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Abstract The cerebral cortex utilizes spatiotemporal conti-
nuity in the world to help build invariant representations. In
vision, these might be representations of objects. The tempo-
ral continuity typical of objects has been used in an associa-
tive learning rule with a short-term memory trace to help build
invariant object representations. In this paper, we show that
spatial continuity can also provide a basis for helping a sys-
tem to self-organize invariant representations. We introduce a
new learning paradigm “continuous transformation learning”
which operates by mapping spatially similar input patterns
to the same postsynaptic neurons in a competitive learning
system. As the inputs move through the space of possible con-
tinuous transforms (e.g. translation, rotation, etc.), the active
synapses are modified onto the set of postsynaptic neurons.
Because other transforms of the same stimulus overlap with
previously learned exemplars, a common set of postsynaptic
neurons is activated by the new transforms, and learning of
the new active inputs onto the same postsynaptic neurons is
facilitated. We demonstrate that a hierarchical model of corti-
cal processing in the ventral visual system can be trained with
continuous transform learning, and highlight differences in
the learning of invariant representations to those achieved by
trace learning.

1 Introduction

There is now much evidence demonstrating that over succes-
sive stages the visual system develops neurons that respond
with view, size and position (translation) invariance to objects
or faces (Rolls 1992, 2000; Rolls and Deco 2002; Desimone
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1991; Tanaka et al. 1991). For example, it has been shown that
the inferior temporal visual cortex has neurons that respond
to faces and objects with translation (Op de Beeck and Vogels
2000; Kobotake and Tanaka 1994; Ito et al. 1995; Tovee et
al. 1994), size (Rolls and Baylis 1986; Ito et al. 1995), con-
trast (Rolls and Baylis 1986), lighting (Vogels and Biederman
2002), spatial frequency (Rolls et al. 1985, 1987), and view
(Hasselmo et al. 1989; Booth and Rolls 1998) invariance. It
is crucially important that the visual system builds invari-
ant representations, for only then one-trial learning about an
object can generalize usefully to other transforms of the same
object (Rolls 2005; Rolls and Deco 2002). Building invari-
ant representations of objects is a major computational issue,
and the means by which the cerebral cortex solves this prob-
lem is a topic of great interest (Riesenhuber and Poggio 1999;
Biederman 1987; Ullman 1996; Rolls and Deco 2002; Elliffe
et al. 2002).

In this paper we describe a quite general learning prin-
ciple, continuous transformation (CT) learning, that could
be used in several sensory systems to build invariant repre-
sentations. CT learning utilizes spatial continuity of objects
in the world. The system we describe is quite powerful, for
it relies on spatial overlap between stimuli in small regions
of the space, but enables transforms in quite distant parts
of the continuous space to be associated together onto the
same population of postsynaptic neurons. We show how CT
learning could be used in the hierarchical processing that
is a property of cortical architecture, in which key princi-
ples agreed by many investigators (Riesenhuber and Poggio
1999; Fukushima 1980; Wallis and Rolls 1997) include feed-
forward connectivity, local lateral inhibition within a layer to
implement competition, and then some form of associative
learning. Then we show by simulation how it can be used
to build invariant representations in a hierarchical network
model (VisNet) of cortical processing in the ventral visual
system, and show how CT learning differs from but could
complement a different invariance learning principle, trace
learning (Rolls and Milward 2000; Rolls and Stringer 2001;
Wallis and Rolls 1997). Other models with hierarchically
organized competitive networks designed to study neurally
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Fig. 1 Left: Stylised image of the four layer network. Convergence through the network is designed to provide fourth layer neurons with infor-
mation from across the entire input retina. Right: Convergence in the visual system V1: visual cortex area V1; TEO posterior inferior temporal
cortex, TE inferior temporal cortex (IT)

plausible ways of forming invariant representations of stimuli
have been studied by a number of investigators (Riesenhuber
and Poggio 1999; Fukushima 1980).

2 Methods

2.1 The VisNet architecture

The model architecture (VisNet) implemented by Wallis and
Rolls (1997) that is used to investigate the properties of CT
learning in this paper is based on the following: (a) A series
of hierarchical competitive networks with local graded inhi-
bition. (b) Convergent connections to each neuron from a
topologically corresponding region of the preceding layer,
leading to an increase in the receptive field size of neurons
through the visual processing areas. (c) Synaptic plasticity
based on a Hebb-like learning rule. Model simulations which
incorporated these hypotheses with a modified associative
learning rule to incorporate a short-term memory trace of
previous neuronal activity were shown to be capable of pro-
ducing stimulus-selective but translation and view invariant
representations (Rolls and Milward 2000; Rolls and Stringer
2001; Wallis and Rolls 1997).

In this paper, the new CT learning principle in the model
architecture (VisNet) uses only spatial continuity in the in-
put stimuli to drive the Hebbian associative learning with
no temporal trace. In principle, the CT learning mechanism
we describe could operate in various forms of feedforward
neural network, with different forms of associative learning
rule or different ways of implementing competition between
neurons within each layer.

The model consists of a hierarchical series of four lay-
ers of competitive networks, corresponding approximately to
V2, V4, the posterior inferior temporal cortex (TEO in Fig. 1),
and the anterior inferior temporal cortex (TE in Fig. 1), as
shown in Fig. 1. The forward connections to individual cells
are derived from a topologically corresponding region of the
preceding layer, using a Gaussian distribution of connection

probabilities. These distributions are defined by a radius which
will contain approximately 67% of the connections from the
preceding layer. The values used are given in Table 1.

Before stimuli are presented to the network’s input layer
they are pre-processed by a set of input filters which accord
with the general tuning profiles of simple cells in V1. (These
input filters which provide the input to layer 1 of VisNet thus
correspond to V1 in the right part of Fig. 1.) The input fil-
ters used are computed by weighting the difference of two
Gaussians by a third orthogonal Gaussian according to the
following:
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where f is the filter spatial frequency, θ is the filter orienta-
tion, and ρ is the sign of the filter, i.e. ±1. Individual filters
are tuned to spatial frequency (0.0625–0.5 cycles/pixel); ori-
entation (0–135◦ in steps of 45◦); and sign (±1). The number
of layer 1 connections to each spatial frequency filter group
is given in Table 2.

The activation hi of each neuron i in the network is set
equal to a linear sum of the inputs y j from afferent neurons
j weighted by the synaptic weights wi j . That is,

Table 1 Network dimensions showing the number of connections per
neuron and the radius in the preceding layer from which 67% are
received

Dimensions Number of Radius
connections

Layer 4 32 × 32 100 12
Layer 3 32 × 32 100 9
Layer 2 32 × 32 100 6
Layer 1 32 × 32 272 6
Retina 128 × 128 × 32 – –
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Table 2 Layer 1 connectivity

Frequency 0.5 0.25 0.125 0.0625
Number of connections 201 50 13 8

The numbers of connections from each spatial frequency set of filters
are shown
The spatial frequency is in cycles per pixel

hi =
∑

j

wi j y j (2)

where y j is the firing rate of neuron j , and wi j is the strength
of the synapse from neuron j to neuron i .

