per-
formance (Stringer & Rolls, 2008; Stringer et al., 2006, 2007).

2.5. Training procedure

There were two different training conditions as follows: (i) the
two arms rotating together in lock-step in 40 equal steps, and (ii)
the two arms rotating independently in the same fashion. In each
simulation one presentation of the full image set containing all
configurations of body parts constituted one training epoch.

At each image presentation the activation of individual neurons
was calculated, then their firing rates were calculated, and the syn-
aptic weights were updated. In this manner, the network was
trained one layer at a time starting with layer 1 and finishing with
layer 4. One hundred training epochs were used for each of layers
1–4. The learning rates for layers 1–4 were 0.109, 0.1, 0.1 and 0.1,
respectively. The population sparseness of the neuronal firing rates
was set to 0.1 for layers 1–4.

3. VisNet simulation results

When the network was tested after being trained on the two
arms rotating together in lock step, cells learnt to respond to all
of the transforms of both arms. Figs. 4 and 5 show cell response
plots for cell (14,17) selected at random in the output layer of Vis-
Net, as the arms were rotating in 40 equal steps. Fig. 4 shows that
the cell was firing randomly before training. However after training
the cell learnt to fire to all of the transforms of both arms (Fig. 5),
thus failing to separate out the two arms from each other. No cells
were found that responded to one arm but not the other, suggest-
ing that the network failed to build separate representations of the
two arms. These results show that the network failed to form sep-
arate representations of the two arms.

When the network was trained on the two arms translating
independently from each other, cells learnt to respond invariantly
to at least 25% of the views of one arm but not the other. Figs. 6 and
7 show cell response plots for cell (23,10) selected at random in
the output layer of VisNet. Fig. 6 shows that the cell was firing ran-
domly before training. However after training the cell learnt to fire
to 18 subsequent transforms of the left arm but not to any trans-
forms of the right arm (Fig. 7). A similar cell for the right arm is
shown in Fig. 8. Fig. 9 (top) shows a sample of three cells in the out-
put layer which learnt different exclusive partial transform invari-
ant representations of the left arm, whereby these cells did not fire
to any transforms of the right arm. Together these cells covered all
40 transforms of the left arm and therefore the firing of any cell in
Table 4
Sigmoid parameters.

Layer 1 2 3 4

Percentile 99.2 98 88 91
Slope, b 190 40 75 26



Fig. 4. Simulation results before training. The figure shows the firing rate responses of cell (14,17) in the 4th (output) layer of VisNet to the two arms rotating in 40 equal
steps. It can be seen that the cell responds randomly to different transforms of the two arms.
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that population could alert the subsequent brain areas that the left
arm was present on the retina. Similar cells were found for the
right arm (Fig. 9 (bottom)). These results show that the network
was able to create separate representations of the two arms with
partial (e.g. 25%) transform invariance when independent motion
was introduced for the two arms.

Cells were also found that responded to the transforms of both
arms, therefore demonstrating that the network was still able to
form a representation of the whole object, which in this case con-
sisted of the two arms, as well as its constituent parts. The percent-
ages of the populations of cells that responded to each arm as well
as the whole object are presented in Table 5.

4. Discussion

Two simulations have been described in this paper, which sup-
ported the hypothesis that independent movement is sufficient in
order for the visual system to build separate transform invariant
representations of different body parts. It has been shown that
when two arms move together, one representation develops,
Fig. 5. Simulation results after training with the arms rotating together in lock-step. Th
VisNet to the two arms rotating in 40 equal steps. It can be seen that the cell responds
whereby the two arms are seen as one entity. However when inde-
pendent motion is introduced to the two arms, the visual system is
able to build separate representations of them while still being
able to form a representation of the whole object. The mechanism
employed for invariance learning in this paper was Continuous
Transformation (CT) learning. CT learning uses the spatial continu-
ity between the translations of individual objects as they transform
in the real world, combined with associative learning of feedfor-
ward connection weights. Different parameters have been investi-
gated for the simulations described in this paper, with the number
of epochs ranging from 50 to 150, and learning rate ranging from
0.05 to 0.2. The results have been found to be very robust.

