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Abstract

Hypotheses are presented of what could be speci®ed by genes to enable the di�erent functional architectures of the neural

networks found in the brain to be built during ontogenesis. It is suggested that for each class of neuron (e.g., hippocampal CA3
pyramidal cells) a small number of genes specify the generic properties of that neuron class (e.g., the number of neurons in the
class, and the ®ring threshold), while a larger number of genes specify the properties of the synapses onto that class of neuron
from each of the other classes that makes synapses with it. These properties include not only which other neuron classes the

synapses come from, but whether they are excitatory or inhibitory, the nature of the learning rule implemented at the synapse,
and the initial strength of such synapses. In a demonstration of the feasibility of the hypotheses to specify the architecture of
di�erent types of neuronal network, a genetic algorithm is used to allow the evolution of genotypes which are capable of

specifying neural networks that can learn to solve particular computational tasks, including pattern association, autoassociation,
and competitive learning. This overall approach allows such hypotheses to be further tested, improved, and extended with the
help of neuronal network simulations with genetically speci®ed architectures in order to develop further our understanding of

how the architecture and operation of di�erent parts of brains are speci®ed by genes, and how di�erent parts of our brains have
evolved to perform particular functions. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Analysis of the structure and function of di�erent
brain areas is starting to reveal how the operation of
networks of neurons may implement the functions of
each brain area. In particular, the operation of a num-
ber of simple types of network, which are each found
in a number of di�erent brain areas, are becoming
understood (Rolls and Treves, 1998). One example of
these networks is pattern association memories in
which one input (e.g., an unconditioned stimulus)
drives the output neurons through unmodi®able
synapses, and a second input (e.g., a conditioned
stimulus) has associatively modi®able synapses onto
the output neurons, so that by associative learning it
can come to produce the same output as the uncondi-
tioned stimulus (see Fig. 1). Pattern association mem-
ory may be implemented in structures such as the
amygdala and orbitofrontal cortex to implement
stimulus-reinforcement learning, e.g. associating the
sight of a stimulus with pain (an example of the learn-
ing involved in emotion), or the sight of another
stimulus with the taste of food (an example of the role
of this type of learning in motivational behavior)
(Rolls and Treves, 1998; Rolls, 1999). Pattern associ-
ation learning may also be used in the connections of
backprojecting neurons in the cerebral cortex onto the

apical dendrites of neurons in the preceding cortical
area as these connections may be associatively modi®-
able (Rolls and Treves, 1998). A second example is
autoassociation networks characterized by recurrent
collateral axons with associatively modi®able synapses
which may implement functions such as short term
memory in the cerebral cortex, and episodic memory
in the hippocampus (see e.g., Fig. 2). A third example
is competitive learning, where there is one major set of
inputs to a network connected with associatively modi-
®able synapses, and mutual (e.g., lateral) inhibition
between the output neurons (through e.g., inhibitory
feedback neurons) (see Fig. 3). Competitive networks
can be used to build feature analyzers by learning to
respond to clusters of inputs which tend to co-occur,
and may be fundamental building blocks of perceptual
systems (Rolls and Treves, 1998). Allowing short range
excitatory connections between neurons (as in the cer-
ebral cortex) and longer range inhibitory connections
can lead to the formation of topographic maps where
the closeness in the map re¯ects the similarity between
the inputs being mapped (Kohonen, 1995; Hertz et al.,
1990; Rolls and Treves, 1998).

The question then arises as part of understanding
brain function of how the networks found in di�erent
brain areas actually have evolved, and how they may
be speci®ed by genes. A principal aim of this paper is

Fig. 2. The architecture of an autoassociative neural network.

Fig. 1. A pattern association neural network. An unconditioned

stimulus has activity or ®ring rate ei for the ith neuron, and produces

®ring ri of the ith neuron. The conditioned stimuli have activity or

®ring rate r 0j for the jth axon.
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by a process of comparing the networks found in
di�erent brain areas, and in particular in how they dif-
fer from each other, to suggest a set of parameters
being speci®ed by genes which could lead to the build-
ing during development of the neuronal network func-
tional architectures found in di�erent brain regions.
The choice of parameters is guided not only by com-
parison of the functional architecture of di�erent brain
regions, but also by what parameters, if speci®ed by
genes, could with a reasonably small set actually build
the networks found in di�erent brain regions. The idea
is that if these parameters are speci®ed by di�erent
genes, then genetic reproduction and natural selection
using these parameters could lead to the evolution of
neuronal networks in our brains well adapted for
di�erent functions.

A second principal aim of the paper is to show how
the su�ciency of the general approach, and the appro-
priateness of the particular parameters selected, can be
tested and investigated using genetic algorithms which
actually use the hypothesised genes to specify net-
works. We show this by implementing a genetic algor-
ithm, and testing whether it can search the high
dimensional space provided by the suggested par-
ameters to specify and build neuronal networks that
will solve particular computational problems. The
computational problems we choose for this paper are
simple and well de®ned problems that can be solved
by one-layer networks. These problems are pattern as-
sociation, autoassociation, and competition, which
require quite di�erent architectures for them to be
solved (Rolls and Treves, 1998; Hertz et al., 1990) (see
Figs. 1±3). Because the problems to be solved are well
speci®ed, we can de®ne a good ®tness measure for the
operation of each class of network, which will be used
to guide the evolution by reproduction involving gen-
etic variation and selection in each generation.
Although we do not suppose that the actual par-
ameters chosen here for illustration are necessarily
those speci®ed by mammalian genes, they have been
chosen because they seem reasonable given the di�er-

ences in the functional architecture of di�erent brain
areas, and allow illustration of the overall concept
described in this paper about how di�erent network
architectures found in di�erent brain regions evolve.
Although the computational problems to be solved
here have been chosen to have well understood one-
layer neural network solutions, once this general
approach has been established, it would be of great
interest in future to examine problems which are
solved by multilayer networks in the brain e.g., invar-
iant object recognition (Ullman 1996; Rolls and Treves
1998; Wallis and Rolls 1997), and episodic memory
(Rolls and Treves, 1998; McClelland et al., 1995), in
order to understand how brain mechanisms to solve
complex problems may evolve and how they may oper-
ate.

In recent years there has been increasing interest in
the application of genetic algorithms to neural net-
works (see Vonk et al., 1997). Some of the applications
that are potentially relevant to understanding biologi-
cal nervous systems range from computer simulated
animats (Nol® et al., 1994; Gracias et al., 1996; Huber
et al., 1996; Lund and Parisi, 1996) to behavioural
robotics (Floreano and Mondada, 1994; Hoshino and
Tsuchida, 1996; Kuwana et al., 1996; Husbands et al.,
1998), with the genetic algorithm used as a tool to dis-
cover neural networks capable of solving certain kinds
of task. However, the purpose of this paper is to
explore how genes could specify the actual neuronal
network functional architectures found in the mamma-
lian brain, such as those found in the cerebral cortex.
Indeed, this paper takes examples of some of the
actual architectures and prototypical networks found
in the cerebral cortex, and explores how these architec-
tures could be speci®ed by genes which allow the net-
works when built to implement some of the
prototypical computational problems that must be
solved by neuronal networks in the brain. Moreover,
the three fundamental kinds of biological network con-
sidered here, pattern associators, auto-associators and
competitive nets, are potentially the heterogeneous
building blocks for the multilayer architectures found
in mammalian brain systems such as the hippocampus
and cerebral cortex (Rolls and Treves, 1998). Investi-
gation of how genes could specify the operation of
these single layer components of multilayer architec-
tures is a necessary ®rst step towards understanding
how more complex multilayer architectures could be
built.

2. Description of the genes that could build di�erent
types of neuronal network in di�erent brain areas

The hypotheses for the genes that might specify the
di�erent types of neuronal network in di�erent brain

Fig. 3. The architecture of a competitive neural network.
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areas are introduced next. The hypotheses are based
on knowledge of the architectures of di�erent brain
regions, which are described in sources such as in
Rolls and Treves (1998), Shepherd (1990), Braitenberg
and Schuz (1991), Peters and Jones (1984) and Somo-
gyi et al. (1998), and on a knowledge of some of the
parameters that in¯uence the operation of neuronal
networks. These genes were used in the simulations in
which evolution of the architectures was explored
using genetic algorithms. The emphasis in this section
is on the rationale for suggesting di�erent genes. A
more formal speci®cation of the genes, together with
additional information on how they were implemented
in the simulations, is provided in Section 4.2. It may
also be noted that large numbers of genes will be
needed to specify for example the operation of a neur-
on. This paper focusses on those genes that, given the
basic building blocks of neurons, may specify the
di�erences in the functional architecture of di�erent
brain regions. In addition, we note that here we do
not try to describe the operation and properties of
simple neural networks, nor the empirical phenomena
such as synaptic long-term potentiation and long-term
depression which provide empirical support for some
of the parameters chosen, but instead refer the reader
to sources such as Rolls and Treves (1998) to which
cross references are given, and where in addition refer-
ences to the background literature are provided, and
in Koch (1999).