Within each layer competition is graded rather than win-
ner-take-all, and is implemented in two stages. First, to imple-
ment lateral inhibition the activation h of neurons within a
layer are convolved with a spatial filter, I , where δ controls
the contrast and σ controls the width, and a and b index the
distance away from the centre of the filter

Ia,b =




−δe− a2+b2

σ2 , if a �= 0 or b �= 0,
1 − ∑

a �=0
b �=0

Ia,b, if a = 0 and b = 0. (3)

The lateral inhibition parameters are given in Table 3.
Next, contrast enhancement is applied by means of a sig-

moid activation function

y = f sigmoid(r) = 1

1 + e−2β(r−α)
(4)

where r is the activation (or firing rate) after lateral inhibi-
tion, y is the firing rate after contrast enhancement, and α
and β are the sigmoid threshold and slope, respectively. The
parameters α and β are constant within each layer, although
α is adjusted to control the sparseness of the firing rates. For
example, to set the sparseness to, say, 5%, the threshold is
set to the value of the 95th percentile point of the activations
within the layer. The parameters for the sigmoid activation
function are shown in Table 4.

Table 3 Lateral inhibition parameters

Layer Radius Contrast
σ δ

1 1.38 1.5
2 2.7 1.5
3 4.0 1.6
4 6.0 1.4

Table 4 Sigmoid activation functions

Layer Percentile Slope β

1 99.2 190
2 98 40
3 88 75
4 91 26

2.2 Continuous transformation (CT) learning

Continuous transformation (CT) learning utilizes spatial con-
tinuity inherent in how objects transform in the real world,
combined with associative learning of the feedforward con-
nection weights.

The associative learning is as follows. At each timestep
during training, a transform of an object is presented to the
retina. The transform may take the form of a shift in loca-
tion of the image on the retina, or a change in the angle of
view of an object, etc. With CT learning, in the early stages
of training, the visual stimuli presented to the retina consist
of exemplars of each stimulus that reflect small differences
in its essentially continuous transformations, for example of
position, view, etc. For translation invariance, this means that
the retinal images of a stimulus at successive timesteps nor-
mally overlap so that two successive images have a number
of neurons in the input layer in common. At each timestep,
the activity due to the stimulus on the retina is propagated in
a feedforward fashion through the network, stimulating pat-
terns of activity in the later layers. Once the activity patterns
have been computed in the various layers including competi-
tive lateral inhibition as described above, the synaptic weights
of the forward connections between the layers are updated
by an associative learning rule which enhances the synaptic
weight between two neurons when they are co-firing. There
are a variety of associative rules that could be used. In the
simulations with CT learning described in this paper we use
the Hebb learning rule

δwi j = αyi x j (5)

where δwi j is the increment in the synaptic weight wi j , yi
is the firing rate of the post-synaptic neuron i , x j is the fir-
ing rate of the pre-synaptic neuron j , and α is the learning
rate. To bound the growth of each neuron’s synaptic weight
vector, wi for the i th neuron, its length is normalised at the
end of each timestep during training as in usual competitive
learning (Hertz et al. 1991).

The CT learning process operates as follows, and is illus-
trated in Fig. 2. During the presentation of a visual image at
one position on the retina that activates neurons in the input
layer, a small winning set of neurons in the output layer will
modify (through associative learning) their afferent connec-
tions from the input layer to respond well to that image in
that location. When the same image appears later at nearby
locations, so that there is spatial continuity, the same neu-
rons in the output layer will be activated because some of
the active afferents are the same as when the image was in
the first position. The key point is that if these afferent con-
nections have been strengthened sufficiently while the image
is in the first location, then these connections will be able
to continue to activate the same neurons in the output layer
when the image appears in overlapping nearby locations. The
newly active afferents that have just become active because
of the transform then show associative synaptic modification
onto the same postsynaptic neuron that is active as a result
of the part of the stimulus that overlaps with the previous
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(a) Output layer

Input layer

Stimulus position 1 

Stimulus position 2 

Output layer

Input layer

(b)

Fig. 2 An illustration of how Continuous transformation (CT) learning
would function in a network with a single layer of forward synaptic
connections between an input layer of neurons and an output layer.
Initially the forward synaptic weights are set to random values. a The
initial presentation of a stimulus to the network in position 1. Activation
from the (shaded) active input cells is transmitted through the initially
random forward connections to stimulate the cells in the output layer.
The shaded cell in the output layer wins the competition in that layer.
The weights from the active input cells to the active output neuron are
then strengthened using an associative learning rule. b Shows what hap-
pens after the stimulus is shifted by a small amount to a new partially
overlapping position 2. As some of the active input cells are the same as
those that were active when the stimulus was presented in position 1, the
same output cell is driven by these previously strengthened afferents to
win the competition again. The rightmost shaded input cell activated by
the stimulus in position 2, which was inactive when the stimulus was in
position 1, now has its connection to the active output cell strengthened
(denoted by the dashed line). Thus the same neuron in the output layer
has learned to respond to the two input patterns that have similar vector
elements in common. As can be seen, the process can be continued for
subsequent shifts, provided that a sufficient proportion of input cells
stay active between individual shifts

presentation. Thus the same neurons in the output layer have
learned to respond to inputs that have similar vector elements
in common. We note that the postsynaptic neuron now has
strong connections from both the first and the second trans-
form of the stimulus, and the effects of all transforms remain.
(The weight normalization referred to above that is useful for
competitive learning systems tends to have a weak effect in
making synaptic changes that occur early in the learning rel-
atively less strong than those that occur later, and this was
not a significant factor in any of the simulations described.)
As can be seen in Fig. 2, the process can be continued for
subsequent shifts, provided that a sufficient proportion of
input cells stay active between individual shifts. This whole
process is repeated throughout the network, both horizon-
tally as the image moves on the retina, and hierarchically
up through the network. Over a series of stages, transform
invariant (e.g. location invariant) representations of images
are successfully learned, allowing the network to perform
invariant object recognition. A similar CT learning process
may operate for other kinds of transformation, such as change

in view or size. In this paper we demonstrate CT learning of
view invariant representations.

We show in this paper, with supporting simulations, that
CT learning can learn large numbers of transforms of objects
and does not require any short-term memory trace in the
learning rule (Experiments 1 and 2), requires continuity in
space but not necessarily in time (Experiment 3), can cope
when object transforms are presented in a randomized order
(Experiment 4), and can learn objects with just a few exem-
plar views provided that early layers of the network have
been pretrained to provide locally invariant representations
of features or feature combinations (Experiment 5).