Understanding how invariant representations of objects as well
as their constituent parts develop in the ventral visual stream
without top-down attentional signals is an important question.
With inanimate objects, it is plausible to assume that the different
constituent parts may be detached from the object and seen in iso-
lation. This might enable the visual system to build representations
of these parts. However in living organisms, body parts are not
usually seen detached from the rest of the body, and yet separate
e figure shows the firing rate responses of cell (14,17) in the 4th (output) layer of
with transform invariance to both arms.



Fig. 6. Simulation results before training. The figure shows the firing rate responses of cell (23,10) in the 4th (output) layer of VisNet to the two arms rotating in 40 equal
steps. It can be seen that the cell responds randomly to different transforms of the two arms.
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representations of them exist in the visual system. The current
study has shown how these representations might be formed
through independent motion of the body parts.

Previous research (Stringer & Rolls, 2008; Stringer et al., 2007)
has shown how statistical properties of stimuli can help the ventral
visual stream build separate representations of objects when mul-
tiple objects are always present during training. The researchers
have shown how when features within an object occur together
more often than features between objects, separate object repre-
sentations are formed. Stringer and Rolls (2008) have shown that
a stimulus set of at least six objects is necessary in order for this
statistical decoupling to happen when the network is trained on
all possible pairs of objects. That is, it was necessary to have six ob-
jects in the training set in order to have enough different combina-
tions of the objects for the statistical decoupling to happen.

The current study has shown that a similar principle can work
when the stimulus set consists of only two objects and they are al-
ways shown together during training. Whereas in the study by
Stringer and Rolls (2008) the object pairs were rotating together,
Fig. 7. Simulation results after training with the arms translating independently from eac
layer of VisNet to the two arms rotating in 40 equal steps. It can be seen that the cell res
transform of the right arm.
whereby each rotational view of one object was always presented
with the same rotational view of the other object, in the current
study independent motion was introduced. During independent
motion each view of one object was seen with each view of the
other object, thus enabling the statistical decoupling to happen be-
tween the transforms of the objects. Features within a view of one
object were occurring together more often than features between
the view of that object and all the views of the other object. In this
way the views of the different objects were separated from each
other before being linked together for each object with Continuous
Transformation (CT) learning to build transform invariant repre-
sentations of that object.

The simulations in this study might explain how representa-
tions of separate body parts are developed in the brain in the real
world. During a lifetime of experiences with living objects whose
body parts engage in independent motion, it is expected that all
possible combinations of translations and views of the body parts
will be seen, therefore providing enough statistical decoupling for
representations of the separate body parts to develop in the brain.
h other. The figure shows the firing rate responses of cell (23,10) in the 4th (output)
ponds with partial transform invariance to the left arm and does not respond to any



Fig. 8. Simulation results after training with the arms translating independently from each other. The figure shows the firing rate responses of cell (20,20) in the 4th (output)
layer of VisNet to the two arms rotating in 40 equal steps. It can be seen that the cell responds with partial transform invariance to the right arm and does not respond to any
transform of the left arm.

Fig. 9. Simulation results after training with the arms translating independently from each other. Top row: the firing rate responses of three cells in the 4th (output) layer of
VisNet to the left arm rotating in 40 equal steps. It can be seen that the cells respond with partial transform invariance to the left arm and between the three cells all 40
transforms of the left arm are represented. These cells are exclusive to the left arm, and they do not respond to any transform of the right arm (not shown). Bottom row: the
firing rate responses of three cells in the 4th (output) layer of VisNet to the right arm rotating in 40 equal steps. It can be seen that the cells respond with partial transform
invariance to the right arm and between the three cells all 40 transforms of the right arm are represented. These cells are exclusive to the right arm, and they do not respond
to any transform of the left arm (not shown).
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Table 5
Percentages of populations of cells in the 4th (output) layer of VisNet that responded
to each of the two arms as well as the whole object when the arms were rotating in
lock step (no independent motion condition) and when independent motion was
present.

