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ARTICLE

The formation and use of hierarchical cognitive maps in 
the brain: A neural network model
Henry O C Jordan, Daniel M Navarro , and Simon M Stringer

ABSTRACT
Many researchers have tried to model how environmental knowl
edge is learned by the brain and used in the form of cognitive 
maps. However, previous work was limited in various important 
ways: there was little consensus on how these cognitive maps were 
formed and represented, the planning mechanism was inherently 
limited to performing relatively simple tasks, and there was little 
consideration of how these mechanisms would scale up. This paper 
makes several significant advances. Firstly, the planning mechan
ism used by the majority of previous work propagates a decaying 
signal through the network to create a gradient that points towards 
the goal. However, this decaying signal limited the scale and com
plexity of tasks that can be solved in this manner. Here we propose 
several ways in which a network can can self-organize a novel 
planning mechanism that does not require decaying activity. We 
also extend this model with a hierarchical planning mechanism: a 
layer of cells that identify frequently-used sequences of actions and 
reuse them to significantly increase the efficiency of planning. We 
speculate that our results may explain the apparent ability of 
humans and animals to perform model-based planning on both 
small and large scales without a noticeable loss of efficiency.
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Introduction

Statement of research question

How might a biologically plausible neural network based on the architecture 
and operational principles of the brain learn to perform hierarchical model- 
based action selection as it explores a sensory environment?

Broad rationale for research question

The experiments of Tolman (Tolman 1938, 1948; Tolman et al. 1946) 
suggested that rats attain an internal model of their environment, called 
a cognitive map. Furthermore, they suggested that this cognitive map was 
necessary to respond quickly to changes in the reward available in an 
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environment or to changes in the structure of the environment.1 Examples of 
these are latent learning tasks and detour tasks, described more fully in 
Section 1.3.

Extensive modelling efforts (Dolan and Dayan 2013) have validated this 
claim. Despite the development of sophisticated “model-free” algorithms it 
has thus far been impossible to replicate certain observed behaviours without 
using a cognitive map representation (Russek et al. 2016; Fakhari et al. 2018).

Several neural network models have studied the formation and use of 
cognitive maps.2 However, many of the major questions around map-based 
planning have not yet been fully answered. How are spatial and non-spatial 
cognitive maps formed, stored, retrieved and used at the neural level? 
Furthermore, how are these processes affected by scale? It is uncertain how 
the storage and usage of cognitive maps differs between the small-scale mazes 
used in rat-based experiments and the large-scale maps of, say, a town, that 
a human would use to navigate. These problems are considered in Sections 3 
and 5.

There is some evidence that map-based planning can take place on very 
short timescales but also on much longer timescales, frequently abstracted 
from much detail about individual muscle movements (Botvinick et al. 2009; 
Ramkumar et al. 2016). Behavioural research is currently investigating such 
“high-level” or “hierarchical” environment representations and map-based 
planning, and the results of these investigations are detailed in Sec. 1.5. 
Furthermore, a considerable amount of work in artificial intelligence research 
has been dedicated to investigating different forms of hierarchical planning 
in the context of Markov Decision Processes (MDPs) and Reinforcement 
Learning (RL); this research is discussed further in Sec. 1.6.

We believe that by modelling hierarchical, map-based planning in 
a biologically plausible neural network architecture – one which relies on 
local Hebbian learning to model synaptic plasticity and which self-organizes 
its connectivity from sensory and motor inputs as the simulated agent 
explores its environment – we can begin to produce predictions of the neural 
and behavioural correlates that might accompany this form of planning. In 
particular, to produce predictions about how an unsupervised neural archi
tecture could learn to represent useful sections of previously experienced 
trajectories and use these to plan at larger scales with greater efficiency, yet 
still in a biologically plausible fashion. Furthermore, by investigating the 
constraints of such a model, we can predict the features that a planning 
model needs to have in order to begin planning hierarchically, therefore 
constraining the space of possible action selection models.

38 H. O. C. JORDAN ET AL.



Neurological investigation of cognitive maps

Although Tolman’s experiments were not conclusive, the cognitive map 
hypothesis has been greatly strengthened by further experimental evidence 
since it was originally proposed. In particular, the discovery of place cells in 
the hippocampus (O’Keefe and Nadel 1978) gave a neural substrate in which 
the cognitive map might be stored. The later discovery of grid cells in the 
entorhinal cortex (Hafting et al. 2005) gave rise to theories that combinations 
of grid cell inputs might give rise to place cell responses (Rolls et al. 2006; 
McNaughton et al. 2006) and so about how the cognitive map might arise. 
A little later still, the work of Johnson and Redish 2007 (Johnson and Redish 
2007) showed apparent neural correlates of map-based planning in place 
cells: rats at a choice point sent waves of activity along the place cells that 
represented various future paths, apparently selecting between them in 
a process dubbed “mental time-travel”.3

Several experiments have provided indications that cognitive maps also 
exist for non-spatial domains. In particular, Kurth-Nelson et al. (Kurth- 
Nelson et al. 2016) analysed whole-brain magneto-encephalographic (MEG) 
data while subjects performed a non-spatial navigation task4 and found that 
(a) the current state could be reliably decoded from MEG data and that (b) 
once the task had been learned, spontaneous MEG activity encoded legal 
paths through the environment. These paths appeared as reverse sequences 
of up to four states.

An experiment by Aronov et al (Aronov et al. 2017) has also shown the 
existence of “place cell” representations for non-spatial state-spaces. Mice 
were given the ability to alter auditory stimuli along a continuous frequency 
axis and cells developed in the hippocampal CA1 and the medial entorhinal 
cortex that have discrete firing fields along particular areas of the frequency 
axis. These cells overlapped with spatial place cells and grid cells but not in 
any organized fashion, which suggested that some spatial cells were being 
randomly repurposed for this new representation. Interestingly, these neu
rons appeared to be task-selective; when Aronov et. al. presented the same 
mice with the same stimuli (sweeps of the same frequency and duration) 
outside the context of the task, they found very little activity in the cells that 
had earlier fired reliably at different parts of the same axis.

Algorithms for stimulus-response and cognitive-map based planning

Historically, two kinds of animal behaviour tasks have been presented as 
arguments against purely model-free theories of planning in the brain: 
revaluation tasks, which examine whether animals adjust their behaviour 
appropriately following changes in the reward function, and contingency 
change tasks, which examine whether animals change their behaviour 
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appropriately following changes in the transition structure of the environ
ment (for example, a blocked or opened passageway in a maze) (Tolman 
1948; Russek et al. 2016). Model-free reinforcement learners perform poorly 
in these tasks because they cache the cumulative expected rewards that they 
expect from different state-action combinations and – without a transition 
model of the environment – have no way of updating these cached values 
post-manipulation except to relearn its Q-function. In comparison, model- 
based reinforcement learners can immediately update their value-functions 
and policies, continuing to produce adaptive behaviour in the face of envir
onmental changes or altered rewards (Russek et al. 2016). Russek et al. 2016 
found that a model-free approach, even augmented with a successor repre
sentation (Russek et al. 2016), could not solve contingency change tasks. 
These tasks, in particular a variant of the Tolman detour task described later 
in this paper, required an explicitly model-based reinforcement learning 
approach.

The role of hierarchical representations in planning behaviour

An important objective of this paper is to investigate the production and use 
of hierarchical map elements in a biologically plausible neural network 
model. Accordingly, this section will discuss the nature of these hierarchical 
elements in vivo as far as it can be deduced from behavioural studies.

Extensive evidence shows that humans represent space in a regional and 
hierarchical fashion. The regional representation of spaces affects the ability 
of participants to judge the spatial relationship between locations in different 
regions (Hirtle and Jonides 1985) and their behaviour when searching for 
a specified location (Hölscher et al. 2008). Regional effects seem to occur 
even in spaces whose hierarchical structure is not explicitly defined (Hirtle 
and Jonides 1985).

Experimental work has also indicated that humans plan routes at different 
levels of the hierarchical representation. When giving route directions, either 
in advance or during travel, participants reliably produce high-level route 
segments in order to optimize information-to-memory-load (Klippel et al. 
2003). Furthermore, participants reference elements of a city in order from 
the most general to highly specific local references (Tomko et al. 2008), 
signifying that most people store hierarchical spatial information in the 
same way and are able to predict what level of information other people 
are likely to recognize. Timpf et. al. (2003) break down highway navigation 
into three levels of abstraction: route planning operates on a very high level, 
finding routes given certain constraints; driving is performed at a fine level; 
and people produce driving instructions at a level partway between the two, 
dividing the route into segments that amalgamate a certain amount of 
driving activity (Timpf and Kuhn 2003). Wiener & Mallot (2003) similarly 
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show that humans appear to use a fine-to-coarse planning heuristic when 
navigating: a route plan contains fine-space information for the close sur
roundings and coarse space information for the rest of the route (Wiener and 
Mallot 2003). There is also evidence that route familiarity is an important 
element in human navigation (Payyanadan 2018).

We believe that the scale on which high-level route segments are generated 
and used depends on the size of the task in question. People give directions 
of a roughly similar length for routes whose lengths differ by orders of 
magnitude, provided that route fragments of the appropriate scale exist, 
indicating that the existence of high-level actions (driving instructions) 
allows complex routes to be compressed into a practical length. At the 
same time, planning tasks performed at the same level of abstraction show 
planning times are partially proportional to absolute path length (Howard 
et al. 2014).

We believe that a model of map-based planning should explain both the 
generation of high-level path fragments as well as how planning operates at 
any given level of abstraction.

Hierarchical representations in markov decision processes

If we consider MDP solving – and behavioural planning more generally – as 
the process of searching for a nearly optimal solution to a problem in a very 
large space of potential actions, it becomes clear that as that space grows, the 
process of searching for a solution becomes more difficult, until the problem 
becomes computationally intractable for a naive planner.

For an algorithm to successfully obtain its goals within a very large 
state space, it must either find a way to shrink that space or to search 
through that space more efficiently. An example of the former is the set of 
algorithms that try to abstract away irrelevant state attributes to describe 
the task in the minimum number of states (Ebitz et al. 2018). An example 
of the latter is the option framework, defined by Sutton and Barto in their 
1999 paper “Between MDPs and semi-MDPs: A framework for temporal 
abstraction in reinforcement learning” (Sutton et al. 1999). The original 
formulation of the option framework speeds up the planning process in 
an MDP through the provision of Options, little chunks of policy that can 
be predefined by the coder or learned/imported from previous tasks. Each 
option consists of an initiation set (states where the option may be used), 
a termination set (states where the option ends and the agent starts 
choosing actions normally again) and a policy (a set of state-action 
combinations that moves the agent towards a state in the termination 
set). Hierarchical Reinforcement Learning, as seen in Botvinick 2009 
(Botvinick et al. 2009), implements options in order to allow the agent 
to explore the environment in a faster and more rewarding fashion.
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Options can be specified by modellers, as in Botvinick 2009, but ideally an 
agent using the option framework should be able to discover useful options 
on its own. The two main approaches can be summed up as sub-goal based 
or policy based.5 Subgoal-based option discovery uses various techniques to 
identify useful states as subgoals. These states are usually either bottlenecks – 
states that connect together two otherwise-isolated sets of states – or fre
quently visited states. Having identified these subgoals, a secondary reinfor
cement learning process is used to create a policy for reaching those subgoals, 
rewarding the agent with a pseudo-reward when it reaches those subgoals 
(Botvinick et al. 2009; Taghizadeh and Beigy 2013; Kulkarni et al. 2016; 
Tessler et al. 2016; Vezhnevets et al. 2017).

While subgoal-based option discovery focuses on the termination of an 
option, identifying a useful sub-goal and then learning an option policy that 
can lead the agent to that subgoal, policy-based option discovery ignores 
subgoals and tries to identify useful sub-policies directly. One common 
approach is to search many solutions for common policy elements (Pickett 
and Barto 2002; Girgin et al. 2010). Florensa et al. (Florensa et al. 2017) have 
produced a hierarchical deep reinforcement learner along policy-based lines 
by producing a framework for learning skills and applying them in different 
tasks. Their framework consists of an unsupervised procedure to learn 
a repertoire of skills using proxy rewards, as well as a hierarchical structure 
for reusing those skills in future tasks. Skills appear to be represented as 
policies, similar to other approaches in this subsection.