Once limited invariant responses have been learned by the
early layers of the network, CT learning in the higher layers
can operate with larger (less continuous) transformations of
the stimuli between learning updates. This is because, with
invariant responses already learned in the lower layers, a rela-
tively large transformation (e.g. translation) will still activate
many of the same neurons in the lower layers due to their
transform invariant responses. This means the higher layers
will still receive similar inputs before and after the stimulus
transform.

2.3 Trace learning

Continuous transform (CT) learning is compared with an-
other approach to invariance learning, trace learning, in this
paper, and we summarise next the trace learning procedure
developed and analysed previously (Földiák 1991; Rolls 1992;
Rolls and Milward 2000; Rolls and Stringer 2001; Wallis and
Rolls 1997). Trace learning utilises the temporal continuity
of objects in the world (over short time periods) to help the
learning of invariant representations. The concept here is that
on the short time scale, for e.g. a few seconds, the visual in-
put is more likely to be from different transforms of the same
object, rather than from a different object. A theory used to
account for the development of view invariant representations
in the ventral visual system uses this temporal continuity in
a trace learning rule (Rolls and Milward 2000; Rolls and
Stringer 2001; Wallis and Rolls 1997). The trace learning
mechanism relies on associative learning rules, which utilise
a temporal trace of activity in the postsynaptic neuron (Rolls
1992; Földiák 1991). Trace learning encourages neurons to
respond to input patterns which occur close together in time,
which are likely to represent different transforms (views) of
the same object.

The trace learning rule (Rolls 1992; Földiák 1991; Rolls
and Milward 2000; Wallis and Rolls 1997) encourages neu-
rons to develop invariant responses to input patterns that
tended to occur close together in time, because these are likely
to be from the same object. The particular rule used (see Rolls
and Milward 2000) was
δw j = α ȳτ−1xτ

j (6)

where the trace ȳτ is updated according to

ȳτ = (1 − η)yτ + η ȳτ−1 (7)
and we have the following definitions
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x j : j th input to the neuron. y: Output from the neuron.
ȳτ : Trace value of the output α: Learning rate. Annealed

of the neuron at time step τ . to zero.
w j : Synaptic weight between η: Trace value. The optimal

j th input and the neuron. value varies with
presentation sequence length.

The parameter η may be set anywhere in the interval [0,
1], and for the simulations described here η was set to 0.8. A
discussion of the good performance of this rule, and its rela-
tion to other versions of trace learning rules, are provided by
Rolls and Milward (2000) and Rolls and Stringer (2001).

The CT learning procedure described above has two ma-
jor differences from trace learning. Firstly, the visual stimuli
presented to the retina must transform continuously, that is
there must be considerable similarity in the neurons in layer
2 activated in the competitive process by close exemplars in
layer 1. Secondly, in CT learning the synaptic weights are
updated by an associative learning rule without a temporal
trace of neuronal activity. Thus, without the need for a tem-
poral trace of neuronal activity, different retinal transforms
of an object become associated with a single set of invariant
cells in the upper layers. We also argue that CT learning can
complement trace learning, since trace but not CT learning
can associate completely different retinal images that tend to
occur close together in time.

2.4 Simulations: stimuli

The stimuli used to train the networks were images of contin-
uously rotating 3D objects. The objects were created using
OpenGL, which gives a maximum of control over all stim-
ulus parameters. In this way it was possible to fine-tune the
amount by which each stimulus was rotated between views
of the objects. OpenGL builds a 3D representation of the
objects, and then is able to project different views onto a
2D image. Lighting was mainly ambient with a diffuse light
source added to allow different surfaces to be shown with
different intensities as illustrated in Fig. 3, which illustrates
the two objects used, a cube and a tetrahedron, rotating with a
step size of 18◦. For all experiments the stimuli were rotated
round their vertical axis over a range of 180◦ (which is suffi-
cient to provide all of the different views of these objects due
to their rotational symmetry). In the experiments described
here just two stimuli were used, as these are sufficient to
demonstrate some of the major properties of CT learning.
However, further investigations have already shown that CT
learning can operate with larger numbers of objects in the
training set.

2.5 Simulations: training and test procedure

To train the network each stimulus is presented to the net-
work in a sequence of different transforms (e.g. views). At
each presentation the activation of individual neurons is cal-
culated, then their firing rates are calculated, and then the syn-
aptic weights are updated. The presentation of all the stimuli

Fig. 3 Views of the two objects used in the simulations, (top) a cube,
and (bottom) a tetrahedron. The network was exposed to views of rota-
tions around the vertical axis with variable step sizes between the views
(18◦ in this figure)

across all transforms constitutes 1 epoch of training. In this
manner the network is trained one layer at a time starting
with layer 1 and finishing with layer 4. In all the investi-
gations described here, the numbers of training epochs for
layers 1, 2, 3 and 4 were 50, 100, 100 and 75, respectively. In
each epoch all training patterns, i.e. all views of each object,
were presented. The learning rates α in Eqs. 6 and 5 for layers
1, 2, 3 and 4 were 0.09, 0.067, 0.05 and 0.04, respectively.

Two measures of performance were used to assess the
ability of the output layer of the network to develop neurons
that are able to respond with view invariance to individual
stimuli or objects (see Rolls and Milward 2000). A single
cell information measure was applied to individual cells in
layer 4 and measures how much information is available from
the response of a single cell about which stimulus was shown
independently of view.

The measure was the stimulus-specific information or
surprise, I (s, R), which is the amount of information the
set of responses, R, has about a specific stimulus, s. (The
mutual information between the whole set of stimuli S and
of responses R is the average across stimuli of this stimulus-
specific information.) (Note that r is an individual response
from the set of responses R.)

I (s, R) =
∑
r∈R

P(r |s) log2
P(r |s)
P(r)

(8)
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The calculation procedure was identical to that described
by Rolls et al. (1997b) with the following exceptions. First, no
correction was made for the limited number of trials because,
in VisNet, each measurement of a response is exact, with no
variation due to sampling on different trials. Second, the bin-
ning procedure was to use equispaced rather than equipop-
ulated bins. This small modification was useful because the
data provided by VisNet can produce perfectly discriminating
responses with little trial-to-trial variability. Because the cells
in VisNet can have bimodally distributed responses, equipop-
ulated bins could fail to perfectly separate the two modes.
(This is because one of the equipopulated bins might contain
responses from both of the modes.) The number of bins used
was equal to or less than the number of trials per stimulus,
that is for VisNet the number of positions on the retina (Rolls
et al. 1997b). Because VisNet operates as a form of com-
petitive net to perform categorisation of the inputs received,
good performance of a neuron will be characterised by large
responses to one or a few stimuli regardless of their position
on the retina (or other transform), and small responses to the
other stimuli. We are thus interested in the maximum amount
of information that a neuron provides about any of the stim-
uli, rather than the average amount of information it conveys
about the whole set S of stimuli (known as the mutual infor-
mation). Thus for each cell the performance measure was
the maximum amount of information a cell conveyed about
any one stimulus (with a check, in practice always satisfied,
that the cell had a large response to that stimulus, as a large
response is what a correctly operating competitive net should
produce to an identified category). In many of the graphs in
this paper, the amount of information each of the cells in layer
4 had about any stimulus is shown.