The overall conception is as follows. There are far
too few genes (in humans 60,000±80,000, Maynard
Smith and Szathmary, 1999) to specify each synapse

(i.e., which neuron is connected to which other neuron,
and with what connection strength) in the brain. (The
number of synapses in the human brain, with 1010±
1011 neurons in the brain, and perhaps an average of
10,000 synapses each, is in the order of 1014±1015). In
any case, brain design is likely to be more ¯exible if
the actual strength of each synapse is set up by self-or-
ganisation and experience. On the other hand, brain
connectivity is far from random. Some indications
about what is speci®ed can be gathered by considering
the connectivity of the hippocampus (see Rolls and
Treves, 1998, Chapter 6). The CA3 pyramidal cells
each receive approximately 50 mossy ®bre synapses
from dentate granule cells, 12,000 synapses from other
CA3 cells formed from recurrent collaterals, and 3600
perforant path synapses originating from entorhinal
cortex neurons (see Fig. 4, after Rolls and Treves
(1998), Fig. 6.6). In the preceding stage, the 1,000,000
dentate granule cells (the numbers given are for the
rat) receive one main source of input, from the entorh-
inal cortex, and each makes approximately 14 synapses
with CA3 cells (see Fig. 4). On the basis of consider-
ations of this type for many di�erent brain areas, it is
postulated that for each class of cell the genome speci-
®es the approximate numbers of synapses the class will
receive from a speci®ed other class (including itself, for
recurrent collaterals), and the approximate number of
synapses its axons will make onto speci®ed classes of
target cells (including itself). The individual neurons
with which synapses are made are not speci®ed, but
are chosen randomly, though sometimes under a con-
straint (speci®ed by another gene) about how far away
the axon should travel in order to make connections
with other neurons. One parameter value of the latter
gene might specify the widespread recurrent collateral
system of the CA3 neurons (Rolls and Treves 1998,
Section 6.4). Another value for the latter might specify
much more limited spread of recurrent collaterals with
the overall density decreasing rapidly from the cell of
origin, which, as in the cerebral cortex and if ac-
companied by longer range inhibitory processes im-
plemented by feedback inhibitory neurons, would
produce center-surround organisation, and tend to
lead to the formation of topological maps (see Koho-
nen (1995) and Rolls and Treves (1998), Section 4.6).
The actual mechanism by which this is implemented is
not the subject of this paper, but would presumably
involve some (genetically speci®ed) chemical recog-
nition process, together with the production of a lim-
ited quantity of a trophic substance that would limit
the number of synapses from, and made to, each other
class of cell. Some of these processes would of course
be taking stage primarily during development (onto-
genesis), when simple rules such as making local con-
nections as a function of distance away would be
adequate to specify the connectivity, without the need

Fig. 4. Schematic architecture of hippocampal CA3 pyramidal cell

network.
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for long pathway connection routes (such as between
the substantia nigra and the striatum) to be genetically
encoded. It is presumably because of the complex gen-
etic speci®cation that would be required to specify in
the adult brain the route to reach all target neurons
that epigenetic factors are so important in embryologi-
cal development, and that as a general rule the for-
mation of new neurons is not allowed in adult
mammalian brains.

It is a feature of brain neuronal network design that
not only is which class of neuron to connect to appar-
ently speci®ed, but also approximately where on the
dendrite the connections from each other class of neur-
on should be received. For example, in the CA3 sys-
tem, the mossy ®bres synapse closest to the cell body
(where they can have a strong in¯uence on the cell),
the CA3 recurrent collaterals synapse on the next part
of the dendrite, and the entorhinal inputs synapse on
the more distal ends of the dendrites. The e�ect of the
proximal relative to the more distal synapses will
depend on a number of factors, including for distal
inputs whether proximal inputs are active and thereby
operating as current shunts producing division, and on
the diameter of the dendrite, which will set its cable
properties (Koch, 1999). If the dendritic cable diameter
is speci®ed as large, all inputs (including distal inputs)
will sum reasonably linearly to inject current into the
cell body, whereas if speci®ed as small will tend to
result in local computation on a dendrite, with perhaps
strong local depolarization produced by a set of locally
coactive inputs and synaptic modi®cation local to a
close coactive set of synapses on a dendrite, resulting
in higher order association performed by what are
called Sigma-Pi neurons (see Rolls and Treves, 1998,
Section 1.5; Koch, 1999, Section 14.4.2). (Such higher
order neural computation is not the main theme of
Rolls and Treves (1998), nor of the networks con-
sidered in this paper, which generally operate by a uni-
form post-synaptic learning term, rather than one local
to a patch of dendrite, though the genetic speci®cation
can easily be extended to incorporate the cable proper-
ties of neurons, by for example specifying parameters
such as the diameter of the dendrite, see Koch, 1999).

Although inhibitory neurons have not been included
in the examples already given, similar speci®cations
would be applicable, including for example a simple
speci®cation of the di�erent parts of the dendrite on
which di�erent classes of inhibitory neuron synapse in
the hippocampus (Buhl et al., 1994), and hence
whether the e�ect is subtractive or shunting (Koch,
1999). In cortical areas, both feedforward and feed-
back inhibition (the latter from pyramidal cells via in-
hibitory neurons back to the same population of
pyramidal cells) could be produced by a simple genetic
speci®cation of this type.

Next, the nature of the synaptic connections, and

the learning rule for synaptic modi®ability, must be
speci®ed. One gene speci®es in the simulation
described later whether a given neuron class is ex-
citatory or inhibitory. In the brain, this gene (or
genes) would specify the transmitter (or transmitters
in some cases) that are released, with the actual
e�ects of for example glutamate being excitatory,
and gamma-amino-butyric acid (GABA) inhibitory.
The learning rule implemented at each synapse is
determined by another gene (or genes). One possible
e�ect speci®ed is no synaptic modi®cation. Another
is a Hebb rule of associative synaptic plasticity
(increase the synaptic strength if both presynaptic
and postsynaptic activity are high, the simple rule
implemented by associative long-term potentiation
(LTP)). For this, the genes might specify NMDA
(N-methyl-D-aspartate) receptors on the post-synaptic
neurons together with the linked intracellular pro-
cesses that implement LTP (Rolls and Treves, 1998;
Wang et al., 1997; Buonomano and Merzenich,
1998). Another possible e�ect is long-term de-
pression (LTD). This may be heterosynaptic, that is
the synaptic weight may be decreased if there is
high post-synaptic activity but low presynaptic ac-
tivity. Part of the utility of this in the brain is that
when combined with LTP in pattern associators and
autoassociators the e�ect is to remove the otherwise
positive correlation that would be produced between
di�erent input patterns if all patterns are speci®ed
by positive-only ®ring rates, as they are in the
brain (see Rolls and Treves, 1998, Sections 2.4.7
and 3.3.6). The e�ect of removing this correlation is
to reduce interference between patterns, and to
maximize the storage capacity. A further useful
property of heterosynaptic LTD is that it can help
to maintain the total synaptic strength onto a neur-
on constant, by decreasing synaptic strengths from
inputs to a neuron which are inactive when the
neuron is currently ®ring. This can be very useful
in competitive networks to prevent some winning
neurons from continually increasing their synaptic
strength so that they win to all patterns, and can
in addition be seen as part of the process by which
the synaptic weight vector is moved to point in the
direction of a current input pattern of neuronal ac-
tivity (see Rolls and Treves, 1998, Chapter 4).
Another type of LTD is homosynaptic, in which
the synaptic strength decreases if there is high pre-
synaptic activity but low or moderate postsynaptic
activity. This might be useful in autoassociative
synaptic networks, as combined with LTP and het-
erosynaptic LTD it can produce a covariance-like
learning rule (see Rolls and Treves, 1998, Section
A3.1.4), and it may also be useful in forcing neur-
ons to be allocated to one feature or another in
feature analyzers if combined with a sliding sensi-
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tivity factor that depends on the average post-
synaptic activity of a neuron (Bienenstock et al.,
1982). Another learning rule of potential biological
importance is a trace learning rule, in which for
example the post-synaptic term is a short term aver-
age in an associative Hebb-like learning rule. This
encourages neurons to respond to the current stimu-
lus in the same way as they did to previous stimuli.
This is useful if the previous stimuli are di�erent
views etc of the same object (which they tend stat-
istically to be in our visual world), because this
promotes invariant responses to di�erent versions of
the same object. Use of such a rule has been pro-
posed to be one way in which networks can learn
invariant responses (FoÈ ldiaÂ k, 1991; Rolls, 1992;
Wallis and Rolls, 1997; Rolls and Treves, 1998;
Rolls and Milward, 2000; Rolls and Stringer, 2000).
Such a trace could be implemented in real neurons
by a number of di�erent mechanisms, including
slow unbinding of glutamate from the NMDA
receptor (which may take 100 ms or more), and
maintaining a trace of previous neuronal activity by
using short term autoassociative attractor memories
implemented by recurrent collaterals in the cerebral
neocortex (Rolls and Treves, 1998). Other types of
synaptic modi®cation that may be genetically speci-
®ed include non-associative LTP (as may be im-
plemented by the hippocampal mossy ®bre
synapses), and non-associative LTD. Other genes
working with these may set parameters such as the
rapidity with which synapses learn (which in a
structure such as the hippocampus may be very
fast, in one trial, to implement memory of a par-
ticular episode, and in structures such as the basal
ganglia may be slow to enable the learning of
motor habits based on very many trials of experi-
ence); and the initial and maximal values of
synapses (e.g., the mossy ®bre synapses onto hippo-
campal CA3 cells can achieve high values).

Another set of genes speci®es some of the biophysi-
cal parameters that control the operation of individual
neurons (see Koch (1999) for background). One gene
(in a simulation, or biologically perhaps several) speci-
®es how the activation hi of a neuron i is calculated. A
linear sum of the inputs r 0j weighted by the synaptic
weights wij is the standard one used in most models of
neuronal networks (Rolls and Treves, 1998), and those
simulated here, as follows:

hi �
X
j

r 0j wij �1�

where
P

j indicates that the sum is over the C input
axons (or connections) indexed by j. An alternative is
that there is non-linearity in this process, produced for
example by local interactions in dendrites, including

local shunting, a�ected most notably by the cable di-
ameter of the dendrite, which is what such genes may
control. For most pyramidal cells, the dendrite diam-
eter is su�ciently large that linear summation to pro-
duce the net current injected into the cell bodies is a
reasonable approximation (Koch, 1999). Several
further genes set the activation function of the neuron.
(The activation function is the relation between the ac-
tivation of the neuron and its ®ring. Examples are
shown in Fig. 5). One possibility is linear. A second,
and the most biologically plausible, is to have a
threshold, followed by a part of the curve where the
®ring rate increases approximately linearly with the ac-
tivation, followed by a part of the curve where the ®r-
ing rate gradually saturates to a maximum. This
function can be captured by for example a sigmoid ac-
tivation function as follows:

ri � 1

1� eÿ2b�hiÿa�
�2�

where a and b are the sigmoid threshold and slope, re-
spectively. The output of this function, also sometimes
known as the logistic function, is 0 for an input of
ÿ1, 0.5 for hi equal to a, and 1 for �1: For this
type of activation function, at least two genes would
be needed (and biologically there would probably be
several to specify the biophysical parameters), one to
control the threshold, and a second to control the
slope. A third possibility is to have a binary threshold,
producing a neuron which moves from zero activity
below threshold to maximal ®ring above threshold.
This activation function is sometimes used in math-
ematical modelling because of its analytic tractability.
One variable which is controlled by the threshold (and
to some extent the slope) of the activation function is
the proportion of neurons in a population that are
likely to be ®ring for any one input. This is the sparse-
ness of the representation. If the neurons have a binary
activation function, the sparseness may be measured
just by the proportion of active neurons, and takes the
value 0.5 for a fully distributed representation, in
which half of the neurons are active. For neurons with
continuous activation functions, the sparseness a may
be de®ned as

a �

�X
i

ri=N
�2

X
i

r2i =N
�3�

where N is the number of neurons in the layer (Rolls
and Treves, 1998). This works also for binary neurons.
To provide precise control of the sparseness in some of
the simulations described below we made provision for
this to be controlled as an option directly by one gene,
rather than being determined indirectly by the
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threshold and slope gene-speci®ed parameters of the
sigmoid activation function shown in Eq. (2).