Literature review

Representing an environment within a cognitive map

There are various ways for a cognitive map to encodes the topology of an 
environment. One potential representation is the use of state (place) cells. 
These place cells are connected together by recurrent synaptic connectivity in 
such a way that each state is connected to its neighbouring states. This is 
probably the most simple form of cognitive map, and Matsumoto 2011 
(Matsumoto et al. 2011) shows that it is possible to use this map to plan 
(using a mechanism described below). However, this form of map does not 
encode any information on the actions that are required to move the agent 
from one state to another. Planning in this context can therefore only mean 
assigning value to different states, marking some as more desirable and some 
as less desirable. This form of cognitive map therefore implicitly predicts that 
some other, unmodelled, mechanism must exist that knows how to move the 
agent from one state to another. In other words, this form of cognitive map 
does not reproduce an extremely important part of the planning mechanism.
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Another form of cognitive map, used by Friedrich 2016 (Friedrich and 
Lengyel 2016), is based on state-action cells. These cells encode 
a combination of a particular state with a particular action taken in that 
state. They are connected together with recurrent synaptic connectivity that 
encodes a causal relationship. If a cell encodes a state-action combination 
that produces a transition to a particular successor state, that cell will be 
synaptically connected to other cells encoding the successor state. This means 
that a state-action map can encode not only how different states are con
nected but also what actions an agent should take to move between these 
states.

A variation on the state-action map is the transition map used by 
Cuperlier 2007 (Cuperlier et al. 2007), which uses several different kinds of 
transition cells to encode the cognitive map. Some of these cells encode 
a unique transition between two states, without encoding the action that 
produces that transition, and these cells effectively work in the same way as 
state cells. Other cells encode a combination of a given transition and 
a motor action that produces that transition and so end up resembling state- 
action cells. A problem with this form of map representation is that it does 
not seem likely to generalize well to nondeterministic environments. In 
certain environments, a single state-action combination may produce many 
state transitions. In a state-action model, these transitions may all be repre
sented using recurrent synaptic weights. By contrast, in a transition cell 
model each transition requires its own cell. As the ratio of transitions to 
state-action combinations increases, the ratio of required transition cells to 
required state-action cells increases.

More complex cognitive maps (Hasselmo 2005, Martinet 2011 (Hasselmo 
2005; Martinet et al. 2011)) still fundamentally use a state-action encoding 
for the cognitive map but incorporate these cells within complex minicolumn 
structures designed to facilitate various elements of the planning process. 
Functionally, minicolumns allow for much more detailed circuitry to be 
easily modelled and iterated across the cognitive map representation. This 
makes minicolumn models more powerful than models using other repre
sentations but also more complex and less clear.

The form of an agent’s cognitive map will inevitably affect the mechanisms 
that are required to plan using this map. From this perspective, the most 
important distinction between the various forms of maps is between those 
maps that incorporate actions implicitly (a pure state cell map) and those 
that incorporate actions explicitly within the cognitive map (all others). 
A pure state cell map inherently predicts that planning takes place at the 
state level, and that some other mechanism exists which encodes the causal 
knowledge of how to move from one state to another and that outputs 
actions to do so. In other words, a pure state model predicts that planning 
and acting are two fundamentally separate processes, which output a set of 
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desired transitions and a set of actions respectively. By contrast, a state-action 
representation predicts that these two processes are inherently interlinked. 
This claim could be explored experimentally by looking for cases (if they 
exist) where people appear to be able to plan a solution to a problem (i.e. to 
give a set of transitions between states) but are not able to give a set of 
actions which would perform those transitions. This would demonstrate that 
it is possible to disrupt the action-production process without disrupting the 
planning process. The existence or non-existence of such cases might support 
a state-based or state-action based account.

Another open question is how these representations should scale. Of the 
models cited, all of them except for Matsumoto 2011 and Friedrich 2016 are 
discrete: they assume that states and actions are separable from one another. 
This has two consequences. The first is that in many cases the associated 
cognitive maps encode an artificial separation between different states and 
different actions. Either they are described purely in the context of tasks with 
discrete state spaces (such as the grid word tasks used throughout this paper, 
where you are either in one grid square or another grid square), or the 
models designate certain points in a continuous state space as “states” and 
ignores all of the points in between. The same is true of actions, where 
a limited set of discrete actions is made available for the agent to choose 
between. The second consequence of using a discrete state space – at least in 
the reviewed models – is that they do not handle scaling well. As the size of 
the environment increases, either the number of discrete states must increase 
or the ability of the map to encode the state space must decrease. For this 
reason, the models reviewed in Sec. 2 all have small state spaces.

The alternative is a continuous representation, where each input neuron 
represents some form of function in the joint space of states and/or actions 
(e.g. a place cell with a gaussian receptive field). In this case states and/or 
actions can be represented as a unique combination of distributed input 
neuron firing. Two models deal with such continuous representations: 
Matsumoto 2011 and Friedrich 2016 (Martinet et al. 2011; Friedrich and 
Lengyel 2016), but these models are also the most limited in terms of 
explaining the mechanisms around the formation and use of these maps: 
Matsumoto 2011 does not address the encoding of causal relationships 
between states, Friedrich does not address the formation of the cognitive 
map, and neither of them model the process of reading out the results of the 
planning process using neural mechanisms. It seems likely that the complex
ity of modelling continuous representations is responsible for the more 
limited scope of these models.
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Encoding of the cognitive map in recurrent connectivity

All of the reviewed networks encode the cognitive map as a set of synapses 
that connect the cellular substrate (state/place cell, state-action cells or 
neocortical minicolumns). These synapses can be assigned algorithmically 
or they can be self-organized using a variety of methods.

In Cuperlier 2007, Martinet 2011 and Friedrich 2016 (Cuperlier et al. 2007; 
Martinet et al. 2011; Friedrich and Lengyel 2016), the connectivity is not self- 
organized using biological processes. Instead, as the agent explores its envir
onment, the appropriate cells are connected together algorithmically. In the 
case of Cuperlier 2007 (Cuperlier et al. 2007), which uses transition cells (see 
above) this means setting the synapses between the current and previous 
transition cell to an arbitrary positive value after a state transition. In 
Martinet 2011 and Friedrich 2016 (Friedrich and Lengyel 2016), it means 
doing the same with state-action cells.

Erdem & Hasselmo 2012 (Erdem and Hasselmo 2012) model a mechanism 
which is slightly more consistent with the known neurobiology. In this 
model, the topology cells (which represent the topology of the environment) 
are essentially place cells, but are connected together using a learning rule 
which does not incorporate any firing information related to the topology 
cells that are being connected together. Instead, the equation used implicitly 
combines activation, competition and recency cell activity to connect topol
ogy cells together as a function of a “recency signal”. This implicit modelling 
seems to presuppose that recency cell activity would activate the appropriate 
topology cells in certain ways, that certain forms of competition could be 
applied to the topology cells such that their firing came to encode the desired 
function of their inputs, and that Hebbian learning could then connect the 
still-firing topology cells together in such a way as to obtain the desired 
connectivity. Essentially, the learning rule implicitly describes an extended 
sequence of mechanisms that are not explicitly modelled. Since these 
mechanisms are not explicitly simulated it cannot be assumed without 
reservation that they would operate as hypothesized and without unforeseen 
side-effects. The possibility that – if these mechanisms were implemented 
explicitly – Erdem & Hasselmo 2012 might be unable to learn a cognitive 
map is a limitation in this work.

Hasselmo 2005 (Hasselmo 2005) uses a Hebbian local learning rule that 
implements a “memory buffer” which holds activity from the input state, 
thus allowing self-organization of the synapses between the minicolumns that 
encode the cognitive map. The actual self-organization is highly complex but 
appears to be Hebbian.

Finally, Matsumoto 2011 (Matsumoto et al. 2011), which encodes the 
cognitive map between place cells with large, overlapping fields, is able to 
encode the relationship between states using a simple Hebbian rule. Each 
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location in the state space is signified by the combined activation of multiple 
state cells. As the agent moves through the environment, it will move from 
one receptive field to another, and as it moves between the two receptive 
fields both place cells will be firing simultaneously. A simple Hebbian learn
ing rule is therefore able to connect neighbouring place cells.

Planning mechanisms

Most current models of biologically plausible cognitive map-based planning 
(Cuperlier et al. 2007; Martinet et al. 2011; Friedrich and Lengyel 2016) are 
based on the principle of propagating activity from a goal representation 
through the synaptically encoded cognitive map.

The basic paradigm is that of propagation with decaying activation. In this 
paradigm, the cells encoding the cognitive map are stimulated at one loca
tion, or several locations, encoding the goal state that the agent is required to 
navigate to using its cognitive map. This activity propagates through the cells 
encoding the cognitive map, such that cells close to the goal receive high 
activity and fire at a high rate, while cells further from the goal receive much 
less activity and fire at a much lower rate. In effect, a gradient of activity is 
created with the cells that represent the goal state(s) having the highest firing 
rate and the state cells or state-action cells that are far away in the map 
(separated by many transitions) having very low or no firing.

If the map is made up of state cells, as in (Matsumoto et al. 2011), 
this gradient effectively encodes a value-function: states represented by 
high-firing cells are highly valuable, states represented by low-firing cells 
are not valuable.

If the map is made up of state-action cells, as in (Friedrich and Lengyel 
2016), this gradient effectively encodes a Q-function: state-action combina
tions represented by high-firing cells are valuable, state-action combinations 
represented by low-firing cells are not so valuable.

The decaying-activation paradigm allows successful planning. In particu
lar, Martinet 2011 show that a decaying-activation model is able to reproduce 
the characteristic behaviour of rats performing a Tolman detour task 
(Martinet et al. 2011; Alvernhe et al. 2011). It also reproduces the latent 
learning phenomenon, in which rats which have previously been allowed to 
explore a maze in the absence of explicit external reward are able to success
fully navigate to a reward in that maze much faster than rats which lack this 
experience (Tolman 1948). Various refinements and extensions have been 
proposed that allow decaying-activation models to memorize the path to 
previous goals (Matsumoto et al. 2011), take shortcuts (Erdem and Hasselmo 
2012) and store environmental maps at different resolutions (Martinet et al. 
2011). However, although these extensions can produce interesting effects 
under certain conditions, they tend to compromise either the biological 
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plausibility of the model or its robustness. For example, the linear probe 
mechanism proposed by Erdem & Hasselmo 2012 (Erdem and Hasselmo 
2012) allows agents to take shortcuts through unexplored space but compro
mises the model’s ability to navigate around obstacles.

Although a decaying-activation planner can reproduce basic planning 
behaviour, as well as replicate seminal tasks such as the Tolman detour 
task, the behaviour of a decaying-activation planner does not appear to 
match experimental observations in certain ways. The first and most impor
tant of these is that if the goal is sufficiently distant, and a sufficiently large 
number of actions are required to reach it, then the decaying activity will 
decay to zero before it reaches the agent’s current state. Since it is (the 
gradient of) this activity that defines either a value function or a q-function 
for each state, if no activity reaches a state or set of states then the agent has 
no value information available about those states. The agent will therefore 
not be able to produce a useful action. A decaying-activation planner will 
therefore fail to produce appropriate actions if the distance to the goal is too 
great. This does not seem to be consistent with evidence that animals can 
plan and navigate in large-scale environments (Geva-Sagiv et al. 2015).

A second issue with planning using decaying activation is that it may be 
vulnerable to noise. If the gradient of decaying activity spreads over a large 
number of states, then the relative firing rates of cells representing different 
states (or different actions within the same state) are likely to be similar. The 
firing rates of these cells are used to indicate the relative values of the 
associated states or state-actions; if they are very similar then small changes 
due to noise may make a big difference to their relative values and cause very 
different actions to be selected. A decaying-activation mechanism may take 
a relatively long time to output actions. Cuperlier 2007 (Cuperlier et al. 2007) 
reads out an action only when the activity in the network is considered 
“stable”, which presumably requires either a set period of stabilization or 
a mechanism that judges the stability of the activity dynamics. Hasselmo 
2005 waits for a specific period of time before reading out an action and 
thereby risks reading out too early (before activity has reached the right part 
of the map) or too late (when the situation has changed or time has been 
wasted).

Hierarchical behaviour

In general, current models of biologically plausible map-based planning do 
not consider how cognitive map representations and map-based planning 
should scale. As observed above, these models use a decaying-activation 
mechanism and so are unlikely to produce appropriate scaling because the 
activity is likely to decay too much in larger maps. To our knowledge, the 
only exception at present is work by Martinet 2011 (Martinet et al. 2011), 
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which introduces an extra map at a lower resolution. This mechanism uses 
proprioceptive feedback to merge states that are considered to be functional 
aliases of each other, extending the range over which their model can plan 
before the decaying activation disappears completely. This could potentially 
explain the relationship between planning time and distance described above. 
In this paper, we propose an alternative explanation: that over time, useful 
sequences of small-scale state-action combinations are encoded as functional 
behaviours or skills, allowing an agent to produce faster but more stereotyped 
behaviour at larger spatial scales.