A multiple cell information measure, the average amount
of information that is obtained about which stimulus was
shown from a single presentation of a stimulus from the re-
sponses of all the cells, enabled measurement of whether
across a population of cells information about every object
in the set was provided. Procedures for calculating the multi-
ple cell information measure are given by Rolls et al. (1997a)
and Rolls and Milward (2000). The multiple cell information
measure is the mutual information I (S, R), i.e. the average
amount of information that is obtained from a single pre-
sentation of a stimulus about the set of stimuli S from the
responses of all the cells. For multiple cell analysis, the set
of responses, R, consists of response vectors comprised by
the responses from each cell.

Ideally, we would like to calculate

I (S, R) =
∑
s∈S

P(s)I (s, R) (9)

However, the information cannot be measured directly
from the probability table P(r, s) embodying the relationship
between a stimulus s and the response rate vector r provided
by the firing of the set of neurons to a presentation of that
stimulus. (Note that ‘stimulus’ refers to an individual object
that can occur with different transforms, e.g. translation or
size, see Wallis & Rolls, 1997). This is because the dimen-
sionality of the response vectors is too large to be adequately

sampled by trials. Therefore a decoding procedure is used,
in which the stimulus s′ that gave rise to the particular firing
rate response vector on each trial is estimated. This involves
for example maximum likelihood estimation or dot product
decoding. For example, given a response vector r to a sin-
gle presentation of a stimulus, its similarity to the average
response vector of each neuron to each stimulus is used to
estimate using a dot product comparison which stimulus was
shown. The probabilities of it being each of the stimuli can
be estimated in this way. Details are provided by Rolls et al.
(1997a). A probability table is then constructed of the real
stimuli s and the decoded stimuli s′. From this probability
table, the mutual information is calculated as

I (S, S′) =
∑
s,s′

P(s, s′) log2
P(s, s′)

P(s)P(s′)
(10)

In the experiments presented later, the multiple cell infor-
mation was calculated from only a small subset of the output
cells. There were five cells selected for each stimulus, and
these were the five cells which gave the highest single cell
information values for that stimulus.

We demonstrate the ability of the new CT learning algo-
rithm to train the network to recognise two different 3D stim-
uli, a cube and tetrahedron, as they are rotated through 180◦.
The maximum single cell information measure is:

Maximum single cell information

= log2 (Number of stimuli) (11)

where in this case the number of stimuli is 2. This gives a
maximum single cell information measure of 1 bit.

3 Results: VisNet simulations

3.1 Experiment 1: demonstration of CT Learning

Experiment 1 provides a demonstration of CT learning. The
network was trained with the cube and the tetrahedron using
the Hebb rule (5). During training, the cube and the tetrahe-
dron were presented to the network by rotating them contin-
uously round a vertical axis as shown in Fig. 3 in an anti-
clockwise (from above) direction through 180◦ in 1◦ step
sizes. This continuous change in viewing angle with small
step sizes allows the CT learning effect to work.

Numerical results for Experiment 1 are given in Fig. 4,
which shows typical neuron response profiles after training.
Figure 4a shows the firing rate response profile of a 4th layer
neuron (at coordinates 10,10) to the cube and tetrahedron
stimuli as they are rotated through 180◦. This neuron has
learned to respond to the cube in all viewing angles, and does
not respond to the tetrahedron from any view. Therefore, this
neuron has learned complete view invariance.

Figure 4b shows the firing rate response profiles of two
fourth layer cells which have learned to respond to the tet-
rahedron. The plot on the left shows the response profile of
cell (22,13), which has learned to respond to the tetrahe-
dron over a central region of views covering approximately
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Fig. 4 Experiment 1: Demonstration of CT learning. During training of the network using the Hebb rule Eq. 5, the cube and the tetrahedron are
presented to the network by rotating them continuously about a vertical axis in an anticlockwise direction (viewed from above) through 180◦ in
1◦ step sizes. a The firing rate response profile of a fourth layer neuron (at coordinates 10,10) to the cube and tetrahedron stimuli as they are
rotated through 180◦. This cell has learned to respond to the cube in all viewing angles, but does not respond to the tetrahedron from any view. b
The firing rate response profiles of two fourth layer cells that have learned to respond to the tetrahedron. The plot on the left shows the response
profile of cell (22,13), which has learned to respond to the tetrahedron over a central region of views covering approximately 65–140◦. The plot
on the right shows the response profile of cell (14,17), which has learned to respond to the tetrahedron over two regions covering approximately
0–65 and 165–180◦. c The view of the tetrahedron at 65◦, with an arrow pointing to the new face that has just come into view

65–140◦. The plot on the right shows the response profile
of cell (14,17), which has learned to respond to the tetra-
hedron over two extremal regions covering approximately
0–65◦ and 165–180◦, where the view at 180◦ is identical to
the view at 0◦.

The responses of these two cells appear to cover disjoint
subregions of the viewing space that may be defined by the
specific surfaces currently in view. For example, note that
cell (14,17) fires from 0 to 65◦ where it stops firing, while
cell (22,13) begins firing at 65◦ and continues firing until
about 140◦. The change at 65◦, marked by a vertical arrow,
occurs when a new face comes into view. Figure 4c shows

the view of the tetrahedron at 65◦, with an arrow pointing
to the new face that has just come into view. Interestingly,
this face remains in view until just after the viewing angle
reaches 140◦, at which point cell (22,13) ceases to fire. For
different neurons that responded to the tetrahedron, the dis-
continuities at which their firing changed tended to be close
to (though not typically exactly at) the views at which differ-
ent surfaces went out of and came into view, i.e. where there
were catastrophic changes (see e.g. Koenderink 1990) in the
images with view. This is of interest, for it is consistent with
the hypothesis that CT learning operates well across con-
tinuous or metric (see Biederman 1987) changes in the view
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properties, but performs less well across large discontinuities
in images.