3. Genetic selection of neural network parameters to
produce di�erent network architectures with di�erent
functions

Given the proposals just described for the types of
parameter that are determined by di�erent genes, we
describe next how gene selection is postulated to lead
to the evolution of neuronal networks adapted for par-
ticular (computational) functions. The description is
phrased in terms of simulations of the processes using
genetic algorithms, as investigations of this type enable
the processes to be studied precisely. The processes
involve reproduction, ontogenesis followed by tests of
how well the o�spring can learn to solve particular
problems, and natural selection. First, a selection of
genes is made for a set of G genotypes in a population,
which should be of a certain minimum size for evol-
ution to work correctly. The genes are set out on a
chromosome (or chromosomes). (E�ects of gene link-
age on a chromosome are not considered here.) Each
set of genes is a genotype. The selection of individual
genotypes from which to breed is made a probabilistic
function which increases with the ®tness of the geno-
type, measured by a ®tness function that is quanti®ed
by how well that genotype builds an individual that

can solve the computational problem that is set. Hav-
ing chosen two genotypes in this way, two genotypes
to specify two new (haploid) o�spring for the next gen-
eration are made by the genetic processes of sexual
reproduction involving both gene recombination and
mutation, which occur with speci®ed probabilities.
This process is repeated until G genotypes have been
produced. Then G individuals are built with the net-
work architectures speci®ed by the G genotypes. The
®tness of these individuals is then measured by how
well they perform at the computational problem set. In
order to solve the computational problem, the net-
works are trained by presenting the set of input pat-
terns, and adjusting the synaptic weights in the
network according to the learning rules speci®ed by
the genotype of that individual. The individuals then
breed again with a probability of being selected for
reproduction that is proportional to their ®tness rela-
tive to that of the whole population. This process is
allowed to proceed for many generations, during
which the ®tness of the best individual in the popu-
lation, and the average ®tness, both increase if evol-
ution is working. This type of genetic process is an
e�cient method of searching through a high dimen-
sional space (the space speci®ed by the genes), particu-
larly where the space has many local optima so that
simple hill climbing is ine�cient, and where there is a
single measure of ®tness (Holland, 1975; Ackley, 1987;
Goldberg, 1989). An additional useful feature of gen-

Fig. 5. Activation functions.
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etic search is that past gene combinations, useful poss-
ibly in other contexts, can remain in the population
for a number of generations, and can then be reused
later on, without the need to search for those gene
combinations again. This re-use of past combinations
is one of the features of genetic search that can make
it powerful, rapid, and show sudden jumps forward.

4. Simulation of the evolution of neural networks using
a genetic algorithm

Next in this paper we describe a simulation of these
processes using a genetic algorithm. The aims of the
simulations are to demonstrate the feasibility and
details of the proposal; to provide an indication of
whether the proposed genes can be used to guide e�-
ciently the evolution of networks that can solve com-
putational problems of the type solved by the brain;
and to provide a tool for investigating in more detail
both the parameters that can best and biologically
plausibly be genetically speci®ed to de®ne neural net-
works in the brain, and more complicated multilayer
networks that operate to solve computationally di�-
cult problems such as episodic memory or invariant
visual object recognition. In this paper, the proposals
are tested to determine whether three di�erent types of
one-layer network with di�erent architectures appro-
priate for solving di�erent computational problems
evolve depending on the computational problem set.
The problems are those appropriate for the pattern
associator, autoassociator, and competitive networks
shown schematically in Figs. 1±3.

4.1. The neural networks

The neural networks we consider have a number of
classes of neuron. Within a class, a gene allows the
number of neurons to vary from 1 up to N. For the
simulations described here, N was set to 100. Within a
class, the genetic speci®cation of a neuron is homo-
geneous, with the neurons for that class having, for
example, identical activation functions and connec-
tivity probabilities. The number of classes will depend
on the individual task, e.g. pattern association, autoas-
sociation, competitive nets, etc, which can be described
as one-layer networks, with one layer of computing el-
ements between the input and output (see Figs. 1±3).
However, in our simulations there is typically an input
layer where patterns are presented, and an output
layer where the performance of the network is tested.
For the simulations described here, the number of
classes was set to allow one-layer networks such as
these to be built, but the number of layers that could
be formed is in principle under genetic control, and
indeed multilayer networks can be formed if there is a

su�cient number of classes of neuron. Regarding the
implementation of inter-layer connection topologies,
the neurons in individual layers exist in a circular
arrangement, and connections to a cell in one layer are
derived from a topologically related region of the pre-
ceding layer. Connections to individual neurons may
then be established according to either a uniform or
Gaussian probability distribution centered on the
topologically corresponding location in the sending
layer.

On discrete time steps each neuron i calculates a
weighted sum of its inputs as shown in Eq. (1). This is
in principle the subject of genetic modi®cation (see
below), but the gene specifying this was set for the
simulations described here to this type of calculation
of the neuronal activation. Next the neuronal ®ring ri
is calculated, using for example the standard sigmoid
function shown in Eq. (2) and allowing a and b the
sigmoid threshold and slope to evolve genetically.
Next, there is an optional procedure that can be speci-
®ed by the experimenter to be called to set the sparse-
ness of the ®ring rates ri of a class of neuron
according to Eq. (3), with a being allowed to evolve.
After the neuronal outputs ri have been calculated, the
synaptic weights wij are updated according to one of a
number of di�erent learning rules, which are capable
of implementing for example both long term poten-
tiation (LTP) and long term depression (LTD), as
described below, and which are genetically selected.
For example, the standard Hebb rule takes the form

Dwij � krir
0
j , �4�

where r 0j is the presynaptic ®ring rate and k is the
learning rate.

4.2. The speci®cation of the genes

The genes that specify the architecture and oper-
ation of the network are described next. In principle,
each gene evolves genetically, but for particular runs,
particular genes can be set to speci®ed values to allow
investigation of how other genes are selected when
there are particular constraints. Each neural network
architecture is described by a genotype consisting of a
single chromosome of the following form

chromosome �

266664
c1
c2

..

.

cn

377775 �5�

where cl is a vector containing the genes specifying the
properties of neurons in class l, and n is the total num-
ber of classes that is set manually at the beginning of a
run of the simulation. The vectors cl take the form
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cl �

26666664
gl

hl1

hl2

..

.

hln

37777775 �6�

where the vector gl contains the intra-class properties
for class l, and the vectors hlm contain the inter-class
connection properties to class l from class m where m
is in the range 1±n.

The vector of intra-class properties takes the form

gl �

2664
bl
al
bl
al

3775 �7�

where we have the following de®nitions for intra-class
genes.

(1) bl is the number of neurons in class l. bl is an
integer bounded between 2 and N, which was set to
100 for the simulations described here. Individual
classes are restricted to contain more than one neuron
since a key strategy we have adopted for enhancing
the biological plausibility is to evolve classes composed
of a number of neurons with homogeneous genetic
speci®cations rather than to specify genetically the
properties of individual single neurons.

(2) al is the threshold of the sigmoid transfer func-
tion (2) for class l. al is a real number bounded within
the interval [0.0, 200.0].

(3) bl is the slope of the sigmoid transfer function
(2) for class l. bl is a real number bounded within the
interval [0.0, 200.0]. We note that low values of the
slope will e�ectively specify a nearly linear activation
function, whereas high values of the slope specify a
nearly binary activation function (see Fig. 5).

(4) al is the sparseness of ®ring rates within class l as
de®ned by Eq. (3). By de®nition al is a real number
bounded within the interval [0.0, 1.0]. However, in
practice we ensure a minimum ®ring sparseness by set-
ting al to lie within the interval �1:0=bl, 1:0�, where bl is
the number of neurons in class l. With binary neurons
with output r equal to either 0 or 1, setting alr1:0=bl
ensures that at least one neuron is ®ring. For the simu-
lations described in this paper, when this gene was
being used, a was set to 0.5 and produced a binary ®r-
ing rate distribution with a sparseness of 0.5 unless
otherwise speci®ed. The alternative way of calculating
the ®ring rates was to allow genes a and b specifying
the sigmoid activation function to evolve.

The vectors of inter-class connection genes specify
the connections to class l from class m, and take the
form

hlm �

266666666666666666666664

rlm
slm
clm
elm
zlm
tlm
plm
slm
qlm
flm
klm
dlm
ulm
vlm

377777777777777777777775

�8�

where we have the following de®nitions for inter-class
genes.

(1) rlm controls the inter-layer connection topology
in that it helps to govern which neurons in class m
make connections with individual neurons in class l.
The exact de®nition of rlm depends on the type of
probability distribution used to make the connections,
which is governed by the gene slm described below. For
slm � 0, connections are established according to a uni-
form distribution, and rlm speci®es the number of neur-
ons within the spatial region from which connections
may be made. For slm � 1, connections are established
according to a Gaussian distribution, where rlm speci-
®es the standard deviation of the distribution. For the
Gaussian distribution, individual connections originate
with 68% probability from within a region of 1 stan-
dard deviation away. These real valued variates are
then rounded to their nearest integer values. As noted
in Section 2, connection topologies are characteristi-
cally di�erent for di�erent connection types such as
CA3 recurrent collateral connections, which are wide-
spread, and intra-module connections in the cerebral
cortex. This parameter may also be set by genetic
search to enable the region of e�ect of inhibitory feed-
back neurons to be just greater than the region within
which excitatory neurons receive their input; and to
enable topographic maps to be built by arranging for
the lateral excitatory connections to operate within a
smaller range than inhibitory connections. This par-
ameter may also be set to enable multilayer networks
to be built with feedforward connectivity which is
from a small region of the preceding layer, but which
over many layers allows an output neuron to receive
from any part of the input space, as happens in many
sensory systems in which topology is gradually lost
and as is implemented in a model of the operation of
the visual cortical areas (Wallis and Rolls, 1997; Rolls
and Milward, 2000). For the simulations described
here, this gene was set to 100 to allow global connec-
tivity, and thus to not specify local connectivity.