A hardwired model for producing hierarchical behaviour using 
sequence cells

Hypotheses

We hypothesize that the hierarchical route representations observed experi
mentally (Klippel et al. 2003; Timpf and Kuhn 2003; Wiener and Mallot 
2003) could be produced by using behaviourally significant sequences of 
state-action combinations to represent certain elements of the route more 
concisely and abstractly. We further hypothesize that these sequences could 
subsequently be implemented during planning as “mental shortcuts”. In this 
case, the agent would be able to plan partially at a more abstract level; it 
would select sequences rather than individual state-action combinations. 
By representing a long route as 3 sequences rather than 500 individual 
state-action combinations, the agent would greatly reduce the number of 
choices required to plan that route. In effect, these sequences would function 
as high-level actions or blocks of policy that move the agent from one state to 
a far-off state, allowing the agent to plan across large sections of the state- 
action space concisely and efficiently.

This section will discuss how these sequences can be encoded within the 
network and how they can be used to plan faster and more efficiently. As 
such, this section will not discuss the process responsible for learning 
sequence representations. Section 5 is dedicated to the process of learning 
these sequences.

Model overview
The proposed neural architecture is described by Figure 1. Essentially, the 
agent’s current state is input by the state cells and the agent’s goal is input by 
the goal cells. The state-action cells and the sequence cells co-operate to 
produce an action that will move the agent towards its goal. The gating cells 
read out the planned action and propagate it to the action cells, which 
produce movement.
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Map representation – State-Action (SA) cells
We hypothesize that, for a cognitive map to be useful for the production of 
actions, it should record how the actions of an agent in different states cause 
the agent to move between states. In Markovian terms, a cognitive map 
should encode the state transition probabilities within the environment.

For the sake of simplicity, we initially assume that transition probabilities 
are always 100%. Sec. 4.4 demonstrates planning when this is not true.

We therefore hypothesize that the proposed model encodes this informa
tion in terms of state-action combinations and it follows that the network 
should encode information using a neural substrate of SA cells, each of which 
encodes a unique combination of one state and one action.6

If SA cells respond to a combination of state and action information, they 
are therefore most likely to occur in an area which receives high-level sensory 
and motor feedback. The prefrontal cortex is located in the right part of the 
sensorimotor pathway and prefrontal cells are activated by stimuli from all 
sensory modalities, before and during a variety of actions, and in anticipation 
of expected events and behavioural consequences (Wallis et al. 2001). They 
are also modulated by motivational state (Wallis et al. 2001). Prefrontal 

Figure 1. The figure shows the architecture of the proposed hierarchical neural network model. 
The current state of the agent is input by the state cells (State) and the goal of the agent is input 
by the goal cells (Goal). Actions that moves the agent towards its goal are produced by the co- 
operation of the state-action cells (State Action) and the sequence cells (Sequence). Finally, the 
planned action is read out by the gating cells (Gate) and propagated to the action cells (Action), 
which produce movement.
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neurons also output to the premotor cortex, which is known to represent and 
perform high-level actions (Tanji and Hoshi 2008).

In general, the prefrontal cortex is considered to be responsible for execu
tive function at the top of the motor hierarchy (Fuster 2001). Lesions of 
lateral prefrontal cortex produces an inability to generate novel or complex 
sequences of behaviour, and patients find it difficult even to consciously 
represent such sequences, indicating that the lateral prefrontal cortex is at 
least necessary for generating such sequences and may contain the substrate 
which represents them (Fuster 2001).

More specifically, single-neuron recordings have shown that over the 
course of a task, cells in the primate prefrontal cortex come to represent 
and respond to combinations of sensory cues and motor actions by a process 
of associative learning (Asaad et al. 1998). Later work has strongly suggested 
that abstract and hidden states are represented in the orbitofrontal cortex 
(Wilson et al. 2014; Schuck et al. 2016) and recent work has found that cells 
in the rat orbitofrontal cortex encode a mixture of stimulus and choice 
information about the rat’s previous decision (Nogueira et al. 2017).

Map representation – minicolumns
We further hypothesize that these state-action cells are likely to be organized 
into minicolumns. These are stereotyped structures commonly found 
throughout the neocortex, usually with approximately 80–100 neurons, and 
are subject to an array of cortical inhibitory interneurons (Buxhoeveden 
2002). This allows a variety of inhibition to occur within and between 
minicolumns, with very different levels of specificity and suppressive effect. 
We propose that such inhibition plays an important part in the formation of 
SA cells (see Sec. 4) and allows activity to be controlled and sustained during 
planning (see below). In this paper, the term “column” refers to a minicolumn 
unless otherwise stated.

In the proposed model, the state-action cells are structured into state 
columns. Each of these state columns contain several state-action cells 
which respond to the same state but to different actions (e.g. movement 
north, south, east and west) taken within that state. Section 4 shows how the 
state column structures can naturally self-organize using lateral inhibition 
within columns.

Map representation – encoding backward causal models using recurrent 
connectivity
One way that a layer of state-action cells can encode the topology of an 
environment is in the recurrent connectivity between them. If each state- 
action cell encodes a certain state-action combination possible in the envir
onment, transitions can therefore be encoded in the recurrent weights 
between cells encoding a state-action and cells encoding the resultant 
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successor state. If this recurrent connectivity is extensive enough, the net
work as a whole would encode the topology of the state space. Furthermore, 
activity propagating through the layer of state-action cells would do so 
according to the pattern of recurrent connectivity and so would be influenced 
by its topology, allowing planning.

In the model described below, the recurrent connectivity between these 
state-action cells encodes a backwards causal model of the environment; such 
a model encodes how each state can be reached as the result of performing 
particular state-action combinations. This is in contrast to a forward causal 
model that encodes the reverse information: the predicted results of perform
ing certain state-action combinations. Another way of thinking about this is 
that a forward model records how causes produce effects, and therefore 
models the causal relationship forward in time, while a backward model 
records how effects are produced by causes, and therefore models the causal 
relationship backwards in time.

This distinction is significant because it determines what kind of informa
tion the model stores and is able to output. A backward causal model is able 
to give a set of state-action combinations that will lead to a desired state, but 
cannot output predictions about the result of performing any given state- 
action combinations. A forward model is the opposite.

A navigating model receives a desired end goal at the beginning of a task 
and is then required to output actions in order to move an agent from its 
current state to the desired state. The format of a backwards causal model is 
much more suited to this task and so we hypothesize that the planning 
mechanism in the brain uses a backward causal model.

As stated previously, we have hypothesized that the model encodes causal 
relations between states by means of synaptic connectivity between state- 
action cells. Because we have also hypothesized that these causal relations are 
encoded using a backwards causal model, the hypothesized connectivity must 
reflect that. A state-action cell ðs; aÞ that moves an agent into a new state s0
therefore receives an excitatory synapse from any state-action cell that 
encodes that new state, so that activity can propagate backwards from the 
desired state to identify suitable state-action combinations to bring about that 
state. We have illustrated the proposed connectivity between state-action 
cells in Figure 2.

Map-based planning
A cognitive map is encoded by the strengthened recurrent connections 
within the layer of state-action cells. The proposed network feeds goal signals 
into the state-action layer at the goal location and allows these signals to 
propagate outwards through the topological connectivity of the cogni
tive map.
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This propagation through the cognitive map is the primary element of 
the planning process. The quickest path to take from the agent’s current 
state to the goal location is that requiring fewest state transitions. Since 
each state-action cell represents, in effect, a state transition, the path 
requiring fewest state transitions will also be the path that activates fewest 
state-action cells between the agent’s current state and the goal location.

A common mechanism in the literature is to use decaying propagation, so 
that some activity is lost every time activity propagates between state-action 
cells. Consider a goal signal propagating through the recurrent connections 
towards the state-action cells associated with the current state of the agent. In 
this decaying-activation paradigm, the optimal state-action cell for each 
current state is connected to the goal location via the fewest state transitions 
and so receives the least-decayed activation; in other words the most active 
state-action cell for each state will move the agent towards the goal fastest. 
However, this mechanism has the important limitation that the activity will 
eventually decay to a negligible level and so this mechanism (in a naïve form) 
is unable to plan over a sufficiently long distance.

The proposed model uses an alternative mechanism to identify the fastest 
path to the goal. This mechanism plans using the timing of goal-based 
activity propagation through cells encoding the cognitive map, rather than 

Figure 2. The pattern of connectivity between SA Cells encoding a reverse causal model. All SA 
cells within a given column encode the same state, and each SA cell encodes a different state- 
action combination. We hypothesize that each SA cell should receive a set of afferent synapses 
from all of the SA cells encoding its predicted successor state, allowing cells in a successor state 
to activate the SA cell responsible for entering that successor state. Likewise, each SA cell sends 
an efferent synapse to any SA cells that will result in the SA cell’s own encoded state.
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how much activation those cells receive. We do not hypothesize that activity 
decays as it propagates through the state-action layer. Instead, we hypothe
size that activity will propagate along the shortest path to the goal fastest, 
because that path involves the fewest state transitions and so the activity does 
not have to transfer through very many state-action cells. The relative values 
of different actions in each state – the speed with which those actions move 
the agent towards the goal – are therefore determined by the temporal order 
in which those SA cells receive activation from the goal and become active.

The first SA cell to receive activation in each state now represents the 
optimal action to take in each state, and the level of activation is not relevant. 
This allows the level of activation to be kept at a constant level as the wave 
propagates through the map, allowing it to plan over longer distances. This 
mechanism also does not require time for activity to “settle” in the layer, or 
for cells to integrate activity.

This mechanism owes inspiration to work by Ponulak & Hopfield 2013 
(Ponulak and Hopfield 2013). Their paper described a model in which a wave 
of activity propagates through a 2D layer of topologically organized pure 
state cells (neighbouring state cells were recurrently connected) and showed 
that this wave carried information about the direction of the goal. 
Specifically, if the goal is east of a state cell, the wavefront will “hit” the 
state cell from that direction. Ponulak showed that an anti-STDP mechanism 
could record this information in the recurrent synaptic connectivity of the 
layer by strengthening the synapses between cells to indicate the direction 
from which they were “hit” by the wave.

The mechanism that we have proposed retains the insight that the 
propagation of a wavefront can carry information about the direction of 
a goal, but uses this information in a rather different way. Rather than use 
a propagating wavefront to adjust the synapses between pure state cells 
and thus produce a synaptic vector field, we have proposed that 
a propagating wavefront can identify and output the most valuable state- 
action combination for a given state.

The proposed mechanism is therefore able to improve on the mechan
ism described by Ponulak & Hopfield in several key ways. Firstly, 
because the proposed planning mechanism is able to work in a state- 
action map, it is able to output explicit actions that move the agent 
towards the goal (see Output below). Secondly, because the proposed 
planning mechanism is able to perform planning without requiring 
a period of synaptic plasticity, it seems likely that an agent using this 
mechanism would be able to plan more quickly, and would not have to 
“undo” the new synaptic weights if there is a change in the goal state or 
the transition structure of the environment. Thirdly, because the pro
posed planning mechanism is able to plan without altering the synaptic 
weights that encode the cognitive map, we can store information in these 
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weights. We show in this section that the proposed planning mechanism 
is able to interface with a mechanism for producing hierarchical 
behaviour.

Output
The proposed network is able to read off the optimal action at the current 
state from the planning process using biologically plausible neural mechan
isms. An action read-out mechanism must perform two important roles. It 
must read out the recommended action for the current state whilst not 
reading out anything associated with any other states, a problem illustrated 
in Figures 3 and 4. In the case of the proposed network shown in Figure 1, 
this is effected by a set of gating cells that propagate activity from the 
appropriate section of the cognitive map (that which represents the current 
location of the agent) to the action cells, where it produces motor output. 
The gating cells are under heavy inhibition such that they can only produce 

Figure 3. Illustration of the problem of reading out the correct action for the current state. (a) 
shows the firing rates of a layer of SA cells partway through a planning task. Each compass plot 
in (a) represents the firing rate of all SA cells which encode a particular state as illustrated in (b). 
The golden state is the goal location and the boxed state is the agent’s current state. The 
planning wavefront has activated a large number of SA cells, most of which encode an action 
(NW, SW, W) that will not move the agent towards the goal. The model cannot therefore simply 
sum or average the activity in the SA layer but has to gate this activity by the current state of the 
agent before it is passed to the action output layer. Furthermore, this read-out must happen at 
a specific time.
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firing if they are receiving both SA and state input, meaning that they only 
pass on activity from an SA cell when that SA cell matches the current state.