3.2 Experiment 2: effects of varying the step size between
successive viewing angles during training – comparison
between CT learning and trace learning

The mechanism of CT learning illustrated in Fig. 2 requires
a large overlap in the input patterns which represent nearby
transforms of a stimulus. The implication is that CT learning
will work with small differences between nearby transforms
(e.g. with small changes in view), but will fail when these
differences become large. To investigate this quantitatively,
we performed Experiment 2 in which we investigated how the
change in angle between successive views affected the ability
of the network to learn invariant responses to the objects. The
performance of networks trained by the Hebb learning rule,
and by trace rule learning, was compared. We note that trace
rule learning is predicted not to necessarily require similar-
ity between successive inputs, as its learning principle is to
associate together stimuli that occur close together in time
on the basis that in the real world these stimuli will tend to
be different transforms of the same object.

Simulations were performed either using the Hebb rule
(5) or using the trace rule (6). During training, the cube and
the tetrahedron were presented to the network by rotating
them continuously counter-clockwise from above through
180◦ as illustrated in Fig. 3. For each simulation, the step
sizes between successive views were set to one of the fol-
lowing values: 1, 2, 9 and 36◦.

Numerical results for Experiment 2 are given in Fig. 5.
For Experiment 2 we make use of information measures in
order to facilitate the comparison of network performance
with the Hebb and trace learning rules. In the left column are
the single cell information measures for all top (fourth) layer
neurons ranked in order of their invariance to the stimuli.
Each row corresponds to a different step size, i.e. 1, 2, 9 and
36◦. In the right column are shown the multiple cell infor-
mation measures. Each plot compares network performance
with the Hebb rule (solid line), trace rule (dashed line), and
random weights with no learning (dotted line). The simula-
tions with random weights provide a baseline performance
with which to compare the performance of the Hebb and trace
learning rules.

With a 1◦ step size (top row of Fig. 5), the single cell
information plot shows that the Hebb rule has enabled a num-
ber of fourth layer cells to reach a maximal performance of
1 bit. The multiple cell information measures also reach a
maximal performance of 1 bit, confirming that an ensem-
ble of layer 4 neurons provide for perfect discrimination be-
tween the objects. This is a demonstration of the CT learn-
ing mechanism operating for small step sizes between trans-
forms.

Interestingly, the trace rule (6) also performs well with a
1◦ step size (in Fig. 5 the results for the trace and Hebb rule
in the multiple cell information overlap completely). This is

because, with a small step size between successive stimulus
transforms, the CT effect dominates when using the trace
rule. In this case, the trace rule builds view invariance into
the network by a form of CT learning. In fact, the trace rule
has a Hebbian and a trace component (and is fully Hebbian
if η = 0, with a value of 0.8 used in the simulations). During
learning, with successively presented transforms of the same
object, the CT effect tends to keep neurons in higher layers
active across successive transforms of the object, and this in
turn leads to high trace values ȳτ for the active neurons in
the higher layers by virtue of Eq. 7. The trace rule (6) can
then potentially help to associate the successive views of the
same object onto the same active neurons in the higher layers,
and in this way potentially contributes usefully to the devel-
opment of transform invariance in the network. The trace
learning rule under conditions in which close transforms of
the same object are presented successively can thus help CT
learning, for example when the step size is larger, for exam-
ple 2◦ in Fig. 5, row 2. If the different transforms of the same
object were not presented close in time, then the trace rule is
predicted to impair the learning, and this prediction is tested
in Experiment 3.

As the differences between transforms get larger, the
overlap of activation produced by the closest transforms will
become smaller and lead to a breakdown of the CT effect.
This is illustrated in Fig. 5, row 2, where with a step size of
2◦, the single cell information measures show that the perfor-
mance with both the Hebb and trace rules is degraded, with no
cells reaching the maximum single cell information level of 1
bit. This is because the changes between successive stimulus
views are too great to support the CT learning mechanism.
The multiple cell information measure in row 2 shows that
the trace can encourage neurons to respond to different trans-
forms in this successive presentation paradigm, and can thus
produce better performance across a population of neurons
than the Hebb rule.

As the step size between views increases from 9 to 36◦
(rows 3 and 4 of Fig. 5), the performance of the Hebb rule
remains poor, that is the CT effect does not work well with
these larger differences between closest transforms of the
same object. Further, the single and multiple cell informa-
tion measures reveal that the performance of the trace rule
improves and outperforms the Hebb rule for the same reason
as with 2◦ steps shown in row 2. In particular, with a step size
of 36◦, the trace rule enables a number of cells to reach the
maximal single cell information performance of 1 bit. Sim-
ilarly, the multiple cell information measures also reach the
maximum performance of 1 bit. The reason for the superior
performance of the trace rule is that with a large step size of
36◦, there are only 180/36 = 5 views of each stimulus for the
network to learn invariantly. With only a few views to learn,
the trace learning rule (6) is able to support genuine trace
learning dynamics, in which neurons in higher layers rely on
the temporally traced values of their firing rate in order to
learn to respond invariantly to clusters of patterns that tend
to occur close together in time, and in this case are different
transforms of the same object.
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Fig. 5 Experiment 2: Effects of varying the step size between successive viewing angles during training. Simulations were performed either using
the Hebb rule Eq 5 or using the trace rule Eq 6. During training, the cube and the tetrahedron were presented to the network by rotating them
continuously in an anticlockwise direction through 180◦. For each simulation, the step sizes between successive views were set to one of the
following values: 1, 2, 9 and 36◦. In the left column are the single cell information measures for all top (fourth) layer neurons ranked in order of
their invariance to the stimuli. In the right column are shown the multiple cell information measures. Each row corresponds to a different step
size, i.e. 1, 2, 9 and 36◦. Each plot compares network performance with the Hebb rule (solid line), trace rule (dashed line), and random weights
with no learning (dotted line)

The overall picture that emerges from these graphs is that
the CT effect can drive performance at small step sizes (e.g.
1◦ in these simulations) for Hebb rule as well as trace rule

learning. With larger rotations between views, the CT effect
breaks down as few cells are activated after the competition
by the two closest transforms of the same object, so that Hebb
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Fig. 6 Experiment 3: Effects of interleaving views of different stimuli during training: comparison between CT learning and trace learning. The
network was trained on interleaved views of the cube and tetrahedron over a rotation of 180◦, i.e. the first view of the cube was followed by the
first view of the tetrahedron, followed by the second view of the cube, followed by the second view of the tetrahedron, and so on. Between views
objects were rotated by 1◦. On the left are the single cell information measures for all top (fourth) layer neurons ranked in order of their invariance
to the stimuli. On the right are shown the multiple cell information measures. Each plot compares network performance with the Hebb rule (solid
line), trace rule (dashed line), and random weights with no learning (dotted line). The single and multiple cell information plots show that the
Hebb rule is able to support CT learning, which leads to the development of cells that are able to distinguish the cube and tetrahedron invariant
of rotation. In contrast, the trace rule fails to develop invariant cells when the stimuli are interleaved during training

learning cannot contribute to invariant responses. The trace
learning rule, on the other hand, improves performance with
large step sizes and few views due to genuine trace learning
dynamics.