(2) slm speci®es for the region gene rlm the connec-
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tion probability distribution to class l from class m. slm
takes the following values.

. slm � 0: Connections are established according to a

uniform probability distribution within the region

rlm:
. slm � 1: Connections are established according to a

Gaussian probability distribution. rlm speci®es the

size of the region from which there is a 68% prob-

ability of individual connections originating.

In the experiments described here, the values of s were

set to 0.

(3) clm is the number of connections each neuron

in class l receives from neurons in class m. clm
takes integer values from 0 to bm (the number of

neurons within class m ). These connections are

made probabilistically, selecting for each class l of

neuron clm connections from class m. The probabil-

istic connections are selected either from a uniform

probability distribution (as used here), or according

to a Gaussian probability distribution. In both cases

the local spatial connectivity within the two classes

l and m is speci®ed by the region parameter gene

rlm:
(4) elm speci®es whether synapses to class l from

class m are excitatory or inhibitory. elm takes the fol-

lowing values.

. elm � 0: Connections are inhibitory

. elm � 1: Connections are excitatory

For inhibitory connections with e � 0, the weights in

Eq. (1) are scaled by ÿ1, and no learning is allowed to

take place.

(5) zlm speci®es whether connections from class m to

class l are additive or divisive. zlm takes the following

values.

. zlm � 0: Connections are divisive

. zlm � 1: Connections are additive

This gene selects whether the neuronal activation hi is

calculated according to linear summation of the input

®ring rates r 0j weighted by the synaptic strengths wij, as

speci®ed by Eq. (1), and as used throughout this paper

by setting zlm � 1; or whether with zlm � 0 there is

local computation on a dendrite including perhaps

local summation of excitatory inputs and shunting

e�ects produced by inhibitory inputs or inputs close to

the cell body. The most important physical property of

a neuron that would implement the e�ects of this gene

would be the diameter of the dendrite (see Section 2

and Koch, 1999). If set so that zlm � 0 for local multi-

plicative and divisive e�ects to operate, it would be

reasonable and in principle straightforward to extend

the genome to include genes which specify where on

the dendrite with respect to the cell body synapses are

made from class m to class l neurons, the cable proper-
ties of the dendrite, etc.

(6) tlm speci®es how the synaptic weights to class l
from class m are initialised at the start of a simulation.
tlm takes the following values.

. tlm � 0: Synaptic weights are set to zero. This might
be optimal for the conditioned stimulus inputs for a
pattern associator, or the recurrent collateral con-
nections in an autoassociator, for then existing con-
nections would not produce interference in the
synaptic connections being generated during the as-
sociative learning. This would produce a non-oper-
ating network if used in a competitive network, for
an input could not produce any output.

. tlm � 1: Synaptic weights are set to a uniform devi-
ate in the interval [0, 1] scaled by the constant value
encoded on the genome as qlm (described below).

. tlm � 2: Synaptic weights are set to the constant
value encoded on the genome as qlm (described
below). This could be useful in an associative net-
work if a learning rule that allowed synaptic weights
to decrease as well as increase was speci®ed geneti-
cally, because this would potentially allow corre-
lations between the input patterns due to positive-
only ®ring rates to be removed, yet prevent the
synapses from hitting the ¯oor of zero, which could
lose information (Rolls and Treves, 1998).

. tlm � 3: Synaptic weights are set to a Gaussian func-
tion of distance x away from the a�erent neuron in
class l. This function takes the form

f�x� � 1

s
�������
2P
p eÿx

2=2s2

where s is the standard deviation. This would be an
alternative way to implement local spatial connectivity
e�ects to those implemented by rlm:

(7) plm is the scale factor used for synaptic weight
initialisation with a Gaussian distribution (i.e., for
tlm � 3). plm is a real number bounded within the inter-
val [0.0, 100.0].

(8) slm is the standard deviation used for synaptic
weight initialisation with a Gaussian distribution (i.e.,
for tlm � 3). slm is a real number bounded within the
interval [0.001, 10.0]. slm is restricted to be greater
than 0.001 to avoid a singularity that would occur in
the Gaussian function for slm � 0:0:

(9) qlm is the scale factor used for synaptic weight
initialisation for tlm � 1 and tlm � 2 (see above). qlm is
a real number bounded within the interval [0.0, 100.0].
If tlm is 1 or 2, qlm would be expected to be small for
pattern associators and autoassociators (as described
above).

(10) flm speci®es which learning rule is used to
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update weights at synapses to class l from class m. flm
takes the following values.

. flm � 0: Learning rule 0 (no learning) Dwij � 0:

. flm � 1: Learning rule 1 (Hebb rule) Dwij � krir
0
j :

. flm � 2: Learning rule 2 (modi®ed Hebb rule) Dwij�
kri�r 0j ÿhr 0j i� where h�i indicates an average value. In
this rule LTP is incorporated with heterosynaptic
LTD set to keep the average weight unchanged. Use
of this rule can help to remove the correlations
between the input patterns produced by positive-
only ®ring rates (Rolls and Treves, 1998). If this
rule is selected, it will work best if the synaptic
weight initialisation selected genetically is not zero
(to allow the weights to decrease without hitting a
¯oor), and is optimally a constant (so that noise is
not added to the synaptic weights which implement
the association).

. flm � 3: Learning rule 3 (modi®ed Hebb rule) Dwij �
kri�r 0j ÿ wij �: This rule has the e�ect of helping to
maintain the sum of the synaptic weights on a neur-
on approximately constant, and is therefore helpful
in competitive networks (Rolls and Treves, 1998).
This rule accords with the neurophysiological obser-
vation that it is easier to demonstrate LTD after
LTP has been produced.

. flm � 4: Learning rule 4 (covariance rule) Dwij� k�ri
ÿhrii��r 0j ÿhr 0j i�:

. flm � 5: Learning rule 5 (homosynaptic LTD with
LTP) Dwij�k�riÿhrii�r 0j :

. flm � 6: Learning rule 6 (non-associative LTP)
Dwij � kr 0j : This rule may be implemented in the hip-
pocampal mossy ®bre synapses.

. flm � 7: Learning rule 7 (non-associative LTD)
Dwij � ÿkr 0j :

. flm � 8: Learning rule 8 (trace learning rule) Dwij �
k�rti r

0 t
j where the trace �rti is updated according to

�rti � �1ÿ Z�rti � Z �rtÿ1i �9�

and we have the following de®nitions: �rti is the trace
value of the output of the neuron at time step t, and Z
is a trace parameter which determines the time or
number of presentations of exemplars of stimuli over
which the trace decays exponentially. The optimal
value of Z varies with the presentation sequence length.
Further details, and a hypothesis about how this type
of learning rule could contribute to the learning of
invariant representations, are provided by Wallis and
Rolls (1997), Rolls and Treves (1998) and Rolls and
Milward (2000). For the simulations described in this
paper, this learning rule was disabled.

In some simulations described later, the synaptic
weights were clipped to be r0, consistent with what is
biologically plausible. However, in some simulations
we explored the impact on evolution and performance

of allowing the synaptic weights to vary from positive
to negative. In addition, an implementation detail for
rules f � 2, 4 or 5, where an estimate of the average
®ring rate of a set of neurons hri has to be subtracted,
is that hri is taken to be 0.5, which is the average ®ring
of a binary vector with the sparseness value of 0.5
which was used for the test patterns and was that of
the desired output patterns except where stated other-
wise.

(11) klm is the learning rate k for synaptic weights to
class l from class m. klm is a real number bounded
within the interval [0.0, 10.0].

(12) dlm is the maximum size allowed for the absol-
ute value of synaptic weight updates from class m to
class l. dlm is a real number bounded within the inter-
val [0.0, 10.0].

(13) ulm is the maximum size allowed for synaptic
weights to class l from class m. ulm is a real number
bounded within the interval [ÿ100.0, 100.0].

(14) vlm is the minimum size allowed for synaptic
weights to class l from class m. vlm is a real number
bounded within the interval [ÿ100.0, 100.0].

Implementation details are that v is bounded to be
less than u; and that during initialisation of the synap-
tic weights, v and u are applied after the other initiali-
sation parameters have operated.

4.3. The genetic algorithm, and general procedure

The genetic algorithm used is a conventional one
described by Goldberg (1989). Each individual geno-
type was a haploid chromosome of the type just
de®ned. The values for the genes in the initial chromo-
some were chosen at random from the possible values.
(In this simulation, if a value in the genotype was one
of a large number of possible values, then a single inte-
ger or real-valued gene was used, whereas in the brain
we would expect several genes to be used, with perhaps
each of the several genes coding for di�erent parts of
the range with di�erent precision. For example, clm,
the number of synaptic connections to a neuron in
class l from a neuron in class m, is to be chosen from
2 to 100 in the simulation, and uses a single integer. In
the brain, where we might expect the number of con-
nections per neuron to vary in the range 5±50,000, one
possible scenario is that ®ve di�erent genes would be
used, coding for the values 5, 50, 500, 5000 and
50,000. We would thus expect that the number of
genes required to specify the part of the genotype
described here would increase by a factor in the order
of 5 in the brain.) There was a set number of geno-
types (and hence individuals) per generation, which
was 100 for the simulations described. (Too small a
number reduces the amount of diversity in the popu-
lation su�ciently to lead to poor performance of the
genetic evolution.) From each genotype an individual

E.T. Rolls, S.M. Stringer / Progress in Neurobiology 61 (2000) 557±579 567



network was constructed, with all connections being
chosen probabilistically within the values speci®ed by
the genotype, and with a uniform probability distri-
bution (i.e., slm was set to 0 for the simulations
described), and the initial values for the synapses were
also chosen as proscribed by the genotype. That indi-
vidual was then tested on the computation being stu-
died, e.g. pattern association, and the ®tness
(performance) of the network was measured. The
actual testing involved presenting the set of patterns to
be learned (as speci®ed below for each network) to the
network while allowing learning to occur, and then
testing the performance of the network by presenting
the same, similar, or incomplete test patterns and
measuring the output of the network. The ®tness
measure used for each class of network is de®ned
below. Unless otherwise stated, each genotype was
tested 20 times to obtain an average ®tness measure
for that genotype. (This step, though not necessary at
all for successful evolution, did ensure, given the prob-
abilistic way in which individual connections and their
values were assigned, that an accurate measure of the
®tness of that genotype was obtained, and hence
allowed smoother evolution curves to be plotted. In
real life, the numbers speci®ed for the networks would
be larger, and the statistical e�ects of small numbers
would be smaller. On the other hand, chance environ-
mental factors might be larger in real life.) This pro-
cess was repeated until a ®tness measure had been
obtained for each of the genotypes.