Hierarchy
As explained above, the wave-propagation planning mechanism used by the 
proposed model relies exclusively on the timing of goal-based activity pro
pagation through cells encoding the cognitive map, rather than how much 
activation those cells receive. The first SA cell to receive activation in each 

Figure 4. The Gating Problem. This figure shows compass plots of state-action activity during 
planning at three different times T = 3, 6 and 11. If the agent is occupying the state marked by 
the square, then the model should only read out activity from the SA cells marked by the square, 
and not (for example) those marked by crosses. Also, the agent should not read out activity from 
the marked SA cells at t = 3 (when the wave of activity has not yet reached the agent’s state) or 
at t = 11 (when the wave of activity has passed the agent’s state) but only at t = 6.
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state represents the optimal action to take in that state, and the level of 
activation is not relevant. Since the model does not require time for the 
activity to “settle”, or for cells to integrate activity, the main factor limiting 
planning time is the speed of wavefront propagation. By increasing the speed 
at which activity propagates through the network, the planning process can 
be made much faster, provided that the spread of activity still produces viable 
plans. We hypothesize that frequently-used sequences of state-action combi
nations can act as shortcuts through state space, allowing activation to spread 
faster and further without sacrificing planning power.

Such a hierarchical planning mechanism would influence the model’s 
choice of actions during planning. As explained above, the speed of activity 
propagation through the recurrent connections of the SA layer is used to 
determine optimal routes during planning. If frequently-used sequences of 
state-action combinations are used to speed up the propagation of activity, 
these familiar sequences may be selected in preference to an optimal route. 
The preference for known routes has been observed in experimental studies 
(Brunyé et al. 2017; Payyanadan 2018). The model might also display this 
habitual behaviour in non-navigation tasks.

The use of “shortcuts” through the SA layer might also make planning 
more robust to noise, since transmission of activity between neurons is 
a primary source of noise and the use of shortcuts is intended to significantly 
reduce the number of transmissions of activity between SA cells. However, 
since the activity of SA cells in active columns is kept constant, and since 
planning in the model is dependent on the timing of activation propagation 
rather than on the precise activation value of SA cells, the effect of the 
hierarchical mechanism on planning in noisy conditions would likely be 
relatively small. Please note that the term “column” refers to cortical mini
columns (Buxhoeveden 2002) unless otherwise specfied.

We hypothesize that this hierarchical planning mechanism can be implemen
ted by an extra layer of cells, called sequence cells, (Figure 1) whose connectivity 
to the state-action layer allows them to represent frequently used sequences of 
actions. These sequences encode behaviourally useful sequences which provide 
relatively direct routes through the state space. In determining the most likely 
form of sequence representation, there are two primary concerns:

(1) A sequence cell must represent a useful sequence of state-action 
combinations. To do this, it must be linked to a particular set of state- 
action cells that represent a behaviourally useful sequence.

(2) The planning mechanism implemented by the state-action cell layer 
should be able to call up and use sequences during the planning 
process. In other words, state-action cells must be able to activate 
sequence cells at an appropriate time – via the synapses from state- 
action cells to sequence cells – and sequence cells must be able to 
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influence the activity of state action cells, via the synapses from 
sequence cells to state-action cells.

We hypothesize that a sequence cell (representing a sequence of state- 
actions) should be activated when the propagating goal-centred wavefront 
reaches the end of that sequence7 and should in turn activate the rest of the 
SA cells in that sequence immediately. This means that the wave can propa
gate through a sequence of n state-actions (which would normally take n 
timesteps) in 2 timesteps: one timestep for activity to propagate to the 
sequence cell, causing it to fire, and another timestep for that sequence cell 
to activate all of the n SA cells that it is connected to.

As explained above, the time taken to output an action is dependent on how 
quickly the SA wavefront propagates from the goal to the agent’s current 
position. Put briefly, since the optimal action for each state is encoded by the 
state-action cell linked to the goal location by fewest transitions (and so fewest 
synapses), a wave of activity beginning at the goal and propagating at a constant 
speed will reach the optimal state-action cell before the rest of the state-action 
cells linked to that same state. The gating cells detect this activation and express 
the appropriate action to the action cells, which produce motor output.

As such, we hypothesize that incorporating sequence cells into the network 
model should enable the agent to plan a route of a given length in less time. 
Furthermore, because the speed at which activity propagates through 
a sequence does not depend on the length of the sequence, we hypothesize 
that the agent should receive larger gains in larger and more complex routes, 
where the path lengths are longer and thus the required planning time 
(without sequences) is longer.

Task

The agent is placed at a random position in one of four grid worlds. Two of 
these worlds are the small (10x10) open and maze worlds depicted by 
Figure 5. The other two worlds are the same but scaled by 2:1, so that they 
are 20 × 20. The agent can move one space at a time in eight compass 
directions8 or stay still, giving nine possible actions.

A random state is designated as the goal and the agent is required to 
navigate to this state to complete the task. If the agent reaches the goal 
location then the task has been been completed successfully. The number of 
timesteps required to reach the goal is recorded, as is the number of physical 
actions.

A set of 100 tasks is performed in each of the four environments, by two 
agents. The first agent has access to a set of sequence cells that encode 
various trajectories through the environment. The second agent has no access 
to sequence cells.
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Model equations

The proposed model’s architecture is depicted in Figure 1 and contains:

● State cells
● Goal cells
● State-action (SA) cells
● Gating cells
● Action cells
● Sequence cells

Algorithm 1 Planning in the Hardwired Model with Sequence Cells. This 
describes the network’s operations during one timestep in the planning 
process. Steps in brackets only occur if there is activity in the action cell 
layer (signifying that an action has been selected for the agent’s current state).  

Cell Firing State Cells & Goal Cells Fire 
Activity Propagation SA Cells to Sequence Cells (1) 
Activity Propagation SA Cells, Goal Cells & Sequence Cells to SA Cells (3) 
Inhibition SA Cells: Rescale SA Activity in All Active States (4) 
Activity Propagation State Cells & SA Cells to Gating Cells (5) 
Inhibition Gating Cells: Threshold (6) 
Activity Propagation Gating Cells to Action Cells (7) 
Inhibition Action Cells: Winner-Take-All (8) 
(Agent) Agent Moves to Successor State 

Figure 5. The 2-dimensional grid-world state space used to test the simulated network agents. 
The agent can move between blue squares, which are free states, and cannot move into yellow 
squares, which are walls. Each state has a unique index value which is used to fire a specific state 
cell.
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(Reset) All Cells Reset to Zero Activation 

Algorithm 1 describes one timestep of the planning process. The state cells 
fire, encoding the current location of the agent. These cells are one-hot: each 
state cell uniquely represents a single state and only one state cell fires at 
a time, denoting the current state. These cells are stimulated automatically, 
and are considered to be the output of unmodelled sensory processes. At the 
same time, the goal cells fire, encoding the desired state to be navigated to 
(i.e. the goal).

Activity spreads out from the goal location through the SA layer as 
a propagating wave. During this process (at every timestep) there is back- 
and-forth propagation of activation from the SA layer to the sequence layer 
(Equation 1) and back to the SA network (Equation 3). The sequence cell 
sends synapses to all SA cells in the sequence, but only receives synapses 
from the last SA cell in the sequence.

Sequence cells receive activation propagated from the SA cell layer as 
follows:

hSQ
i ¼

X

j
wSA� SQ

ij rSA
j (1) 

rSQ
i ¼ hSQ

i (2) 

where rSA
j is the firing rate of SA cell j and wSA� SQ

ij is the synaptic weight from 
that SA cell to a sequence cell i, and these sequence cells – when active – pass 
activation back to the SA cells according to Equation 3.

SA cells are stimulated by a combination of goal input, recurrent SA 
activity and input from sequence cells as follows:

hSA
i ¼

X

j
wGL� SA

ij rGL
j þ

X

j
wSA� SA

ij rSA
j þ

X

j
wSQ� SA

ij rSQ
j (3) 

where 
P

j wGL� SA
ij rGL

j is the input received from the goal cells, 
P

j wSA� SA
ij rSA

j 
is the recurrent SA input, and 

P
j wSQ� SA

ij rSQ
j is the input from the sequence 

cells (see below). SA cells experience divisive inhibition, rescaling the activity 
of SA columns so that each currently active column is rescaled to sum to 1, 
and each inactive column remains inactive (with a sum of 0):

X

i
rSA

i ¼
1

P
i hSA

i > 0
0
P

i hSA
i ¼ 0

�

(4) 

where 
P

i hSA
i is the sum of the activations of all SA cells in a given column.

A layer of gating cells has been hardwired such that each gating cell 
receives afferent synapses from one state cell and one state-action cell, and 
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sends synapses to one action cell.9 Activity propagates to the gating cells as 
follows:

hG
i ¼

X

j
wS� G

ij rS
j þ

X

j
wSA� G

ij rSA
j (5) 

The gating cells are under heavy inhibition such that they can only produce 
firing if they are receiving both SA and state input:

rG
i ¼

hG
i hG

i > tG

0 hG
i � tG

�

(6) 

where tG is a thresholding constant.
Activity propagates from the gating cells to the action cells as follows:

hA
i ¼

X

j
wG� A

ij rG
j (7) 

rA
i ¼

hA
i hA

i > tA

0 hA
i � tA

�

(8) 

where hA
i is the activation of an action cell i, wG� A

ij is the weight of a synapse 
from a gating cell j to that action cell, rG

j is the firing rate of gating cell j and 
rA

i is the final firing rate of the action cell after thresholding inhibition using 
the constant tA.

The thresholding inhibition (Equation 8) has the effect of preventing any 
action cell from firing unless it is strongly stimulated by a gating cell. If any 
action cell begins to fire despite this inhibition, winner-take-all inhibition is 
applied to the action cell layer to select a single action. The agent takes the 
action represented by the winning action cell (i.e. it moves one space in the 
specified direction) and updates the world. The firing rate of all cells is then 
reset to zero.

This section is focused on investigating the mechanism of planning and 
the role that sequence cells may play in the planning process. We therefore 
do not discuss how the synapses in this model self-organize: the self- 
organization of the basic network is covered by Section 4, while the following 
Section 5 will discuss the self-organization of connectivity between the state- 
action layer and the sequence cell layer. The diagram in Figure 1 depicts the 

Table 1. Table of parameters for the 
hardwired model with sequence cells 
described in Section 3.

Parameter Value

Action Cell Threshold tAtA 0.2
Gating Cell Threshold tGtG 0.55
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overall architecture of the model, and Table 1 gives relevant model 
parameters.

Results

If a given sequence cell projects efferent synapses to all of the SA cells 
in a sequence but only receives an afferent synapse from the last SA cell in 
the sequence, that sequence cell will become active if the last SA cell in 
the sequence that it encodes becomes active. It will then immediately 
activate all of the other SA cells in that sequence. In effect, it allows the 
propagating wave to “skip” those cells, propagating through the entire 
sequence at once. This allows the propagating wave to travel faster 
through certain areas of state-action space, an effect demonstrated in 
Figure 6, which shows the same navigation task with and without 

Figure 6. This figure shows the propagation of activity from the goal location through the SA 
layer during a simulated navigation task in the four-room environment shown in Figure 5(b). 
Results are shown for simulations with and without sequence cells. Each state is represented by 
a compass plot which depicts the activity of the SA cells representing that state (see Figure 3(b)). 
The golden state represents the goal, and the boxed state represents the agent’s current 
location. The agent moves once activity reaches its current state. We see that activity propagates 
considerably faster when sequence cells are available – compare (a) vs (b) – and that the 
propagating activity therefore reaches considerably more states after five timesteps.
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connectivity between the SA and sequence cells. In effect, the sequence 
cells have produced a two-level hierarchical planning mechanism, where 
planning happens on the level of individual state-actions but also on the 
level of larger state-action sequences.

Figure 7 shows the effect of using or not using sequences on tasks with 
different path lengths. We see that use of the sequence cell mechanism has 
relatively little effect on short paths, but provides a significant (~40–60%) 
decrease in total planning time on path lengths of ~10 steps. These gains 
continue to increase as path length and environment complexity increase. 
Figure 8 shows that the total planning time of the model seems to grow 
quadratically without the sequence mechanism and linearly when augmented 
with sequence cells.