Ind. motion (%) No ind. motion (%)

Right arm 4 0
Left arm 35 0
Whole object 55 100
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This is in line with the findings of Chan et al. (2010), who suggested
that body representations in the brain depended on life-long
experiences and reflected the statistics with which the stimuli
occured. The implication of independent motion in visual object
segmentation into body parts is also in line with the functional
neuroimaging and single-neuron recording studies, which have
found that the superior temporal sulcus is implicated in processing
biological motion as well as body representations (Grossman et al.,
2000; Howard et al., 1996; Jellema et al., 2000; Puce et al., 1998;
Wachsmuth et al., 1994).

In the simulations described above, the network was trained on
two arms moving independently of each other. We also ran some
additional simulations (not shown), in which a static body trunk
was added to the rotating arms. We found that the effect of inde-
pendent motion between the arms can be reduced if a static com-
mon body part such as a body trunk is introduced because the body
trunk becomes coupled to both of the arms. In this situation some
cells responded to both arms, while other cells, which responded
selectively to only one arm, had a reduced level of invariance.
However when the common body part engages in independent
motion, the visual system’s performance is restored and it is able
to form separate representations of the two arms as well as the
body trunk once again.

Even though in the current study a simplified version of the
problem has been investigated to test the mechanism of indepen-
dent motion, whereby schematical representations of the body
parts were used and limited 2D rotation was implemented, the
same process may work with more complex objects and motions.
It is hypothesised that any biological motion is enough to provide
sufficient statistical decoupling between the body parts in real life
objects. Nevertheless further simulations should be run with more
realistic 3D stimuli to investigate whether more life like indepen-
dent motion can still provide enough statistical decoupling for sep-
arate representations of individual body parts to be formed. In
order to run these simulations the current model of the ventral vi-
sual stream, VisNet, needs to be scaled up to increase the number
of neurons in each layer including the retina. This will increase the
resolution of the visual input and will ensure that the network is
powerful enough to perform well with the more realistic stimuli.

Independent motion is just one principle that might aid the vi-
sual system in the process of object segmentation into body parts.
It is unable to account for certain types of segmentation, such as
the segmentation of facial features for example, since structures
such as nose or ears do not engage in independent motion, and
yet they are recognised as separate body parts. However even
though the independent motion itself cannot account for the seg-
mentation of parts that do not move, the principle of statistical
decoupling behind it is hypothesised to still work in these in-
stances. It is hypothesised that in the example of human nose
and ears recognition, the exposure to a great number of different
faces throughout a lifetime creates the necessary statistical decou-
pling in order to segment the faces into constituent parts. This is
hypothesised to happen because the faces share certain character-
istics, in that they all have the same basic structure, but have dif-
ferent individual features. This creates the necessary statistical
decoupling between these features across the different faces which
means that separate representations of them can be created with-
out the need for independent motion. However further simulations
need to be run in order to test this theory.

The results of the simulations described in this paper fit with
the theory of Downing et al. (2001), who suggested that bodies
were processed by a specialised module in the extrastriate body
area in the lateral occipitotemporal cortex, with the help of biolog-
ical motion, which is processed by the nearby superior temporal
sulcus. Although the results of the current study suggest that rep-
resentations of body parts are built through the same mechanism
as representations of other object categories, this study has dem-
onstrated the importance of biological motion in this process.

In this paper, we have not addressed the problem of how partic-
ular kinds of biological motion might be recognised by the neural
network model because this was not necessary for the network
to learn the representations of the separate body parts. The prob-
lem of how a network might learn to recognise biological motion
has been investigated previously by a number of other authors
such as Giese and Poggio (2003) and Casile and Giese (2005). These
models are similar to the one used in the current paper in that they
are also hierarchical, with increasing feature complexity through-
out the hierarchy.

This study has demonstrated how the ventral visual stream can
form separate representations of individual body parts when they
are always presented together during training. This was shown to
be possible through pure bottom-up processes without any top-
down attentional influences. It was shown that independent motion
is sufficient for this separation to occur. Statistical properties of the
stimuli have been shown to be the reason why independent motion
works, since it leads to the features within a view of a body part to be
seen together more often than the features between that view and
the views of other body parts. The current theory is appealing be-
cause it shows that living organisms may be segmented into body
parts through the interaction between the statistics of the visual in-
put and the architecture of the ventral visual pathway without the
need for attentional feedback influences. Therefore the segmenta-
tion was an emergent property of the interaction.
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