The next generation of genotypes was then bred by
reproduction from the previous genotypes. Two geno-
types were selected for reproduction with a probability
that was proportional to their ®tness relative to the
sum of the ®tnesses of all individuals in that gener-
ation. That is, the probability Pi of an individual i
being selected is given by

Pi � FiX
j

Fj

�10�

where Fj is the ®tness of an individual genotype j, and
the sum

P
j Fj is over all individuals in the population.

The genotypes were then bred to produce two o�-
spring genotypes using the processes of recombination
and mutation. The probability of recombination was
set to 0.4 (so that it occurred with a 40% chance for
every breeding pair in every generation), and the prob-
ability of mutation of each gene was set to 0.05. The
computational background to this is that recombina-
tion allows a non-linear search of a high dimensional
space in which gene complexes or combinations may
be important, allowing local performance hills in the
space to be detected, and performance once in a local
hill to improve. Mutation on the other hand enables

occasional moves to be tried to other parts of the
space, usually with poorer performance, but occasion-
ally moving a genotype away from a well explored lo-
cation to a new area to explore. Both processes enable
the search to be much more e�cient in a high dimen-
sional space with multiple performance hills or moun-
tains than with simple gradient ascent, which will
climb the ®rst hill found, and become stuck there
(Ackley, 1987; Goldberg, 1989). The recombination
took place with respect to a random point on the
chromosome each time it occurred. The mutation also
took place at a random place on the chromosome each
time it occurred, and the single gene being mutated
was altered to a new random value within the range
speci®ed for that gene. This reproduction process was
repeated until su�cient individual genotypes for the
next generation (100 unless otherwise stated) had been
produced. The ®tness of those genotypes was then
measured by building and testing the networks they
speci®ed as previously outlined. Then the whole repro-
duction, ontogenesis, and testing to measure ®tness,
processes were repeated for many generations, to
determine whether the ®tness would increase, and if
so, what solutions were found for the successful net-
works.

4.4. Pattern association networks

The computational problem set was to associate
pairs of random binary patterns of 1s and 0s with
sparseness of 0.5 (i.e. with half the elements 0 and the
other half 1s), an appropriate problem for a pattern
association net (Rolls and Treves, 1998). There were
10 pattern pairs, which places a reasonable load on the
network (Rolls and Treves, 1998). There were two
classes of neuron. One of the patterns of the pair, the
unconditioned stimulus, was set during learning to
activate the 100 output neurons (class 2) during learn-
ing, while the other pattern of the pair, the con-
ditioned stimulus (see Fig. 1), was provided by the
®ring of 100 input neurons (class 1). The ®tness
measure was obtained by providing each conditioned
stimulus (or a fraction of it), and measuring the corre-
lation of the output vector of ®ring rates, ri in Fig. 1
where i � 1 to 100, with that which was presented as
the unconditioned stimulus during learning. This corre-
lation measure ranges from 1.0 for perfect recall to 0.0
(obtained for example if the output of the pattern
associator is 0). The ®tness measure that was used in
most runs, and is plotted in the Figures and Tables
was the square of this correlation (used to increase the
selectivity of the ®tness function). (All of the possible
activation functions produced ®ring rates greater than
or equal to 0.) (In practice, a pattern associator with
associatively modi®able synapses, random patterns,
and the sizes and loading of the networks used here
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can achieve a maximum correlation of approximately
1.000.) It may be noted that the genetics could form
connections onto individual neurons of any number
(up to N � 100, the number of input and output neur-
ons in the network) and type between classes 1 to 2
(feedforward connections), and 2 to 2 (recurrent collat-
erals), 2 to 1, and 1 to 1. (However, in the simulations
described in this Section, during retrieval the ®ring
rates of class 2 neurons were set to 0 initially corre-
sponding to no retrieved pattern before the cue is
applied, and this had the e�ect that any recurrent col-
lateral synapses from class 2 to class 2 would not a�ect
retrieval.) For the simulations performed, the oper-
ation of inhibitory feedback neurons was not explicitly
studied, although when using the sigmoid activation
function the neurons had to select a threshold (by
altering al). (If the alternative way of calculating the
®ring rates using the sparseness parameter al to allow
only some output neurons to ®re was selected for a
particular run, then al was itself either allowed to
evolve, or set to the same value as that of the uncondi-
tioned stimulus. When setting the output sparseness in

this way using al, the activation function of the neur-
ons was linear.)

The values of the ®tness measures for a typical run
of the simulations is shown in Fig. 6, along with the
values of speci®c genes. The genes shown are key con-
nection properties from class 1 to class 2, and are:
learning rate k21, number of connections c21, weight
scaling q21, weight initialisation option t21, and the
learning rule f21: In the ®gure the values of the di�er-
ent variables are normalised in the following way. The
net ®tness, number of connections c21, weight initiali-
sation t21, and learning rule f21 are normalised by their
maximum possible values (1.0, 100, 3, 8, respectively),
while the learning rate k21 and weight scaling q21 are
normalised by the maximum values that actually
occurred during the simulation (7.9 and 52.99, respect-
ively). The ®tness measure is the ®tness of the best
genotype in the population, and for this run the spar-
seness of the output representation was set to the
value of 0.5 by using the sparseness gene set to this
value. The synaptic weights were clipped to be 0 for
the run shown in this ®gure and in the other ®gures

Fig. 6. Fitness of the best genotype in the pattern association task as a function of the number of generations, together with the values of selected

genes. The simulation is performed with the ®ring rates assigned binary values of 0 or 1 according to the neuronal activations, with the pro-

portion of neurons ®ring set by the ®ring rate sparsity gene a.
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included in this paper. It is shown that evolution to
produce genotypes that specify networks with high
performance occurred over a number of generations.
Some genes, such as that specifying the learning rule,
settled down early, and changes in such genes can
sometimes be seen to be re¯ected in jumps in the ®t-
ness measure. An example in Fig. 6. is the learning
rule, which settled down (for the best genotype) by
generation 3 to a value of 4 which selects the covari-
ance learning rule. Another example is that there is a
jump in the ®tness measure from generation 4 to 5
which occurs when the synaptic weight initialisation
gene t21 changes from a Gaussian distribution to a
constant value. This would increase the performance,
as described below. The simultaneous jump of the
synaptic weight scaling q21 from a high value to a low
value on the other hand would not be expected to
increase the ®tness with learning rule 4 and a constant
weight initialisation, again as made clear below. The
increase in ®tness from generation 7 to 8 occurred
when the minimum weight gene v21 changed from 11.6

to ÿ62.5 (not plotted), which would also be expected
to increase performance, as described below. For other
genes, where the impact is less or zero, the values of
the genes can ¯uctuate throughout evolution, because
they are not under selection pressure, in that they do
not contribute greatly to ®tness. Every run of the
simulation eventually produced networks with perfect
performance. The selection pressure (relative to other
genotypes) could be increased by taking a power
greater than 1 of the correlation ®tness measure. A
high value could produce very rapid evolution, but at
the expense of minimising diversity early on in evol-
ution so that potentially good genes were lost from the
population, with then a longer time being taken later
to reach optimal performance because of the need to
rely on mutations. Low values resulted in slow evol-
ution. In practice, raising the correlation ®tness
measure to a power of 1 (no change) or 2 produced
the best evolution. (For the pattern associator and
autoassociator, the ®tness measure used and plotted in
the ®gures was the correlation measure raised to the

Fig. 7. Fitness of the best genotype in the pattern association task as a function of the number of generations, together with the values of selected

genes. The simulation is performed with the ®ring rates calculated according to the sigmoid activation function (2) using the values of the genes

a and b:
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power 2.) The best networks all had close to 100 excit-
atory feedforward connections (gene c21� to each class
2 (output) neuron from the class 1 (input) neurons,
which is the minimal number necessary for optimal
performance of a fully loaded pattern associator and
the maximum number allowed. Moreover, the excit-
atory feed forward connections for all the successful
networks were speci®ed as associative, and in particu-
lar f21 was selected for these networks as 2 or 4. In ad-
dition, with the synaptic weights initialised according
to a uniform probability distribution �t21 � 1� rela-
tively successful networks required genes which speci-
®ed for the associative feedforward connections low
initial synaptic weights (using appropriate values for
q21), and/or high learning rates k21, to minimise the
synaptic initialisation noise introduced into the asso-
ciatively learned connections (see further discussion
below). However, through the processes of recombina-
tion and mutation, such genes might also become com-
bined with a learning rule and weight initialisation
combination (e.g., f21 � 4 and t21 � 2� that would not
itself require low initial synaptic weights for good per-
formance. This is demonstrated in Fig. 6. where the
best ®t genotype of the last generation has f21 � 4,
t21 � 2, q21 � 1:02 and k21 � 7:28:

An example of a run of the pattern association net-
work using the sigmoid activation function in which
the genes that specify the parameters for the threshold
al and the slope bl were allowed to evolve for classes 1
and 2 is shown in Fig. 7. In this ®gure the genes are
normalised in a similar manner to Fig. 6, with the ad-
ditional genes sigmoid slope b2 and sigmoid threshold
a2 for class 2 also normalised by their maximum values
that occurred during the simulation. (For Fig. 7 the
values of the learning rate k21, weight scaling q21, sig-
moid slope b2 and sigmoid threshold a2 are normalised
by 0.12, 90.34, 2.76, 2.95, respectively.) When the ®t-
ness increased from 7 to 8, the sigmoid threshold a2

decreased. Between generations 16 and 17, when there
was only a small improvement in ®tness, the threshold
increased (from 0.96 to 2.67), so also did the learning
rate k21, thus maintaining the ratio of activation to
threshold approximately constant. This illustrates the
way in which genes can interact with each other. If in
evolution the value of a gene settles or becomes rela-
tively ®xed early on, other genes may evolve to values
that allow the network to operate well even given the
constraints forced by relatively ®xed values of other
genetically set parameters. The data shown in Fig. 7
are typical of many runs in which genetic evolution
could ®nd appropriate values for the threhold a2 and
slope b2 of the activation function of neurons (as well
as of all the other genes) to lead to the production of
output ®ring rate patterns with the appropriate sparse-
ness or more generally ®ring rate distributions to
achieve optimal results in a pattern associator.