The kind of state spaces experienced by a mammalian intelligence (espe
cially a primate one) are very much more complicated and thus larger than 

Figure 7. A figure showing how the total planning time varies with navigation tasks whose 
solutions are of different lengths. Results are shown for open environments as illustrated in 
Figure 5(a) (left column) and 4-room mazes illustrated in Figure 5(b) (right column). This 
demonstrates that use of sequences in planning produces low efficiency benefits during short 
tasks but increasingly large benefits as the required route length increases.
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the state spaces used in this experiment, and problems in such large state 
spaces are difficult to solve using naive Markovian decision processes because 
the computation requirements in such environments are too large. The 
relationship between efficiency gains and environment size & complexity 
suggest that the efficiency gains would be much larger in real-life state spaces.

Figure 10 shows that if two paths of equal length exist from the agent’s 
starting position to its goal, then the hierarchical model incorporating 
sequence cells will tend to prefer familiar routes (those that have associated 
sequences) over other routes of equal distance. The model was trained in an 
8 × 8 two-gate environment (Figure 9) and given a set of sequence cells 
encoding routes through the lower gate but not the upper gate. We see that 
the model is considerably more likely to choose the lower gate if it has access 

Figure 8. Fitting curves to the results of navigating within Large Open environments. The basic 
model, without using sequences, produces planning times that increase quadratically with the 
route length, while the augmented model, using sequences, plans linearly with the route length. 
Extrapolating these fits predicts that the gains should grow very large as the size and complexity 
of environments increase, although we cannot currently verify this claim as the discrete state- 
action representation we use does not scale well beyond 20 × 20 states (discussed further in Sec. 
6.1). To check the accuracy of both fits, we have calculated the Adjusted-R2 values for each fit. 
The Adjusted-R2 is a statistical measure of how close the data are to the fitted lines, adjusted for 
the number of terms that describe the fitted line. These values are 1 for the model without 
sequence cells and 0.9243 for the model with sequence cells. The value of Adjusted-R2 must be 
between 0 and 1, and so these values show that both lines fit the data extremely well.
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to these sequences. Note that the agent used probabilistic propagation 

Figure 9. Two Gate Environment (8x8). As in Figure 5, the agent can move between blue 
squares, which are free states, and cannot move into yellow states, which are walls. The green 
square represents the goal, and the red square represents the agent’s starting state. The agent 
therefore starts equidistant from both gates, and can reach the goal from either gate in the same 
number of timesteps.

Figure 10. This figure compares the probability of an agent occupying various states in a two- 
gate environment (Figure 9) over the course of 100 planning trials. (a) shows these occupancy 
probabilities when the model has access to sequence cells that encode a route through the 
lower gate. (b) shows the same model without access to these cells. The agent is required to 
move from position (2,6) to (9,6), which can be achieved in the same number of actions by 
passing through either gate. We see that the existence of these sequences biases the agent to 
use the familiar lower gate rather than the higher gate in (a). By contrast, when the agent does 
not have access to these sequences it uses both gates with approximately equal probability (b).
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(described more fully in sec. 4.4) for this planning task; this adds 
a nondeterministic element such that activity propagates from one cell to 
another with a given probability. Since the use of sequences to encode a route 
reduces the number of cells that activity must propagate through in order to 
choose that route, such a route has a higher probability of being chosen.

Discussion

The hierarchical mechanism should be extensible to an arbitrary degree by 
adding more layers of sequence cells, such that higher layers learn sequences 
of sequences. This explains the observation that people plan on different 
scales and levels of abstraction (Klippel et al. 2003; Timpf and Kuhn 2003; 
Wiener and Mallot 2003) and are able to navigate over distances orders of 
magnitude apart, from short room-to-room movements within a house or 
workplace to long drives between cities and/or countries. These abilities have 
also been observed in bats, one of the few mammals whose large-scale 
navigation has been extensively studied. Bats have been observed to recall 
the three-dimensional position of objects with an accuracy of 1–2 cm but can 
also navigate reliably and regularly to targets dozens or thousands of kilo
metres away (Geva-Sagiv et al. 2015). Wild rodents have a similar range of 
navigational capabilities (Geva-Sagiv et al. 2015). We believe that although 
planning-time-to-path-length correlations seem to exist for problems of the 
same scale (Ward and Allport 1997; Howard et al. 2014), they do not seem to 
apply strongly to problems of different scales. For example, taxi drivers 
report being able to produce routes through London almost instantly 
(Spiers and Maguire 2008) even though these routes may be several kilo
metres in length.

The properties of the sequence cells depend on their connectivity with the 
state-action layer. The sequence cell should receive activity from the SA cell 
that occurs at the end of that sequence, so that the sequence cell will become 
active as soon as the activity wavefront reaches the end of the SA sequence. 
Likewise the sequence cell should be able to propagate activity to all SA cells 
in the sequence, so that it can quickly stimulate all of the SA cells encoding 
the sequence and thereby produce the maximal efficiency in planning. Self- 
Organizing mechanisms for learning this connectivity are described in Sec. 5. 
The sequences of actions that they encode are very similar to the high-level 
route segments described by Klippel et. al. (Klippel et al. 2003), and the 
action of the hierarchical mechanism utilizing sequence cells reproduces the 
fine-to-coarse planning heuristic described by Wiener and Mallot 2003 
(Wiener and Mallot 2003). This hierarchical mechanism also appears to 
produce a preference for familiar routes – those for which the agent has 
available sequences – as seen in Figure 10. This preference has been experi
mentally demonstrated in human navigation (Brunyé et al. 2017; Payyanadan 
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2018). It also suggests that, in more complex tasks and environments, the 
hierarchical mechanism may produce a form of habitual behaviour, where 
inefficient but familiar solutions are preferred over optimal but planning- 
intensive solutions.

Sequence cells in pre-SMA
Sequence-selective cells have been found in the supplementary motor area 
(SMA) and pre-supplementary motor area (pre-SMA). These cells fire before 
a particular (previously learned) sequence is performed but do not fire during 
the motor performance of that sequence (Shima and Tanji 2000). The pre- 
SMA is known to be connected to the prefrontal cortex (Luppino et al. 1993), 
allowing interactions between sequence cells in the pre-SMA and state-action 
cells in PFC to occur as seen in the model.

Figure 11 shows a simulated sequence cell firing during a modified 
version of the navigation task, and compares it to experimental recordings 
performed by Shima et. al (Shima and Tanji 2000). As in other navigation 
tasks, the agent must navigate from its starting location to the goal. In this 
case, however, the starting location and goal are chosen manually to 
ensure that the only route to the goal included the sequence encoded by 
the sequence cell. The figure shows the recorded firing rates of this 
sequence cell before, during and after the sequence of actions encoded 
by the sequence cell.

As explained in Section 3.1, the network plans by propagating goal- 
based activation through the SA layer and recording which of the state- 
action cells responsible for the current state receive activation first. 
Sequence cells function as “shortcuts” for the propagation of this wave. 
For this reason, the sequence cell will be strongly active before the agent 
performs the relevant sequence of actions. The propagating wave activates 
the sequence cell on its way to the agent’s current state, so that it becomes 
active early and remains active until the propagating wave reaches the 
agent’s current state. The activity then activates a gating cell and action 
cell as described by Sec. 3.3, and the agent takes an action that moves it 
towards the goal. The activity in the SA layer resets and the activity begins 
propagating again from the goal state.

This cycle of activity propagation and movement repeats until the agent 
reaches the first state that is involved in the sequence described by the 
connectivity of the sequence cell. Previously, the sequence cell was active 
for an extensive period of time while activity propagated further through 
the SA layer, beyond the sequence encoded by the sequence cells. 
However, SA cells responsible for the agent’s current location are now 
within the encoded sequence and so can be stimulated directly by the 
sequence cell without requiring further time for activity propagation. This 
means that as soon as the sequence cell becomes active, so do the relevant 
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SA cells, gating cells, and action cells. The sequence cell is therefore only 
active very briefly when the agent is performing the sequence which the 
sequence cell encodes.

Figure 11. Comparison of a simulated sequence cell to a recorded pre-SMA cell. In both the 
simulated and recorded data, we see that the cell has strong firing before but not during 
a specific sequence of actions (a dashed line marks the onset of this sequence). However, the 
simulated data displays periodicity, unlike the recorded data. This is discussed in the main text. 
The proposed model is rate-coded and so the raster plot (a) was generated from recorded firing 
rates using a Poisson distribution.
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To put it another way, the sequence cell is only active after the propagating 
activity reaches the sequence cell’s preferred sequence and until that activity 
reaches the SA cell encoding the agent’s current state. All SA cells in the 
sequence become active simultaneously, so if the agent’s current state is in 
the encoded sequence, the sequence cell will only be active for a very short 
period of time because activity is not propagating further through the SA 
layer.

Figure 11(b) shows the simulated firing rate of the sequence cell, and 
Figure 11(a) shows a spiking raster plot with the spikes generated accord
ing to the firing rates by a poisson distribution for comparison to the 
experimentally recorded data in Figure 11(c). We can see that the 
sequence cells in the proposed model have similar properties to the pre- 
SMA cells recorded in this figure (Shima and Tanji 2000). Not only do 
they both encode a particular sequence of actions (Shima and Tanji 2000), 
but they become active immediately before the encoded sequence is 
carried out and then cease to fire as the sequence is performed. 
Furthermore, impairing either SMA or pre-SMA inhibits the ability of 
monkeys to perform the learned sequences of actions when cued, even 
though they retain the ability to perform any of those actions individually 
(Shima and Tanji 2000).

The main difference between the simulated data and recorded data is the 
periodicity seen in Figure 11(a,b). This periodicity arises from the fact that 
the simulated agent took several steps before the onset of the sequence, and 
so several “cycles” of activity occured as the activity spread out from the goal 
state to the agent’s location to plan the next action. There are several possible 
explanations for this difference.

Firstly, the model artificially resets activity in the SA layer after each single 
action during a movement sequence. This is a result of implementing 
a simplified discrete model. Further work with models that operate in con
tinuous time may eliminate such periodic behaviour in the sequence cells.

Secondly, the recordings took place under different task conditions. The 
pre-SMA recording in Figure 11(c) was taken during a task in which mon
keys were trained to perform three different movements, separated by short 
waiting times, in four or six different orders. The monkeys then reproduced 
one of these sequences several times based on visual cues. In other words, the 
sequences were not initiated as part of a goal-directed set of free movements, 
but as a cue-induced sequence. The difference in cell behaviour may there
fore be partly task-based, accessing the same representations through 
a slightly different mechanism.
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Self-organization of the basic network model without hierarchical 
planning

The previous experimental section of this paper described a neural network 
model for planning solutions to a navigation task in a simple grid environ
ment. However, the synaptic connections in the above model simulations 
were pre-wired, with no explanations of how these connections might be 
embedded in the brain through learning. The question of how such 
a network should self-organize its synapses is not trivial. We break the 
process down into several parts: the self-organization of the SA cells in 
order to encode unique combinations of state and action, the self- 
organization of the recurrent connectivity between these SA cells in order 
to encode the structure of the environment, and finally the self-organization 
of the gating cells that output the results of planning to the action cells. We 
will discuss self-organization of the connectivity to and from the sequence 
cells (the hierarchical mechanism) in Section 5.

Formation of SA cells

During learning, the SA cells must form afferent connections from the 
state cells and action cells such that each SA cell learns to respond to 
a unique combination of state and action. Moreover, all possible combi
nations of state and action must be represented by an even distribution of 
SA cells. We hypothesized that the required connectivity may be set up by 
competitive learning. In this scenario, a layer of SA cells receive afferent 
connections from a mixture of state cells and action cells. These connec
tions are modified by associative Hebbian learning as the network agent 
explores its sensory training environment. During this process, the layer 
of SA cells is put under heavy mutual inhibition, such that very few cells 
can fire at the same time. This inhibition means that cells’ receptive fields 
become distributed evenly across the input space, because each cell can 
only fire if it learns to respond to part of the input space that has not 
been “claimed” by other cells.