3.3 Experiment 3: effects of interleaving views of different
stimuli during training – comparison between CT learning
and trace learning

Trace learning relies on temporal continuity between trans-
forms of the same object in the visual environment. CT learn-
ing relies on spatial continuity between transforms of the
same object in the visual environment. However, with CT
learning, one could make the prediction that the spatially
closest views need not be presented close together in time, as
can be seen from Fig. 2. In Experiment 3 we test the predic-
tion by training with temporally interleaved (i.e. alternated)
transforms of different objects. It could be a useful property
of the CT learning process that it does not require temporal
continuity, as one could imagine a visual scenario in which if
there are frequent saccades between different objects, tempo-
ral continuity and thus trace learning might be compromised.

In Experiment 3, the cube and the tetrahedron were again
rotated over 180◦ with 1◦ rotations between individual views,
but in contrast to the previous experiments, the different trans-
forms of the two objects were not shown successively for one
object and then the other, but were interleaved. (The first view
of the cube was followed by the first view of the tetrahedron,
followed by the second view of the cube, followed by the
second view of the tetrahedron, and so on.)

Numerical results with interleaved training are shown in
Fig. 6. The single cell information plot shows that the Hebb
rule (5) (solid line) has enabled a number of fourth layer cells
to reach a maximal performance of 1 bit. The multiple cell
information measures also reach a maximal performance of
1 bit. The Hebb rule is able to support CT learning, which
leads to the development of a number of cells that are able to

distinguish the cube and tetrahedron invariantly with respect
to rotation. Whenever the network is exposed to a new view
of a stimulus, even if this is after another object has been
shown, there is enough similarity in the input pattern to pre-
viously seen views of the first object to be able to activate
the same neurons in the higher layers, and this allows these
higher layer neurons to learn to respond to the new transform
of the first object with the associative Hebb rule. In addition,
the difference in features between the two objects seems to be
sufficient for the CT effect to dissociate the two objects when
shown a set of closely spaced views of each object. That is, the
system self-organizes to form a useful representation based
just on close similarities of views within an object, learning
to associate a new transform of an object with a previously
learned transform because the two transforms are sufficiently
similar so that the same post-synaptic neuron is activated by
both transforms. At the same time, a different object must
have sufficiently different views that they are not associated
with the views of the first object.

With the trace rule (6) (dashed line), the single and mul-
tiple cell information measures are very low. In contrast to
the Hebb rule, the trace rule cannot cope with interleaving
the stimulus views. This is because the trace rule associates
input images which tend to occur close together in time, and
thus interleaving the stimulus views would tend to lead to
successively shown views of the cube and tetrahedron being
associated together.

3.4 Experiment 4: effects of randomising the order in which
different views of each stimulus are shown during learning

In the real world, an object might not rotate continuously
through all of its transforms each time it is seen. For exam-
ple, in the real world there might be discontinuous segments
of transforms in which the different segments are seen in a
random order. If an object was first shown rotating through
a 30◦ segment, and then the same object was shown rotating
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Fig. 7 Experiment 4: Effects of randomising the order in which different views of each stimulus are shown during learning. In this experiment the
full set of transformations was divided into six blocks of 30◦ for each object. Then the network was trained on these blocks presented in random
order. The transformations within each block were shown continuously. In the left graph are the single cell information measures for all top
(fourth) layer neurons ranked in order of their invariance to the stimuli. In the right graph are shown the multiple cell information measures. Each
plot compares network performance with the Hebb rule (solid line), and random weights with no learning (dotted line). These results demonstrate
that, in principle, CT learning can still occur with a randomised ordering of stimulus views during training

through another 30◦ segment (chosen from the set of six 30◦
blocks that are possible for each object), then different neu-
rons might respond to different trial blocks of the same object
early on in the training. For example, if 30–60◦ for object 1
was followed by 0–30◦ for object 1, then separate neurons in
higher layers might respond to the transforms within each of
these trial blocks. However, after many training epochs, by
chance the 0–30◦ trial block might be followed by the 30–
60◦ trial block, and this might enable CT learning to make
the neurons that respond to trial block 1 learn to respond
to trial block 2 of the same object, etc., by remapping the
representations for trial block 2 onto the neurons activated
by trial block 1. We tested this in Experiment 4. This is an
important question, because one might encounter an object
from a particular range of viewing angles on one occasion
and only later encounter the same object from another range
of viewing angles.

For Experiment 4, the views of each object were split up
into six blocks. Within each block, the rotation was shown
continuously in thirty 1◦ steps. However, the presentation
order of the blocks within and between objects was rando-
mised. As in previous simulations, the number of training
epochs for the different layers were 50, 100, 100 and 75,
respectively.

The results are shown in Fig. 7, where the learning uses
the Hebb rule. The single cell information plot shows that
the Hebb rule (5) has enabled a number of fourth layer cells
to reach a maximal performance of 1 bit. The multiple cell
information measures also reach a maximal performance of
1 bit. These results confirm that the Hebb rule can support
CT learning and the development of transform invariance in
the network, even when the presentation order of the stim-
ulus views is randomised within blocks. In the simulations
for Experiment 4 the learning rates were retuned to 0.0004,
0.001, 0.001, 0.001 in layers 1, 2, 3 and 4, respectively, to
improve performance.

These results demonstrate that, in principle, CT learning
can still occur with a randomised block ordering of stimulus
views during training. This process works by remapping the
output representations for different trial blocks, until all of

the trial blocks for an object settle on a single output repre-
sentation over a number of training epochs.

3.5 Experiment 5: neurons in the lower layers, which
develop invariant responses to simple features during early
visual experience, can help higher layers of the network
to generalise to novel stimulus views

In the above experiments, the Hebb rule supported CT learn-
ing only when the 180◦ view space was covered by many
closely spaced views during training. For example, in Exper-
iment 2, the Hebb rule developed transform invariant cells
when the step size was only 1◦, but failed to produce trans-
form invariance when the step size was increased to 2◦ or
larger. This reliance on a large number of closely spaced
transforms during training in order to build invariance is a
major limitation. The primate visual system, however, can
learn to recognise objects invariantly from only a few canon-
ical views.