To help understand in full detail the actual gene
selections found by the genetic algorithm in the simu-
lations, we simulated the pattern associator with
manually selected gene combinations for the feedfor-
ward connections from class 1 to class 2. In particular,
we calculated the network ®tnesses for particular com-
binations of learning rule f21, weight initialisation
option t21, and weight scaling q21: (This optional facil-
ity of the simulator allowed systematic investigation of
the e�ects of one gene, which could be held ®xed at a
particular value, on the values of the other genes
selected during evolution.) The results of some of these
simulations are shown in Tables 1 and 2, both for the
normal situation biologically and in most of the runs
performed where the weights were clipped to be r0,
and when they were allowed to become negative. (In
all cases, the ®ring rates werer0, and the learning rate
k21 was set to 1.) It is shown in Table 1 that with the
weights clipped at zero, the best performance (1.000)
was obtained with the learning rule f21 set to 2 (LTP

Table 1

Performance of pattern association networks with clipping of synaptic weights to ber0a

Synaptic weight initialisation option for di�erent values of t

0 1 �q � 0:5) 1 �q � 5:0) 1 �q � 50:0) 2 �q � 0:5) 2 �q � 5:0) 2 �q � 50:0)

Rule 1 0.261 0.263 0.243 0.047 0.259 0.257 0.256

Rule 2 0.573 0.695 0.581 0.025 0.826 1.000 1.000

Rule 3 0.135 0.139 0.130 0.002 0.136 0.135 0.001

Rule 4 0.878 0.965 0.568 0.023 0.996 1.000 1.000

Rule 5 0.240 0.252 0.241 0.051 0.253 0.258 0.256

Rule 6 0.000 0.007 0.009 0.007 0.000 0.000 0.000

Rule 7 0.000 0.000 0.007 0.007 0.000 0.000 0.000

a The performance measure is the ®tness, which was r2, where r is the average over the 10 training patterns of the correlation of the pattern

retrieved from the network with the training pattern. The di�erent columns are for the di�erent types of weight initialisation gene �t � 0, weights

initialised to 0; t � 1, weights initialised to a uniform probability distribution; t � 2, weights initialised to a constant value) and weight scaling

gene q.
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plus heterosynaptic long-term depression), or to 4 (co-
variance), provided that the weights were initialised to
a high enough positive constant value (for the simu-
lations performed to a value of 5 as indicated in the
table) that when decremented by the learning rule
during learning the weights did not hit the ¯oor of 0.
(If the weights were not clipped to be r0 during learn-
ing, then as shown in Table 2 both these rules were
again the best, but weight initialisation could in ad-
dition be set to zero or any constant.) These results
are in accord with what would be predicted (Rolls and
Treves, 1998), and help to show why the genetic algor-
ithm tended to produce gene combinations which
included rule 2 or rule 4 in combination with weight
initialisation to a positive constant su�ciently great to
enable the synapses not to hit the ¯oor of 0. In prac-
tice most of the runs had best genotypes that speci®ed
f21 � 4, the covariance learning rule, because, as
shown in Table 1, this would be more likely to work
for a wide range of values of the genes, including t21
and q21, and therefore probabilistically would be likely
to be selected. We note that one reason that the co-
variance learning rule can produce good performance
even when the weight initialisation is to small constant
values (e.g., t21 � 2, q21 � 0:5), is because with 0 pre-
and post-synaptic ®ring rates, the weight will be given
a positive increment by the learning rule, which helps
to lift the weights o� the ¯oor of 0. The Hebbian as-
sociative rule without weight decrementing f21 � 1 was
not chosen for the ®t genotypes given the maximum
®tness obtainable without weight decrementing shown
in Table 2 and required to remove the positive corre-
lation introduced by ®ring rates r0 (Rolls and Treves,
1998). The associative learning rule 3 envisaged to be
useful in competitive networks was not selected for the
successful genotypes in pattern association, as it pro-
duced only poor maximum ®tness values as shown in
Tables 1 and 2. In addition, Tables 1 and 2 show that
if the weight initialisation is drawn from a continuous
probability distribution t21 � 1, then performance is
less good because this introduces noise into the synap-

tic matrix, the e�ects of which can be partly amelio-
rated by a high value of the learning rate constant k21:
Consistent with this, the optimal genotypes found
during evolution always selected t21 � 2 (weights initia-
lised to a positive constant), or, if the weights were not
clipped to be r 0 during learning, sometimes t21 was
selected to be 0 (weights initialised to 0).

4.5. Autoassociative networks

The computational problem set was to learn random
binary pattern vectors (of 1s and 0s with sparseness of
0.5, i.e. with half the elements 0 and the other half 1s),
and then to recall the whole pattern when only half of
it was presented. This is called completion, and is an
appropriate test for an autoassociator (Rolls and
Treves, 1998). An additional criterion, inherent in the
way the simulation was run, was to perform retrieval
by using iterated processing in an attractor-like state
of steady memory retrieval like that of continuing
neuronal ®ring in a short-term memory (Rolls and
Treves, 1998). A one-layer autoassociation network
capable of this is shown in Fig. 2, and in our simu-
lations there was a single class of neurons forming an
output layer. There were 10 patterns to be learned,
which loads the network to approximately 70% of its
theoretical capacity (Rolls and Treves, 1998). During
learning, a 100-element pattern was presented as the
external input to force the 100 output neurons to ®re
with that pattern, and synaptic modi®cation was
allowed to occur by whichever learning rule was
selected for that genotype. The ®tness measure was
obtained by providing half (the ®rst 50 elements) of
each pattern to the network, allowing the network to
iterate 10 times (which is su�cient for retrieval in a
normally operating autoassociation memory with dis-
crete time steps) with the input removed after the ®rst
iteration, and measuring the correlation of the output
vector of ®ring rates, ri in Fig. 2 where i = 1±100,
with the original complete pattern that was learned.
This correlation measure ranges from 1.0 for perfect

Table 2

Performance of pattern association networks without clipping of synaptic weightsa

Synaptic weight initialisation option for di�erent values of t

0 1 �q � 0:5) 1 �q � 5:0) 1 �q � 50:0) 2 �q � 0:5) 2 �q � 5:0) 2 �q � 50:0)

Rule 1 0.254 0.261 0.239 0.050 0.255 0.258 0.258

Rule 2 1.000 1.000 0.597 0.023 1.000 1.000 1.000

Rule 3 0.138 0.140 0.132 0.001 0.141 0.135 0.001

Rule 4 1.000 1.000 0.586 0.023 1.000 1.000 1.000

Rule 5 0.260 0.258 0.242 0.051 0.255 0.257 0.257

Rule 6 0.000 0.007 0.007 0.007 0.000 0.000 0.000

Rule 7 0.000 0.007 0.007 0.007 0.000 0.000 0.000

a Conventions as in Table 1.
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recall to 0.0. (In practice, an autoassociator with asso-
ciatively modi®able synapses, random fully distributed
binary patterns, and the sizes and loading of the net-
works used here, can achieve on average a maximum
®tness of approximately 0.996 when half the original
pattern is presented as the recall cue.)

The values of the ®tness measure and selected genes
for a typical run of the simulations are shown in Fig.
8 (In Fig. 8 the genes are normalised in a similar man-
ner to Fig. 6, with the values of the learning rate k11
and weight scaling q11 normalised by 8.74 and 81.10,
respectively.) The ®tness measure is the ®tness of the
best genotype in the population. It is shown that evol-
ution to produce genotypes that specify networks with
optimal performance occurred over a number of gener-
ations. Most runs of the simulation produced networks
with optimal performance. The best networks all had
close to 100 excitatory feedback connections from the
output neurons (class 1) to themselves, which is the
minimal number necessary for optimal performance of
a fully loaded autoassociator given that there are 100
output neurons and that this is the maximum number

allowed. For the run shown in Fig. 8 the sparseness of
the output representation was set to the value of 0.5
by using the sparseness gene set to this value. One
jump in performance occurred between generations 8
and 9 when the learning rule f11 altered from 2 (LTP/
heterosynaptic LTD) to 4 (covariance), the weight
initialisation t11 changed from 1 (uniform probability
distribution) to 2 (constant), and the learning rate k11
decreased from 8.0 to 0.98. All these factors, as dis-
cussed for the pattern associator, would be expected to
improve performance, with the decrease in learning
rate ensuring that the weights did not reach the ¯oor
or ceiling set by the genes v11 and u11: The increase in
®tness from generation 3 to 4 was related to the
change of the learning rule f11 from 3 (LTP with LTD
depending on the existing synaptic weight) to 2 (LTP
with heterosynaptic LTD), to an increase in the num-
ber of connections c11 from 71 to 97, and to a change
of weight initialisation t11 from 3 (gaussian distri-
bution) to 0 (constant value of 0). The increase in ®t-
ness from generation 4 to 5 was related to a change of
the weight initialisation gene t11 from 0 to 1 (a uni-

Fig. 8. Fitness of the best genotype in the autoassociation task as a function of the number of generations, together with the values of selected

genes. The simulation is performed with the ®ring rates assigned binary values of 0 or 1 according to the neuronal activations,with the pro-

portion of neurons ®ring set by the ®ring rate sparsity gene a.
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form random positive distribution which would lift the
weights in general above the ¯oor of 0), with the noise
introduced by the random initialisation being made
small relative to the signal by an increase in the learn-
ing rate k11: The most successful networks (using
synaptic weights clipped to be r0) typically had genes
which speci®ed for the autoassociative feedback con-
nections a learning rule of 4 (covariance) or 2 (LTP
with heterosynaptic LTD); and positive constant initial
synaptic weights �t11 � 2), or if a weight initialisation
with a uniform probability distribution �t11 � 1� was
chosen then a high learning rate k11, to minimise the
synaptic initialisation noise introduced into the autoas-
sociatively learned connections.