An agent’s state is usually defined by several pieces of (partially) indepen
dent information. In this case the neural representation of the state will be 
distributed, with multiple state cells active simultaneously. Moreover indivi
dual state cells will be active for multiple different states. For example, when 
making coffee, the amount and position of the coffee grinds are an important 
indicator of your state, but so is the position of the cup, the kettle, etc. It is 
therefore important to see whether the model can learn to represent states 
that are defined in this fashion. A simple way to do so is to replace the single 
one-hot state representation with an xy-coordinates representation, thus 
defining the state with two independent pieces of information.
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If the agent’s current state is 3
4

� �

and it then moves west, encountering 

the state 4
4

� �

for the first time, it will need to learn a new SA cell or state 

column to represent this new state. If there were only one piece of informa
tion, as in the previous sections, this would not be a problem: none of the 
existing SA cells have a connection to this new state, so the unused SA cells 
will compete to represent it. One of them will win that competition and 
thereafter will represent this new state. However, when the distributed xy- 
coordinate representation is used, there is already an SA cell that is partly 

associated with the state 4
4

� �

because that state shares the same y-coordi

nate as the SA cell’s true state: 3
4

� �

. This “false” SA cell will therefore be 

more stimulated than the unused SA cells and will probably win the compe
tition, either now representing both states or overwriting its previous asso
ciated state to represent this new state. Both are undesirable outcomes.

Hypothesis
We hypothesize that a competitive learning approach can be augmented 
using a columnar winner-takes-all mechanism to produce SA cells arranged 
in state columns from a distributed xy sensory representation, provided that 
inhibition is imposed to prevent SA cells from representing the current state 
if they are already associated with an overlapping state. This can be done 
using the bandstop inhibition described by Equation 10. Such a mechanism 
will provide the columnar structure hypothesized by Sec. 3, such that a state 
column will form for each unique XY combination and therefore for each 
state.

Method

Algorithm 2 Self-Organizing SA Cells Using Competitive Learning with 
Distributed State Representations. This describes one timestep. All plasticity 
is Hebbian unless otherwise specified. The full sequence of events listed here 
occurs in every timestep.  

Cell Firing State Cells 
Activity Propagation State Cells to SA Cells (9) 
Inhibition SA Cells: Bandstop Inhibition (10) 
Inhibition SA Cells: Columnar Winner-Takes-All 
Synaptic Plasticity State Cells to SA Cells (11 & 12) 
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Cell Firing Action Cells (13) 

Agent Agent Moves to Successor State in Grid World 
Activity Propagation State Cells & Action Cells to SA Cells (14) 
Inhibition SA Cells: Full Winner-Takes-All (15) 
Synaptic Plasticity State Cells & Action Cells to SA Cells (11, 12, 16 & 17) 
Reset All Cells Reset to Zero Activation 

Alg. 2 describes one timestep. The state cells fire, representing the current 
state. The state cells in this experiment have been modified to represent the 
agent’s state as a pair of x-y coordinates. The state layer consists of two sets 
of 10 cells, each encoding a coordinate from 1 to 10 using one-hot encoding. 
Activity propagates from the state cells to the SA cells:

hSA
i ¼

X

j
wS� SA

ij rS
j (9) 

where hSA
i is the activation of a state-action cell i, rS

j is the firing rate of state 
cell j, and wS� SA

ij is the weight of the synapse from state cell j to state-action 
cell i. The SA cells are subjected to bandstop inhibition:

rSA
i ¼

hSA
i hSA

i � tSA
min

0 tSA
min < hSA

i < tSA
max

hSA
i hSA

i � tSA
max

8
<

:
(10) 

where hSA
i is the activation of a cell i in the SA cell layer, and tSA

min & tSA
max are 

constants that define the limits of the suppressed bandstop. Competition is 
applied across the SA layer in such a way that only one mini-column, 
representing a single state, remains active. Specifically, for each mini- 
column c we compute the total activation across all of the SA cells in that 
mini-column according to hc ¼

P
i hSA

i . We then identify the mini-column 
with the largest value of hc. The firing rates rSA

i of all cells in that mini- 
column are set to one, while the firing rates of all other cells in all other mini- 
columns are set to zero. As a result of this columnar inhibition, the firing rate 
rSA

i of SA cells in the minicolumn with the highest total activation is 1 while 
the rest are suppressed to 0. We will refer to this mechanism as “Columnar 
WTA”, standing for “columnar winner-takes-all inhibition”

The synapses between the state cells and the SA cells are updated:

ΔwS� SA
ij ¼ krSA

i rS
j (11) 

where k is a learning rate constant, rS
j is the firing rate of a state cell j and rSA

i 
is the firing rate of a SA cell i. These synapses are then rescaled:
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X

i
wS� SA

ij ¼ tS� SA "j (12) 

where tS� SA is a constant.
Note that rescaling is used to bound synaptic weights instead of normal

ization because it produces more distinction between strengthened and 
unstrengthened synapses and allows for synapses to be bounded at arbitrary 
limits more straightforwardly.

A random action cell is activated:

rA
i ¼ 1 (13) 

where rA
i is the firing rate of a randomly chosen action cell i. The firing of 

this randomly-chosen action cell causes the agent to move in a corresponding 
direction from its current state. Activity propagates from the state layer and 
the action layer to the SA layer:

hSA
i ¼

X

j
wS� SA

ij rS
j þ

X

j
wA� SA

ij rA
j (14) 

The layer is then subject to full winner-takes-all inhibition:

rSA
i ¼

hSA
i hSA

i ¼ maxi hSA
i

� �

0 hSA
i <maxi hSA

i
� �

�

(15) 

where maxi hSA
i

� �
is the activation value of the most active cell in the SA 

layer. The synaptic weights between the action cells and the SA cells are 
updated:

ΔwA� SA
ij ¼ krSA

i rA
j (16) 

and so are the synaptic weights between the state cells and the SA cells 
(Equation 11). Both sets of synapses are rescaled (Equation 12) and:

X

i
wA� SA

ij ¼ tA� SA "j (17) 

where tA� SA is a constant.
All cell activations are then reset for the next timestep. Table 2 shows all 

parameters that were added or altered from previous sections.

Table 2. Table of parameters for the model 
described in Section 4.1.

Parameter Value

Action Cell to SA Cell Rescaling (tA� SA) 0.25
State Cell to SA Cell Rescaling (tS� SA) 1
SA Cell Upper Threshold tSA

max 1.5
SA Cell Lower Threshold tSA

min 0.5
Learning Rate (kÞ 100
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Results
We use an information-theoretic measure to test whether the model has 
correctly self-organized SA cell responses. This measure tests whether the 
response of an SA cell can be linked to a specific combination of state-action 
inputs. An SA cell has high single-cell information if its activity is sufficient 
to predict the presence or absence of a particular SA combination; in other 
words if that SA cell reliably responds to one state-action combination and 
reliably does not respond to any other state-action combination.

To generate this measure, we generate every combination of state-action 
that could be encountered in the environment on which the model was 
trained. This is every action, taken in every state that is not covered by 
a wall. (The blue area in Figure 5(a) contains 64 free states and so 64*9 = 576 
state-action combinations). For each combination, the appropriate state cells 
and action cells are activated, and this activity propagates to the SA cells as in 
Equation 14. These cells were subjected to WTA inhibition (Equation 15). 
The responses of these cells are recorded and used to calculate the amount of 
information that each SA cell’s response gives about the stimulus. This is 
calculated as follows:

Iðs;~RÞ ¼
X

r2~R

PðrjsÞ log2
PðrjsÞ
PðrÞ

(18) 

where s is a particular stimulus (a particular state-action combination) and 
~R is is the set of recorded responses of the SA cell. The maximum amount of 
information that an SA cell can carry is given by the equation Imax ¼ log2ðnÞ
bits where n is the total number of state-action combinations. Thus Imax ¼

log2ð576Þ ¼ 9:1699 bits.
Figure 12 shows that the model is able to learn SA cells with full single-cell 

information even when the state is represented in a distributed manner by 
two pieces of independent information (the x- and y-coordinates). 
Furthermore, Figure 13 shows that each state-action combination is repre
sented by an SA cell.

Figure 14 shows that the agent has explored more than half of an open 10 
by 10 state map after ~100 timesteps and almost every possible state after 
~500 timesteps. The agent will have learned to represent at least one state- 
action in each state and, assuming that the agent learns how they are 
connected at the same time as described in the next section, this means 
(assuming the presence of a read-out mechanism) that the agent should be 
able to form a (convoluted) path from almost any state to almost any other 
state after only ~500 timesteps (Figure 21). However, it takes considerably 
longer (about 2000 timesteps) to fully learn all of the SA combinations 
available in the environment and so to learn all of the possible transitions 
between those states, which is required for optimal planning.
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Figure 12. Single cell information learned by SA cells in a task using overlapped distributed xy 
representations of the agent’s state. Maximum information is indicated by the horizontal dashed 
line, and the maximum number of SA cells that can form without redundancy is indicated by the 
vertical dashed line.

Figure 13. Firing of SA cells in a task using overlapped distributed xy representations of the 
agent’s state. The number of SA cells which fire for each state-action combination is recorded 
before and after training. (a) demonstrates that before training, a small number of SA cells will 
fire uniquely for one state-action combination (see also Figure 12(a)) due to the random initial 
synaptic connectivity between state cells, action cells and SA cells. A few state-action combina
tions are therefore uniquely represented by one SA cell before training. (b) then shows that after 
training, all state-action combinations are uniquely represented by one SA cell.
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Discussion
The model is able to successfully form SA cells when the model uses over
lapping distributed xy representations of the agent’s state. Successfully self- 
organizing SA cells using the method described in this section seems to 
require both a columnar winner-takes-all mechanism as well as a bandstop 
inhibition mechanism.

From a modelling perspective, the columnar winner-takes-all (columnar 
WTA) approach is useful because it naturally ensures the formation of state 
mini-columns. That is, if each SA cell encodes a combination of one state and 
one action, then for every state (position) there is therefore a vector of SA 
cells associated with that state, each representing a different action (direction 
of movement) that can be taken in that state. If the SA layer self-organizes 
such that SA cells representing the same state are drawn from the same 
mini-column (as in Hasselmo 2005 (Hasselmo 2005) and Martinet 2011 
(Martinet et al. 2011)) then it becomes possible for inhibitory mechanisms 
to control the relative activity between states (by controlling the relative level 
of overall activity between mini-columns) whilst independently controlling 
the relative activity between different actions that can potentially be taken in 
each state (by controlling the relative activities of SA cells within the same 
mini-column).

In Section 3 we used this columnar structure to keep the level of activity in 
each active mini-column constant, allowing the propagating activity to 
spread through the SA layer without decaying. The columnar WTA learning 
model described in this section shows that state-action cells naturally self- 
organize into state columns given lateral columnar inhibition (which has 

Figure 14. This figure records how many states (Figure 14(a)) and SA combinations (Figure 14(b)) 
are encountered when the agent is allowed to explore for different numbers of timesteps. It 
shows that the agent has explored more than half of an open 10 by 10 state map after ~100 
timesteps and almost every possible state after ~500 timesteps.
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been observed experimentally (Buxhoeveden 2002)). The Columnar WTA 
learning model is therefore able to form a structure that allows for easy 
management of the propagation of activation through the layer during 
planning. The requirement for different inputs (state, or state & action) 
and competition types at different points in each timestep is potentially 
concerning from the point of view of biological realism, however, as it is 
unclear how the specific order of events described in the simulation proce
dure for this experiment would be implemented in a more biologically 
realistic continuous-time model.

The primary problem that arises from using distributed sensory repre
sentations is that an SA cell which already encodes a state with a given 
x-coordinate or y-coordinate will be “unfairly” advantaged when compet
ing to represent other states with the same x- or y-coordinate. Simple 
competitive learning may therefore fail to produce SA cells that only 
encode one state. Using only a columnar winner-takes-all mechanism 
may also fail for this reason, producing state columns that respond to 
more than one state. To learn a state representation in the task with 
distributed (XY) state representations therefore requires a method to 
prevent cells from “unfairly” competing. We have therefore chosen to 
use a bandstop inhibition mechanism.

An important point to note is that this section and the previous section 
have presented the model in two fundamentally different “modes” with 
fundamentally different dynamics. In the “planning” mode, described in 
Sec. 3, activity spreads outwards through the SA layer. This activity is 
constrained by normalizing the level of activity in each SA column. By 
contrast, in the “learning” mode described above, SA cells are subject to 
various forms of winner-takes-all inhibition such that only one SA col
umn or one SA cell is active at any given time. The levels and types of 
inhibition are therefore fundamentally different between these two modes. 
Furthermore, the synapses between state, action, and SA cells are fixed 
during planning but are plastic during learning. These differences between 
the model’s learning and planning modes is necessary because the plan
ning and learning modes require fundamentally different kinds of cell 
responses (a propagating wave vs. a single representative cell). Producing 
these different representations requires different inhibition. By the same 
token, allowing synapses to be plastic during the planning mode seems 
likely to lead to incorrect learning.