In Experiment 5 we tested the hypothesis that the later
layers of the network need only be trained on a small num-
ber of quite different canonical views, as long as the early
layers have been pretrained during early visual experience to
develop a limited amount of invariance to low-level stimu-
lus features. If the neurons in the early layers have learned
to respond invariantly to parts of objects with some limited
transform (view) invariance, then the later layers of the net-
work should be able to generalise to novel stimulus views
after training on a limited set of canonical stimulus trans-
forms. This has been shown to be possible with trace learning
(Stringer and Rolls 2002), and is tested now for CT learning.

In Experiment 5, the first two layers were trained on a
full set of 180 transforms with 1◦ rotations between trans-
forms. Next, in a separate training session, layers 3 and 4
were trained on five non-overlapping canonical views with a
step size of 36◦ rotation between transforms. After these two
phases of training, the network was then tested on a full set
of stimulus transforms with a step size of 1◦, i.e. the stimuli
were presented during testing at all 180 views.
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Fig. 8 Experiment 5: Neurons in the lower layers, which develop invariant responses to simple features during early visual experience, can help
higher layers of the network to generalise to novel stimulus views. In this simulation the first two layers were trained on a full set of 180 transforms
with 1◦ rotations between transforms. Next, in a separate training session, layers 3 and 4 were trained on five canonical views with a step size
of 36◦ rotation between transforms. After these two phases of training, the network was then tested on a full set of stimulus transforms with a
step size of 1◦, i.e. the stimuli were presented during testing at all 180 views. Top row the single and multiple cell information plots. Each plot
compares network performance with the Hebb rule (solid line), and random weights with no learning (dotted line). Even though layers 3 and 4 had
not been exposed to 97% of the views they were tested on, the network achieves good invariance in both single cell and multiple cell information
plots as compared to the untrained network condition (dotted line). Bottom row the firing rates of two fourth layer neurons as a function of the
180 test views. Even though layers 3 and 4 had been trained on only five views, these neurons generalised to many different views of the objects
to which they responded, which were the cube for the neuron on the left, and the tetrahedron for the neuron on the right

Numerical results for neurons in the output (fourth) layer
of the network are shown in Fig. 8. Even though layers 3 and
4 had not been exposed to 97% of the views they were tested
on, the network achieves good invariance in both single cell
and multiple cell information plots as compared to the un-
trained network condition (dotted line). The performance in
fact is as good as when training is performed on all 180 loca-
tions for layers 1–4, as is illustrated in the top row of Fig. 5.
This result is further illustrated in the lower part of Fig. 8
by the firing rates of two single cells in layer 4 to the 180
test views after layers 3 and 4 had been trained only on five
views at 0, 36, 72, 108, and 144◦. Perfect generalisation to all
views is shown for the neuron illustrated which responded to
a cube, even though the training of layers 3 and 4 had been at
only five views. Generalisation to different views for the neu-
ron illustrated in Fig. 8 which responded to the tetrahedron
was as good as that shown in Fig. 4 for Experiment 1 when
training of all layers was for all 180 views. These results can
be attributed to the fact that training the first two layers on a
full set of stimuli has enabled the network to create neurons
in layer 2 that generalise within part of the rotation space
of an object, leaving layers 3 and 4 for neurons to associ-
ate together the different subregions of the rotation space,

and also perhaps feature combinations derived from earlier
layers.

In order to confirm that training of layers 3 and 4 on the
five canonical views was indeed responsible for developing
neurons in the fourth layer with invariance to the full set of
180 views with a step size of 1◦, we performed the following
comparison. We determined whether the invariance devel-
oped in layer 2 during initial training of layers 1 and 2 on the
full set of 180 views was less than that found in layer 4 after
training layers 3 and 4 on five views (which is illustrated in
Fig. 8). We were able to confirm that the view invariance for
cells in the second layer shown in Fig. 9 was much less than
that in layer 4. The single cell information measures for layer
2 are not as good as those for layer 4. These results confirm
that the training of layers 3 and 4 on the five canonical views
was indeed responsible for developing many neurons in the
fourth layer with invariance to the full set of 180 views.

4 Discussion

Continuous transformation (CT) learning is a new algorithm
for unsupervised training, which relies on continual synap-
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Fig. 9 Experiment 5: Neurons in the lower layers, which develop invariant responses to simple features during early visual experience, can help
higher layers of the network to generalize to novel stimulus views. Information measures for the neurons in the second layer of the network are
shown. The neurons in the second layer have been trained and tested on the full set of stimulus transforms with a step size of 1◦, i.e. the stimuli
were presented during testing at all 180 views. In the left graph are the single cell information measures for all second layer neurons ranked in
order of their invariance to the stimuli. In the right graph are shown the multiple cell information measures for the second layer cells. Each plot
compares network performance with the Hebb rule (solid line), and random weights with no learning (dotted line). The single cell information
measures are very low

tic modification of the feedforward inter-layer connection
weights using an associative (e.g. Hebbian) learning rule dur-
ing continuous transformation (e.g. translation, rotation, etc.)
of the visual stimulus. The aspect in which continuity is im-
plied by CT learning is that adjacent transforms in the space
of transforms must be sufficiently close so that the same post-
synaptic neuron in the next layer is activated by both trans-
forms after learning to at least one of the transforms has
occurred. The condition for this to occur is that the over-
lap between the two input vectors for two close transforms
must be high, so that after the post-synaptic neuron has been
made to fire by the first transform, and Hebbian learning has
occurred to enhance the synapses from all the active inputs
on to that neuron, then the second transform will activate the
same output neuron through its shared strengthened synapses
with the first transform. At the same time, the overlap with
the closest exemplar of a different object must be sufficiently
low so that the second object does not produce firing in the
same second layer neuron.

Once limited invariant responses have been learned by the
early layers of the network, CT learning in the higher layers
can operate with larger (less continuous) transformations of
the stimuli between learning updates. This is because, with
invariant responses already learned in the lower layers, a rela-
tively large transformation (e.g. translation) will still activate
many of the same neurons in the lower layers due to their
transform invariant responses. This means the higher layers
will still receive similar inputs before and after the stimulus
transform.

Continuous transformation (CT) learning is biologically
plausible in that it requires a standard Hebb associative learn-
ing rule, coupled with a process such as heterosynaptic long-
term synaptic depression which has the effect of tending to
normalise the synaptic weights on each neuron, which is nec-
essary in competitive learning systems (Hertz et al. 1991;
Rolls and Deco 2002). Further, CT learning can in principle
learn an invariant representation from a single training epoch
(i.e. one presentation of each view of each object).