To help understand in full detail the actual gene
selections found by the genetic algorithm in the simu-
lations, we simulated the autoassociator with manually
selected gene combinations for the recurrent connec-
tions from class 1 to class 1. In particular, we calcu-
lated the network ®tnesses for particular combinations
of learning rule f11, weight initialisation option t11, and
weight scaling q11: The results of some of these simu-
lations are shown in Tables 3 and 4, both for the nor-
mal situation biologically and in most of the runs
where the weights were clipped to be r0, and when
they were allowed to become negative. (In all cases,

the ®ring rates were r0.) It is shown in Table 3 that
with the weights clipped to be r0, the best perform-
ance (0.99) was obtained with the learning rule f11 set
to 2 (LTP plus heterosynaptic long-term depression),
or to 4 (covariance), provided that the weights were
initialised to a high enough positive constant value
(for the simulations performed with q11 � 5 as indi-
cated in the tables) that when decremented by the
learning rule during learning the weights did not hit
the ¯oor of 0. (If the weights were not clipped to be
r0 during learning, then both these rules were again
the best, but weight initialisation could in addition be
set to zero �t11 � 0� or any constant �t11 � 2�, as
shown in Table 4.) These results are in accord with
what would be predicted (Rolls and Treves, 1998), and
help to show why the genetic algorithm tended to pro-
duce gene combinations which included rule 2 or rule
4 in combination with weight initialisation to a posi-
tive constant su�ciently great to enable the synapses
not to hit the ¯oor of 0. (Without clipping of the
synaptic weights to ber0 during learning, weight initi-
alisation to uniform random values could produce
good performance with rules 2 and 4 provided that the
weights were scaled to low initial values �q11 � 0:5� so
that only low amounts of noise were introduced. The
learning rate was in all cases in the tables set to 1.)

Table 3

Performance of autoassociation networks with clipping of synaptic weights to ber0a

Synaptic weight initialisation option for di�erent values of t

0 1 �q � 0:5) 1 �q � 5:0) 1 �q � 50:0) 2 �q � 0:5) 2 �q � 5:0) 2 �q � 50:0)

Rule 1 0.158 0.152 0.091 0.025 0.154 0.151 0.155

Rule 2 0.240 0.315 0.163 0.008 0.420 0.994 0.994

Rule 3 0.109 0.109 0.108 0.001 0.110 0.108 0.001

Rule 4 0.645 0.745 0.135 0.008 0.924 0.992 0.992

Rule 5 0.102 0.100 0.089 0.025 0.096 0.152 0.147

Rule 6 0.000 0.007 0.007 0.007 0.000 0.000 0.000

Rule 7 0.000 0.000 0.007 0.007 0.000 0.000 0.000

a Conventions as in Table 1.

Table 4

Performance of autoassociation networks without clipping of synaptic weightsa

Synaptic weight initialisation option for di�erent values of t

0 1 �q � 0:5) 1 �q � 5:0) 1 �q � 50:0) 2 �q � 0:5) 2 �q � 5:0) 2 �q � 50:0)

Rule 1 0.145 0.150 0.092 0.025 0.149 0.150 0.147

Rule 2 0.991 0.990 0.146 0.008 0.991 0.992 0.993

Rule 3 0.109 0.108 0.107 0.001 0.109 0.108 0.001

Rule 4 0.992 0.990 0.153 0.008 0.992 0.996 0.991

Rule 5 0.154 0.150 0.092 0.026 0.148 0.152 0.148

Rule 6 0.000 0.007 0.008 0.007 0.000 0.000 0.000

Rule 7 0.000 0.008 0.007 0.008 0.000 0.000 0.000

a Conventions as in Table 1.

E.T. Rolls, S.M. Stringer / Progress in Neurobiology 61 (2000) 557±579574



The Hebbian associative rule without weight decre-
menting f11 � 1 was not chosen for the ®t genotypes
given the maximum ®tness obtainable without weight
decrementing to remove the positive correlation intro-
duced by ®ring rates r0 shown in Table 3. The associ-
ative learning rule 3 envisaged to be useful in
competitive networks was not selected for the success-
ful genotypes in autoassociation, as it produced only
poor maximum ®tness values as shown in Tables 3
and 4.

Some simulation runs were performed in which
instead of using a ®xed value of the gene a1 to set the
sparseness of the output ®ring, a sigmoid activation
function with genetically speci®ed threshold a1 and
slope b1 were allowed to evolve. The part of the sol-
ution space containing good genotypes was very small,
because with the iterative processing performed by an
autoassociation net, any inaccuracy of the threshold
would be greatly multiplied to produce cumulative
error in the level of ®ring of the output neurons. For
this reason, successful solutions were rarely found by
the simulations. We note that in the real brain, feed-
back inhibition using inhibitory interneurons is used to

help control the overall ®ring of a population of neur-
ons, and believe that when these neurons are intro-
duced into such simulations in future work, solutions
will be found regularly with the sigmoid activation
function.

4.6. Competitive networks

The computational problem set was to learn to
place into separate categories 20 binary pattern vectors
each 100 elements long. First, ®ve exemplar patterns
were randomly generated with 50 1s and 50 0s. Then,
for each exemplar, three further patterns were created
by mutating 20 of the bits from 0 to 1 or 1 to 0. This
gave a total of 20 patterns that could be placed in ®ve
similarity categories. There were two classes of neuron.
Class 1 was the input class, consisted of 100 neurons,
and was set to ®re according to which input pattern
was being presented. Class 2 was the output class.
Connections were possible from class 1 to 2, from
class 1 to 1, from class 2 to 1, and from class 2 to 2.
The network shown in Fig. 3, if trained with learning
rule 3 and given a powerful and widespread lateral in-

Fig. 9. Fitness of the best genotype in the competitive network task as a function of the number of generations, together with the values of

selected genes. Evolution led to the choice of learning rule 3 for the best genotype.
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hibition scheme can solve this problem (Rolls and
Treves, 1998). During learning, each 100-element input
pattern was presented to force class 1 neurons to ®re,
then the ®ring rates of the class 2 neurons were calcu-
lated, and then synaptic modi®cation was allowed to
occur by whichever learning rules were selected for
that genotype. However, during learning and testing,
the ®ring rates of neurons in class 2 were initially set
to 0 corresponding to no ®ring before the cue was
applied, and this had the e�ect of eliminating the e�ect
of connections from class 2 to classes 1 and 2. The ®t-
ness measure used assessed how well the competitive
net was able to classify the 20 patterns into their re-
spective ®ve categories. A suitable measure of how clo-
sely two output ®ring rate vectors are aligned with
each other is the cosine of the angle between them;
this measure ranges from 0 (for orthogonal vectors) to
1 (for parallel vectors) (Rolls and Treves, 1998).
Hence, the ®tness measure was set equal to the average
of the cosine of the angle between the output ®ring
rate vectors for patterns from the same category,
minus the average of the cosine of the angle between
the output ®ring rate vectors for patterns from di�er-
ent categories (clipped at zero). Each network was
trained for 20 epochs, where each epoch consisted of
training with every input pattern chosen in sequence.

The values of the ®tness measure and selected genes
for a typical run of the simulation are shown in Fig. 9.
The genes shown are key connection properties from
class 1 to class 2, and are: learning rate k21, number of
connections c21, weight scaling q21, weight initialisation
option t21, and the learning rule f21: (In Fig. 9 the
genes are normalised in a similar manner to Fig. 6,
with the values of the learning rate k21 and weight
scaling q21 normalised by 8.44 and 68.64, respectively.)
The ®tness measure is the ®tness of the best genotype
in the population. This run is for a ®xed value of the
sparseness in class 2, which was set to 0.2. It is shown
that evolution to produce a genotype that speci®es net-
works with good performance occurred over a number
of generations. Runs typically converged to use learn-
ing rules 2 or 3, although learning rule 3 appeared to
o�er the best performance. Learning rule 3 involves
LTP, plus LTD proportional to the existing value of
the synaptic weight. This is the only rule which actu-
ally encourages the synaptic weight vectors of the
di�erent output (class 2) neurons to have a similar and
limited total value. Use of a learning rule such as this
(or explicit normalization of the length of the synaptic
weight vector of each neuron), is advantageous in com-
petitive networks, because it prevents any one neuron
from learning to respond to all the input patterns
(Rolls and Treves, 1998). The fact that this learning
rule was never chosen by the successful genotypes in
the associative nets, but was generally chosen for the
competitive nets, is evidence that the genetic evolution

was leading to appropriate architectures for di�erent
computational problems. Learning rule 0 (no learning)
was never chosen by the successful genotypes, and in
addition we veri®ed that good solutions to the problem
set could not be produced without learning. With
other more regular patterns the actual values of the
synaptic weight vectors produced after learning in the
networks speci®ed by the successful genotypes con-
®rmed that conventional competitive networks operat-
ing as described by Rolls and Treves (1998) were being
produced in the simulations. Another characteristic of
the successful genotypes was that there appeared to be
less selection pressure on c21 the number of connec-
tions to a class 2 from a class 1 neuron, with some
highly ®t nets having relatively low values for c21:
Such diluted connectivity can be useful in competitive
networks, because it helps to ensure that di�erent
input patterns activate di�erent output neurons (Rolls
and Treves, 1998). Low values were never chosen for
the best genotypes in the associative networks, where
full connectivity is advantageous for full capacity. The
fact that partial connectivity was often chosen for the
competitive networks accounts for the fact that these
nets could allow the synaptic weight initialisation to
have a constant positive value. (With full connectivity,
the weight initialisation has to produce di�erent weight
vectors for di�erent neurons, so that the ®rst time a
set of patterns is applied, each pattern produces di�er-
ent ®ring of the output neurons.)