The next two sections describe how the model forms recurrent synapses 
between SA cells to encode the transition structure of the environment, and 
how the model learns the gating cells that are required for gating motor 
output during planning. The SA map learning mechanism is not directly 
affected by the state representation (provided that SA cells still form 
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properly) and the gating cells form using competitive learning mechanisms 
similar to those described in this section.

Simultaneous Self-organization of state-action cells and a cognitive map 
encoded in the recurrent connections between them

Statement of problem
The overarching aim of this section is to explore how the cognitive map 
used to perform planning tasks in Section 3 might be learned in 
a biologically plausible fashion. The previous section successfully demon
strates that SA cells can learn to represent specific combinations of states 
and actions, even when sensory feedback is distributed and states are 
defined by multiple factors. However, in order to encode a full cognitive 
map, it is necessary not only to represent the states (or combinations of 
states and actions) within an environment, but also how an agent may 
transition between those states.

A number of previous models (Matsumoto et al. 2011) have tried to 
represent the topology of the environment within a layer of state cells by 
connected state cells that represent neighbouring states. Recurrent con
nectivity within the state layer then represents the topological structure 
of the environment. But this kind of state map is too simple for complex 
planning, especially in non-spatial tasks, because it does not encode the 
relationship between the agent’s own actions and state transitions. 
A map described purely in terms of state cells only describes the topol
ogy of the environment, and does not describe how an agent could 
produce actions to deliberately transition between states. In order to 
perform planning tasks we must also encode how specific actions lead 
to specific state transitions. In other words, we need to produce a causal 
map rather than a merely topological one. In this paper, we show that 
this form of map can be produced by utilizing a trace rule to learn 
a reverse causal model in the recurrent connections between state-action 
(SA) cells.

Hypothesis
We hypothesize that the a trace learning rule that incorporates 
a memory trace of neural activity in the postsynaptic cell can connect 
state-action cells that fire close together in time, producing various kinds 
of cognitive maps. In particular, we hypothesize that trace learning can 
produce connectivity as illustrated in Figure 2. This diagram shows how 
cells can encode an inverse causal model of the relationship between 
a successor state and the state-action combination which produces that 
successor state. That is to say, connections are strengthened from all of 
the SA cells representing the state that the agent ends up in to the SA 
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cell that encodes the state-action combination that brings about that 
transition.

The self-organization of state-action cells was demonstrated in the 
previous section. This section will show a combined learning process 
that self-organizes SA cells to respond to particular state-action com
binations (as in the previous section) whilst also learning a causal 
cognitive map in the recurrent connections between the SA cells as 
described above.

Task
An agent is placed in a 8 by 8 grid world, either an open environment 
or a 4-room maze, visible in Figure 5(a,b) respectively. During training, 
the agent was able to move in any of the eight cardinal directions or 
remain stationary. At each timestep, it chooses a random action and 
transitions to the appropriate successor state. The agent’s task is to 
explore the environment, self-organize SA cells to encode the state- 
action combinations that it experiences, and self-organize recurrent 
connectivity between these SA cells to encode the transitions that it 
experiences.

In other words, we expect that the agent, after training, should have 
recurrent connectivity between (self-organizing) state-action cells which 
represents the transitions available in the environment. If it does not – if 
the recurrent connectivity encodes transitions that do not exist in the 
environment, or if the recurrent connectivity fails to encode transitions 
that do exist in the environment – the agent will have performed poorly 
at this task.

Network model
The architecture of the network model used in this experiment is depicted 
in Figure 15. A layer of state cells encodes the current state of the agent 
within its environment. A layer of action cells encodes motor feedback 
about the action the agent has just taken. Both state and action representa
tions use one-hot encoding in this experiment. A final layer contained 
potential SA cells.

These SA cells receive full afferent connectivity from the sensory and 
action layers with initially random weights. The layer of SA cells is 
structured into a series of mini-columns. The number of these columns 
was made equal to the number of states and the number of cells in each 
column equal to the number of actions possible. The number of proto- 
SA cells therefore equalled the number of SA combinations necessary 
to learn. There is all-to-all recurrent connectivity between cells in the 
SA layer, but all recurrent synapses begin with a starting weight of 
zero.
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Perceiving the current state. A specific sequence of events occurs in each 
timestep of the learning phase, as listed in Algorithm. The relevant 
parameters are listed in Table 3. First of all, a state cell fires, repre
senting the current state. State cell firing is one-hot, so each state cell 
represents a single unique state and only one state cell is active at 
a time. 

Algorithm 3 Self-Organizing SA Cells and Learning SA Map. This describes 
one timestep, expanded from alg. 2. The steps that have been added in this 
version are emphasized with italics. All plasticity is Hebbian unless otherwise 
specified. The full sequence of events listed here occurs in every timestep.  

Cell Firing State Cells (Equation 19) 
Activity Propagation State Cells to SA Cells (20) 
Inhibition SA Cells: Columnar Winner-Takes-All 
Synaptic Plasticity State Cells to SA Cells (21 & 22) 
Synaptic Plasticity Trace Learning: SA Cells to SA Cells (23 & 24) 

Figure 15. Network architecture for learning a cognitive map in the recurrent connections 
between self-organizing SA cells.

Table 3. Table of parameters for self- 
organizing model incorporating layer 
of SA cells described in Section 4.2.

Parameter Value

Input Learning Rate (kINÞ 100
Trace Learning Rate (kRC) 10
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Firing Action Cells (25) 

Agent Agent Moves to Successor State in Grid World 
Activity Propagation State Cells & Action Cells to SA Cells (26) 
Inhibition SA Cells: Full Winner-Takes-All (27) 
Synaptic Plasticity State Cells & Action Cells to SA Cells (21, 22, 28 & 29) 
Synaptic Plasticity Set Memory Trace: SA Cells 
Reset All Cells Reset to Zero Activation 

rS
i ¼

1 i ¼ current state
0 i � current state

�

(19) 

where rS
i is the firing rate of a state cell i.

Activity propagates from the state cell layer to the SA layer, activating the 
SA cells in that layer as follows:

hSA
i ¼

X

j
wS� SA

ij rS
j (20) 

where hSA
i is the activation of a state-action cell i, wS� SA

ij is the weight of 
a synapse from a state cell j to that state-action cell, and rS

j is the firing rate of 
state cell j.

The potential SA cells in the SA layer are grouped in “mini-columns”. 
These mini-columns are analogous to the mini-columns used in certain 
alternative models.10 Each mini-column should self-organize to encode one 
and only one state, and so the number of mini-columns must be greater than 
or equal to the number of states to ensure that all possible state-action 
combinations are learned. Similarly, the number of state-action cells in 
each mini-column must be greater than or equal to the number of possible 
actions in each state.

Mini-columns are able to compete with all other minicolumns to fire, and 
competition is applied across the SA layer in such a way that only one mini- 
column, representing a single state, remains active. Specifically, for each 
mini-column c we compute the total activation across all of the SA cells in 
that mini-column according to hc ¼

P
i hSA

i . We then identify the mini- 
column with the largest value of hc. The firing rates rSA

i of all cells in that 
mini-column are set to one, while the firing rates of all other cells in all other 
mini-columns are set to zero. As a result of this columnar WTA inhibition, 
the firing rates rSA

i of SA cells in the minicolumn with the highest total 
activation are 1 while the rest are suppressed to 0.
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Only one minicolumn is now active, and Hebbian learning is applied to 
the synapses wS� SA

ij that project from the input state layer to the SA layer as 
follows:

ΔwS� SA
ij ¼ kINrSA

i rS
j (21) 

where kIN is a learning rate constant, rS
j is the firing rate of a state cell j and 

rSA
i is the firing rate of an SA cell i. These synapses are then rescaled so that:

X

i
wS� SA

ij ¼ 1"j (22) 

The resultant strengthening of the synapses from the currently active state 
cell to the currently active SA minicolumn produces a state column: a pool of 
SA cells which are linked to a specific set of sensory cues representing 
a particular state (location), as described in Section 3.

Learning an inverse causal model. As seen in Figure 2, the learned recurrent 
connectivity between SA cells after learning should be many-to-one, such 
that an SA cell receives afferent synapses from every SA cell in its successor 
state. The required recurrent connectivity may be set up by applying a trace 
learning rule that incorporates a memory trace �rSA

i of neural activity in the 
postsynaptic neuron i. The memory trace can be computed in various ways. 
In this paper, we set the memory trace of a neuron on timestep t to be equal 
to its firing rate in the previous timestep t � 1. Thus, at this point in the 
timestep, the memory trace term �rSA

i encodes the SA cell that fired in the 
previous timestep, while the current firing of SA cells in the current state rSA

j 

encodes all SA cells in the successor state. The desired connectivity therefore 
occurs if the recurrent synapses between the cells in the SA layer are updated 
according to a trace learning rule as follows:

ΔwSA� SA
ij ¼ kTR�rSA

i rSA
j (23) 

where kTR is a learning rate constant, �rSA
i is a memory trace of the post

synaptic SA cell i where the memory trace �rt
i is set to be equal to the firing 

rate rt� 1
i of the cell at the previous timestep t � 1, and rSA

j is the firing rate of 
the presynaptic SA cell j. These synapses are then rescaled so that:

X

i
wSA� SA

ij ¼ 4 "j (24) 

The implementation of the trace learning rule 23 in the recurrent connec
tions between the SA cells allows the network model to learn an inverse 
causal model of how the agent’s actions lead to transitions between states.
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Taking an action. A random action cell is then stimulated manually as 
follows:

rA
i ¼ 1 (25) 

where rA
i is the firing rate of a randomly chosen action cell i.

The firing of this randomly chosen action cell causes the agent to move in 
a corresponding direction from its current state. The SA cells are now 
activated by a combination of state and action activity as follows:

hSA
i ¼

X

j
wS� SA

ij rS
j þ

X

j
wA� SA

ij rA
j (26) 

The state input that the SA cells are now receiving is the same as before, 
because the state cells have not yet updated. Cells in the SA layer have already 
formed synapses from the firing state cells (Equation 21) and so the most 
active SA cells are those in the state column corresponding to the current 
state. A new form of winner-take-all inhibition is applied, which leaves only 
a single cell in the SA layer active:

rSA
i ¼

hSA
i hSA

i ¼ maxi hSA
i

� �

0 hSA
i <maxi hSA

i
� �

�

(27) 

where maxi hSA
i

� �
is the activation of the most active cell in the SA layer.

The incoming state cell input (Equation 26) ensures that the most active 
SA cells in the layer are those representing the current state and so the SA 
cell which wins the competition to fire will be one from the relevant state 
column. Hebbian learning strengthens the afferent synapses that this cell 
receives from both the input state cells (through Equations. 21 and 22) and 
input action cells through the following equations:

ΔwA� SA
ij ¼ kINrSA

i rA
j (28) 

where the synapses are then rescaled so that:
X

i
wA� SA

ij ¼ 0:25 "j (29) 

Through these strengthened connections from the sensory and action cells 
the SA cell has learned to be activated by the current combination of state 
and action.

At this point the firing rates (rSA) of the SA cells are recorded and 
will become �rSA

j in the next timestep. The activity of all cells is then set 
to zero.
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Results
To test the ability of the model to learn the transition matrix for its environ
ment, we compare the model’s learned transition matrix (encoded in the 
recurrent synapses between SA cells) to the true transition matrix. We 
created the true transition matrix by algorithmically subjecting the agent to 
every combination of state and action that could be encountered in the 
environment on which the model was trained. This is every action, taken 
in every state that is not covered by a wall. (The blue area in Figure 5). We 
then recorded the state transition that occurred to produce the ground truth 
transition matrix.

After producing the ground truth transition matrix, we then decoded the 
recurrent synapses wSA� SA from the above experiment to derive the network’s 
own learned transition matrix. In the case of a cognitive map encoded in 
a layer of state-action cells, as described in this section, an encoded transition 
is a prediction that a state-action combination will produce movement to 
a successor state. In neural terms, a strong synapse from a presynaptic SA cell 
i to a postsynaptic SA cell j encodes a prediction that the state-action 
combination represented by SA cell j will transition the agent to the successor 
state represented by presynaptic SA cell i. This connectivity is illustrated in 
Figure 2.

We decoded the recurrent connectivity in the SA layer to identify which 
predicted transitions were being encoded by these recurrent connections. 
This decoding process took place as follows.