It is interesting to compare invariant learning with the CT
and trace learning mechanisms. CT learning operates well
with small steps between the input stimuli (see Fig. 5, top
row). Trace rule learning also operates well with this small
step size, and this can be attributed mainly to the CT ef-
fect (see Fig. 5). As the step size is increased, the invariance
becomes less good for both the Hebb and trace rules (see
Fig. 5). The reason for this deterioration in performance for
the CT effect is that the closest transforms become too dis-
tant in terms of their overlap to activate the same higher layer
neuron. The reason for the poor performance with step sizes
of 2◦ for the trace learning effect is that there are too many
transforms to be associated together by a temporal trace (and
CT effects do not operate at this scale). Interestingly, as the
transforms become even more different (e.g. 9 and 36◦ in
Fig. 5), the trace rule performance increases, as it can asso-
ciate together even quite different views as long as they are
temporally associated, and as long as there are not too many
transforms to be associated together. In a sense, a combina-
tion of the two learning processes would be useful. If for each
object there is a set of closely spaced transforms, CT learning
can provide usefully invariant representations for these. On
the other hand, if these spatially similar ranges of views are
separated by major discontinuities, such as occur with cata-
strophically different views of 3D objects as new faces come
into view (Koenderink 1990) (such as the inside of a jug or
the other side of a card), then trace learning can associate to-
gether the different catastrophically different views. It would
be very interesting to explore this issue further.

Continuous transformation (CT) learning does not re-
quire the stimulus transforms to occur in temporal succes-
sion (as shown in Experiment 3 in which interleaved views
of different stimuli were used during training). In fact, even if
visual fixation moves rapidly and randomly between different
views of different objects or faces by saccades, CT learning
will still develop invariant representations of the individual
stimuli. Trace learning will not learn invariance if under some
circumstances different objects are seen in close temporal
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proximity as frequently as different transforms of the same
object.

An interesting aspect of CT learning is that it greatly
increases the number of transforms of a given object that can
be learned. This is shown by the better performance with 1◦
than with 2◦ steps in Fig. 5. CT learning is of course implied
with the trace learning rule with these small step sizes. The
implication is that applications with the trace learning rule
might benefit from small step sizes. At the same time, the
trace learning rule would be preferred to the Hebb rule under
some circumstances, because the trace rule can cope with cat-
astrophic view changes. Thus training with the trace rule, and
small step sizes, may be an interesting area for further capac-
ity investigations, provided of course that the system is shown
different transforms of each object with some temporal con-
tinuity present within an object. Trace rule learning can of
course operate well if there are just short sequences of differ-
ent views of each object interleaved with short sequences of
a different object, for then the associations within an object
are stronger than associations between objects.

With trace learning we have only been able to train the
network at a limited number of retinal locations before perfor-
mance degrades (Wallis and Rolls 1997). However, with CT
learning, good performance is maintained over a large train-
ing set of exemplar views as shown in this paper. Although
we have used two objects, each with many views, in the sim-
ulations described here, so that the principles of operation
can be kept clear, we have shown already in further simula-
tions that the number of objects can be increased, and indeed
have good performance with five objects, each of which is
more complicated than the objects used in this first paper
to demonstrate the principles of continuous transformation
learning. These further simulations will be the subject of a
future paper in which a series of investigations of the capacity
of the system when trained with continuous transformation
learning will be presented.

The CT learning does not even require objects to trans-
form smoothly in space across continuous time, as long as
all intermediate views are eventually seen in some random
order. In fact, it is not even necessary to see all the transforms
that might smoothly and continuously cover a space, as long
as the early/intermediate layers of the network have already
developed some low level feature invariance (as shown in
Experiment 5). In this case, previously unseen views of pre-
viously trained objects can still be recognised by the network
(Stringer and Rolls 2002).

Furthermore, because CT learning does not require a
traceȳ, there is no parameter η that must be tuned to match
presentation sequence length. Instead, the CT object learning
will begin automatically at the presentation of a new object,
and continue learning invariance to that object until there is
a sudden large change in the representation in the lower lay-
ers signifying a new object. However, this process will only
work if successive representations of the object in the lower
layers have many neurons in common.

The results of Experiment 4 demonstrate that, in prin-
ciple, CT learning can still occur with a randomised block

ordering of stimulus views during training. However, the sta-
tistics of how stimulus presentations are randomised may
well be critical to whether or not the network is able to de-
velop invariance during training. Much more work is needed
to characterise what kinds of presentation statistics will allow
invariance to develop.

We note that CT learning as described here requires no
trace (which could be explicit in the learning rule, or implicit
in the continuing firing of the post-synaptic neurons between
successive transforms of the same object), for learning. In
VisNet the form of the trace can be implemented in a number
of ways (Rolls and Milward 2000; Rolls and Stringer 2001;
Wallis and Rolls 1997), and use of a trace has been adopted
by others (Bartlett and Sejnowski 1998; Becker 1999) and is
implicit in the “persistence of unit activity from one cycle to
the next” in the network studied by Almassy et al. (1998).

There are interesting spatial constraints that underlie con-
tinuous transformation learning. As is evident from Fig. 2,
each input neuron must respond (to whatever its effective
feature is) when the input stimulus is transformed by at least
one position. It is this that helps neurons in the output layer to
retain their firing to the transformed version of the stimulus
moved by one position, and thereby to benefit from spatial
continuity to learn invariant representations. The implication
is that the receptive fields of the input layer neurons need to
be wider than the spatial offset of the centers of the receptive
fields from each other. This is consistent with the receptive
field sizes of V1 neurons, the cortical magnification factor
(Rolls and Cowey 1970), and the density of neurons in the
cortex (Rolls and Deco 2002).

We note that in the VisNet architecture, the invariant rep-
resentations arise at each layer as a result of either the tem-
poral continuity (learned by the trace rule) or the spatial con-
tinuity (learned by continuous transformation learning) over
whatever information converges from the previous layer. In
contrast, other systems use different methods to wire-in the
invariance, such as complex cells in each layer that respond to
a sum of offset simple cell inputs (Fukushima and Tanigawa
1996; Fukushima 2003).

It is an important aspect of the architecture described
that the representations that are learned are kept sparse (by
for example competition), so that every stimulus does not
become associated with every other stimulus. The system
must learn to represent the rare statistical regularities in the
high dimensional space of possible patterns.

Given that there are topological maps in early cortical
(e.g. visual) areas with locally convergent feedforward con-
nectivity, and that associative learning (which is reflected in
long-term potentiation) is common in the cerebral cortex,
(Artola and Singer 1993; Singer 1995; Frégnac 1996), a pro-
cess with the general characteristics of CT learning is implied
to be a quite general property of the functional architecture of
the cerebral cortex, provided that the input stimuli transform
in small steps. Although CT learning is thus very likely to
occur with locally convergent feedforward connectivity, we
do note that CT learning can nevertheless occur in non-topo-
logically mapped systems, in which the connectivity allows
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the same postsynaptic neuron to receive inputs from neu-
rons that could be anywhere in the input representation, but
would be likely to be activated in a way that reflects even
quite abstract continuity in the input space.
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