5. Discussion

The simulations described here show that the overall
conception of using genes which control processes of
the type described can, when combinations are
searched through using genetic evolution utilising a
single performance measure, lead to the speci®cation
of neural networks that can solve di�erent compu-
tational problems, each of which requires a di�erent
functional architecture. The actual genes hypothesized
were based on a comparison of the functional neuronal
network architectures of many mammalian brain
regions (see e.g. Rolls and Treves, 1998 for examples
of these), and were well able to specify the architec-
tures described here. However, the research described
is intended as a foundation for further exploration of
exactly which genes are used biologically to specify
real architectures in the mammalian brain which per-
form particular computations. We note in this context
that it may be the case that exhaustive analysis of the
genetic speci®cation of an invertebrate with a small
number of neurons does not reveal the principles
involved in building complex nervous systems and net-
works of the type addressed here. The genetic speci®-
cation for simple nervous systems could be

E.T. Rolls, S.M. Stringer / Progress in Neurobiology 61 (2000) 557±579576



considerably di�erent, with much more genetic speci®-
cation of the properties of particular synapses to pro-
duce a particular more ®xed network in terms both of
which identi®ed neuron is connected to which, and
what the value of the synaptic connection strength
between each neuron is. In contrast, in the approach
taken here, there are not identi®able particular neurons
with particular connections to other identi®able neur-
ons, but instead a speci®cation of the general statistics
of the connectivity, with large numbers of neurons
connecting according to general rules, and the per-
formance of the network being greatly in¯uenced by
learning of the appropriate values of the connection
strengths between neurons based on the co-activity of
neurons, and the nature of the modi®able synaptic
connection between them.

The particular hypotheses about the genes that
could specify the functional architecture of simple net-
works in the brain were shown by the work described
here to be su�cient to specify some di�erent neuronal
network architectures for use in a system that builds
computationally useful architectures using a gene selec-
tion process based on ®tness. The genes hypothesized
may be taken as a guide to the types of genes that
could be used to specify the functional architecture of
real biological nervous systems, but the gene speci®ca-
tion postulated and simulated can be simply revised
based on empirical discoveries about the real genes.
One choice made here was to specify the genes with
respect to the receiving neuron. The reason for this,
rather than speci®cation with respect to the sending
neuron, was that many of the controlling properties of
the network architecture and performance are in the
post-synaptic neuron. Examples of these properties
include the type of post-synaptic receptor (e.g.,
NMDA receptors to specify associatively modi®able
connections), and the cable properties of the postsyn-
aptic neuron. The speci®cation of the receiving neuron
does include the appropriate information about the
sending neuron, in that for example gene clm does
specify (by identi®er m ) the identity of the sending
population. This implies that when a neuron makes an
output connection (through its synapses), the neuron
class of the sending neuron is available (as a chemical
recognition identi®er) at the synaptic terminal. How-
ever, in principle, in terms of actually building a net-
work, it would be possible to have the genetic
speci®ers listed as being properties of the sending neur-
on. Another aspect of the gene speci®ers hypothesized
here is that there was no gene for how many output
connections a class of neurons should make to another
class. One reason for this is that the networks can be
built numerically without such a speci®er, as it is un-
necessary if the total numbers of neurons of two
classes is speci®ed, and the number of connections
received by one class of neuron from the other is speci-

®ed. However, the number of output connections
made to another class of neuron might be speci®ed in
real biological systems, and neuron numbers might
adjust to re¯ect this type of constraint, which is a
possible way to think about cell death during develop-
ment. If there is local output connectivity within a cer-
tain spatial range, this will also act as a factor that
determines the number of output connections made by
neurons, and indeed this does seem a possible gene in
real biological systems. Indeed, in real systems the
single gene specifying the region of connectivity �rlm�
here might be replaced by di�erent spatial genes speci-
fying the extent of the dendrites of the receiving neur-
on, and extent of the axonal arborization for the
outputs.

We emphasise that a number of the genes speci®ed
here for the simulations might be replaced in real bio-
logical systems with several genes operating at a lower
level, or in more detail, to implement the function pro-
posed for each gene speci®ed here. The reason for
selecting the particular genes hypothesized here is that
they serve as a guide to how in principle neuronal net-
works could be speci®ed genetically in complex neural
systems where the functional architecture is being
selected for by genetic evolution. Speci®cation of genes
as operating at the level described in this paper pro-
vides a useful heuristic for investigation by simulation
of how evolution may operate to produce neuronal
networks with particular computational properties.
Once the processes have been investigated and under-
stood with genes operating at the level described here,
subsequent investigations that use genes that are more
and more biologically accurate and detailed would be
facilitated and are envisaged. The approach allows
continual updating of the genotype used in the simu-
lations to help understand the implications of new dis-
coveries in neurobiology.

We also emphasise that the way in which the gen-
etics speci®es the neural network is very di�erent from
that used in some previous approaches, in which there
was a ®xed architecture, and the genes were allowed to
evolve the values of the synaptic weights (Nol® et al.,
1994; Floreano and Mondada, 1994; Lund and Parisi,
1996; Kuwana et al., 1996; Huber et al., 1996). The
approach taken here in contrast is to allow the genes
to specify the functional architecture, including which
classes of neuron are connected to each other, and the
synaptic learning rule involved in each such set of con-
nections. The network is then built according to the
architecture speci®ed genetically, and tested to deter-
mine whether it can learn the appropriate values of the
synaptic weights to solve the problem. The approach
used here thus requires many fewer genes than would
be required to specify actual synaptic weight values,
and moreover allows the individual phenotype to
adapt itself by learning in the particular environment
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in which it ®nds itself. There is thus some adaptability
within the lifetime of the phenotype, which is a great
advantage. The adaptive changes which occur within
the lifetime of the individual can therefore be used for
such processes as using early visual experience to help
shape the visual system; learning by pattern associ-
ation which visual stimuli are actually associated with
primary reinforcers; semantic learning; and even learn-
ing of particular languages, all of which are likely to
take place optimally by specifying a general architec-
ture, and then allowing learning by the individual in
the actual environment it ®nds, which is the approach
taken here.

We now consider the number of genes used in simu-
lations of the type described here, remembering that
biologically several genes might be required to specify
at least some of the genes used in the simulations. The
number of genes for each class of neuron in the simu-
lations is currently 4+ (the number of classes of neur-
on from which the class receives connections �14). In
the brain, if there were on average ®ve classes of neur-
on from which each class of neuron received connec-
tions, this would result in 4� 5� 14 � 74 genes per
class of neuron. If there were on average ®ve classes of
neuron per network, this would yield 370 genes per
network. 100 such networks would require 37,000
genes, though in practice fewer might be needed, as
some parameters might be assigned to be the same for
many classes of neuron in di�erent networks. For
example, the overall functional architecture of the cer-
ebral neocortex appears to follow the same general de-
sign for di�erent architectonic areas (Rolls and Treves,
1998; Braitenberg and Schuz, 1991; Peters and Jones,
1984; Somogyi et al., 1998; Douglas and Martin,
1990), so much of the neocortex may use one generic
network speci®cation, with a few genes used to tweak
the parameters for each di�erent architectonic area.
(An extension of the idea presented in this paper
would allow such a generic speci®cation of the archi-
tecture of an area of the cerebral neocortex, and then
allow genes to connect di�erent areas with the same
generic though locally tweaked architecture.) A factor
working in the opposite direction is the fact that a
single gene taking an integer or real value was used to
specify some of the parameters in the simulation,
whereas biologically several genes might be needed to
represent such a wide range of parameter values with
low, though su�cient, precision as described in Section
4.3.

Although with 100 individuals per generation, and
approximately 64 genes for each genotype (for net-
works with two classes of genes, each connected to
each other as well as to themselves) each with several
at least possible values, the search might be predicted
to be long, in practice the genetic search was often
quite short. Part of the reason for this is that some

genes made a crucial di�erence, for example the gene
specifying the learning rule, and were selected early on
in evolution, usually being present in at least some of
the genotypes in the initial population. Because these
genes had such a dramatic e�ect on ®tness, they were
almost always selected for the next generation, and
successive generations then had to search the smaller
space of the remaining genes only some of which had
a substantial impact on performance. This e�ect can
be seen in Figs. 6±9, which show for the di�erent net-
works examples in the variation in the value of di�er-
ent genes as a function of the generation number.
Some genes, such at that specifying the learning rule,
do indeed often settle down early, and changes in
these genes can sometimes be seen to be re¯ected in
jumps in the ®tness measure. For other genes, where
the impact is less or zero, the values of the genes can
¯uctuate throughout evolution, because they are not
under selection pressure, in that they do not contribute
greatly to ®tness.

Although therefore in some senses the actual evol-
ution investigated here takes place rapidly and appar-
ently quite easily, this is part of the point of this
paper, that is to demonstrate that the particular genes
identi®ed as those which might allow the networks to
be found in di�erent brain areas to be built, and im-
plemented in the simulations, can actually build these
networks, and moreover can do so e�ciently when
using genetic search. However, the networks tested
here are single layer networks, and multilayer net-
works, with correspondingly more parameter combi-
nations to be explored, will doubtless take longer to
evolve in future simulations. Genetic search of the par-
ameter space should then become even more evident as
a good procedure, because of its power in searching
high dimensional spaces with many local optima and
in which the parameters combine non-linearly; because
of its use of a single measure of performance; and
because of its ability to reuse genetic codes still present
in a diverse population but originally developed for a
di�erent purpose. The intention however here is to
specify the principles involved. (In fact, we were on a
number of occasions surprised by the power of the
genetic search when it sometimes found unanticipated
solutions to problems by combining particular genes
originally provided in the genome by us for quite
di�erent anticipated uses.) Of course, there are many
more details of the networks that could be explored by
the existing gene speci®cation, including inhibitory
interneurons. Simulations of this type will not only
enable the evolution and development of more com-
plex multilayer networks to be explored, but will also
enable the utility of the speci®cation of di�erent par-
ameters by di�erent genes to be explored, including
details of where inputs end on dendrites, dendritic bio-
physical properties, and thus eventually networks that
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operate to simulate also the dynamics of the operation
of real neural networks in the brain (Treves, 1993;
Rolls and Treves, 1998; Battaglia and Treves, 1998;
Panzeri et al., 2000).
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