Again, we generated every combination of state-action that could be 
encountered in the environment on which the model was trained. For each 
combination, the appropriate state cells and action cells are activated, and 
this activity propagates to the SA cells as in Equation 26. The firing rates of 
these cells was then rescaled so that all firing rates were between 0 and 1, and 
any SA cell which was firing at a rate > 0.99 was selected. These cells were 
considered to represent that state-action combination. We could then decode 
the agent’s learned transition matrix by analysing each synapse wSA� SA

ij and 
recording it as a transition from the state-action combination represented by 
SA cell i to the state represented by SA cell j. We count a synapse as encoding 
a transition if its weight wij is greater than 0:01. The default value of such 
synapses before learning is 0. Note that because the SA synapses encode 
a backwards model of the environment,11 the direction of the synapse must 
be reversed to get the direction of the transition.

Having produced a ground truth transition matrix and a decoded learned 
transition matrix, we can compare the two to calculate the following terms:
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● True positive (tp): a transition that appears in both the true and learned 
transition matrices. This is a possible transition that has been learned 
correctly.

● False positive (fp): a transition that appears in the learned transition 
matrix but not in the true matrix. This is a transition that the network 
thinks is possible but is not.

● True negative (tn): a transition that does not appear in the true or 
learned transition matrices. This transition is correctly understood to 
be impossible.

● False negative (fn): a transition that does not appear in the learned 
matrix but does appear in the true matrix. This is a possible transition 
that the agent has failed to learn.

Thus, tp is the total number of true positives found when comparing the 
learned and ground truth transition matrices, fp is the total number of false 
positives, tn is the total number of true negatives, and fn is the total number 
of false negatives.

These terms can be used to calculate the precision (Equation 30) and recall 
(Equation 31) of the network. The precision represents the proportion of the 
learned transitions that are genuine (as opposed to false positives); the 
recall12 measures the proportion of true transitions existing in the environ
ment that the network has successfully learned. Figure 16 shows both mea
sures for the model described in this section.

Precision ¼
tp

tpþ fp
(30) 

Recall ¼
tp

tpþ fn
(31) 

Discussion
Section 4.2 shows that trace learning is able to link SA cells in such a way as 
to store the topological relationships between states in the synaptic connec
tivity between these cells (Figure 16). At each timestep the network receives 
sensory & delayed action feedback and – if no SA cell already responds to 
this input combination – an SA cell learns to represent this combination. 
This SA self-organization is a two-step process, with a column of SA cells 
learning to represent the current state and one SA cell in that column 
learning to further respond to an action taken in that state. This means 
that the self-organization process produces a “state column” made up of SA 
cells that all respond to the current state.

The agent’s action transitions the agent into a new state (location) at the 
next timestep where it receives a new set of sensory cues, prompting the 
network to learn another “state column”. Trace learning strengthens 
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recurrent connections to the single13 postsynaptic SA cell (representing the 
former state and the action that was taken in that state) from the SA cells in 
the mini-column representing the current state. This results in the many-to- 
one causal synapses we illustrated in Figure 2. The resultant network archi
tecture encodes a causal cognitive map of its environment in terms of states 
and actions, such that it can plan using the inductive process described in 
Sec. 3.

Using a columnar architecture appears to be necessary for the planning 
stage but also greatly improves the efficiency of learning during exploration: 
the columnar WTA allows an SA cell to receive strengthened synapses from 
every SA cell in the resultant state (i.e. in the active state column), rather than 
simply the SA cell that is next to fire. The network described in this section 
has 9 possible actions that it can perform in each state and so using 
a columnar architecture will on average learn a full map after only experien
cing 11% of the possible SA combinations.

The SA mapping mechanism described in this section relies on the use of 
a “memory trace” that allows a presynaptic neuron to continue strengthening 
synapses to a postsynaptic neuron even after the postsynaptic neuron has 
stopped firing (Equation 23). There are certain biological mechanisms that 
produce similar effects. In particular, experimental research has shown that 
cells which have previously experienced high firing rates may show increased 

Figure 16. This figure shows the precision and recall achieved by the self-organizing columnar 
SA model described in Section 4.2. This model was run for 5000 timesteps of exploration in an 
open 8 × 8 environment. Precision and recall can vary between 0 and 1, and are plotted here as 
percentages. We observe that both precision and recall are at 100%. The model is able to 
represent all of the true transitions existing in the environment, and represents them all 
correctly.
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excitability for some time afterwards, an effect which appears to be caused by 
the protein CREB (Rogerson et al. 2014). The raised excitability produced by 
CREB could potentially allow connections to form between SA cells that fire 
in succession, producing connectivity similar to that produced by a trace 
rule. CREB is often implicated in the formation of episodic memory traces. 
Evans and Stringer demonstrated a somewhat similar effect by extending the 
amount of time that postsynaptic activity or presynaptic activity takes to 
decay in a spiking cell model and showing that this allows these cells to 
remain active long enough to receive and associate several synaptic inputs in 
sequence (Evans and Stringer 2012).

The effects of CREB are not a perfect fit for the trace learning rule, 
however. CREB aids episodic memory formation by increasing the excitabil
ity of a cell that has previously fired, making it more likely to fire again in 
response to further stimuli. This is in contrast to the memory trace employed 
in the previous experiment, which allows a presynaptic neuron to continue 
strengthening synapses to a postsynaptic neuron even after the postsynaptic 
neuron has stopped firing. This allows the SA cell which fired in the previous 
timestep to strengthen its connections from the currently active SA column 
without strengthening its connections from the currently firing state and 
action cells. If the SA cell encoding the previous state-action combination 
remains active (due to CREB-based excitability) as the agent moves to the 
next state, we would expect it to start forming connectivity to this new state, 
interfering with the self-organization of a new SA cell.

The simulation procedure used in this section requires careful timing of 
inputs (as in Sec. 4.1), competition and trace formation/learning. Recurrent 
connectivity between SA cells is learned according to a function of present 
SA firing and previous SA firing (via a memory trace). This means that it is 
very important which cells are firing when the SA memory trace is calculated. 
To form the synapses from state-column to SA cell shown in Figure 2, the 
postsynaptic trace �r must be set once WTA inhibition has produced a single 
SA cell for the previous timestep, but trace learning must occur while the 
whole state column is active for the current state.

Self-organization of gating cells using bandstop inhibition

Statement of problem
The question of how such a network should output and use the results of the 
plan produced in the SA layer is not trivial. To produce an action based on 
an internal planning process requires several linked mechanisms: firstly, the 
network must have a mechanism to determine when the planning process is 
complete to some degree of satisfaction; secondly, the network must have 
a mechanism to determine from the planning process what action is 
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considered best to take in the current state. In other words, the network must 
read off the right action at the right time.

Most of the literature to date (Hasselmo 2005; Cuperlier et al. 2007; 
Martinet et al. 2011) posits that a gating mechanism is most suitable for 
this task. That is to say that an element of these models ensures than an 
action cannot be passed to the motor effectors unless a certain set of condi
tions are met. This gating mechanism is generally implemented as literal 
“gating cells” which receive input from both the sensory mechanism (repre
senting the current state) and the planning mechanism, and which will only 
fire when they receive sufficient input from both. In other words, the signals 
from the route planning layer are gated by the current state of the agent 
before being passed to the action layer. These gating cells act as conduits of 
information from the planning mechanism to the motor effectors. However, 
there remains the question of how these gating cells acquire their distinctive 
connectivity (Figure 1) and properties.

Hypothesis
We hypothesize that the self-organization of the gating cells can be achieved 
by a form of competitive learning fundamentally similar to that of self- 
organizing state-action cells. This is because SA cells must also learn to 
respond to a specific combination of two inputs.

Task
An agent is placed in a 10 by 10 grid world (either an open environment or 
a small maze, shown in Figure 5(a,b) respectively). The agent is able to move 
in any of the eight cardinal directions. At each timestep, it chooses a random 
action and transitions to a new state. The agent’s task is to explore the 
environment and self-organize gating cells to encode the state-action combi
nations that it has experienced (along with SA cells as in the previous two 
sections).

We expect that the agent, after training, should have developed gating cells 
which respond strongly to an experienced state-SA combination. If it does 
not – if the gating cells respond exclusively to sensory inputs or exclusively to 
SA inputs, if the gating cells do not distinctly encode a single state-SA 
combination – the agent will have performed poorly at this task.

Network model
The architecture of the network is shown in Figure 17. A layer of state cells 
encode the agent’s current state using a one-hot encoding. A layer of action 
cells encode the action that the agent is taking or has just taken using 
a one-hot encoding. A layer of SA cells receive afferent synapses from the 
state layer and action layer. A layer of gating cells receive afferent synapses 
form the state layer and the SA layer. Where connectivity exists, it is all-to- 

NETWORK: COMPUTATION IN NEURAL SYSTEMS 87



all with random initial weights. The only exception is the recurrent con
nectivity within the state-action layer, which is all-to-all with zero initial 
weights, as described in Sec. 4. 

Algorithm 4 Full Model with Self-Organization of Gating Layer. This 
describes one timestep, expanded from alg. 3. The steps that have been 
added in this version are emphasized with italics. All plasticity is Hebbian 
unless specified otherwise. The full sequence of events listed here occurs in 
every timestep.  

Cell Firing State Cells (Equation 19) 
Activity Propagation State Cells to SA Cells (20) 
Inhibition SA Cells: Columnar Winner-Takes-All 
Synaptic Plasticity State Cells to SA Cells (21 & 22) 
Synaptic Plasticity Trace Learning: SA Cells to SA Cells (23 & 24) 
Firing Action Cells (25) 
Agent Agent Moves to Successor State in Grid World 
Activity Propagation State Cells & Action Cells to SA Cells (26) 
Inhibition SA Cells: Full Winner-Takes-All (27) 
Synaptic Plasticity State Cells & Action Cells to SA Cells (21, 22, 28 & 29) 

Figure 17. Architecture of the proposed model with self-organizing gating layer.
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Plasticity Set Memory Trace: SA Cells 

Activity Propagation State Cells & SA Cells to Gating Cells (32) 
Inhibition Gating Cells: Bandstop Inhibition (33) 
Inhibition Gating Cells: Full Winner-Takes-All (34) 
Synaptic Plasticity State Cells & SA Cells to Gating Cells (35, 36, 38 & 39) 
Synaptic Plasticity Gating Cells to Action Cells (37 & 40) 
Reset All Cells Reset to Zero Activation

Algorithm 4 shows the sequence of events that happens in one timestep. 
Parameters are given in Table 4. We can see that the initial sequence of 
events (those not in italics) in each timestep is exactly the same as in 
algorithm, described in Sec. 4.2 At the end of this part of the process 
a single SA cell is active, as is a single state cell and a single action cell.

Activity propagates from state cells and SA cells to gating cells, as follows:

hG
i ¼

X

j
wS� G

ij rS
j þ

X

j
wSA� G

ij rSA
j (32) 

where hG
i is the activation of a gating cell i, 

P
j wS� G

ij rS
j is the activity 

contributed by state inputs and 
P

j wSA� G
ij rSA

j is the activity contributed by 
SA inputs.

We then apply “bandstop” inhibition to the gating cells. This inhibits 
activity within a certain bandstop, inhibiting the mid-level activity typical 
of a gating cell which only partially represents current sensory-SA input. This 
prevents one gating cell from successfully competing for all state-SA combi
nations involving the same state, or all state-SA combinations involving the 
same SA combination, and so prevents the formation of single gating cells 
that respond to many state-SA combinations or gating cells that are con
stantly overwriting themselves. Bandstop inhibition takes place as follows:

rG
i ¼

hG
i hG

i � tG
min

0 tG
min < hG

i < tG
max

hG
i hG

i � tG
max

8
<

:
(33) 

Table 4. Table of model parameters for Section 4.3.
Parameter Value

Gating Cell Upper Threshold tG
max 1.5

Gating Cell Lower Threshold tG
min 0.5

Gate Learning Rate (kGÞ 100
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where hG
i is the activation of a cell i in the gating cell layer, rG

i is the firing 
rate of that cell and tG

min & tG
max are constants that define the limits of the 

suppressed bandstop.
After bandstop inhibition has been applied, winner-takes-all competition 

is applied by setting the firing rate of the most active gating cell to 1 and the 
firing rates of all other gating cells to zero as follows:

rG
i ¼

1 rG
i ¼ maxi rG

i
� �

0 rG
i � maxi rG

i
� �

�

(34) 

where maxi rG
i

� �
is the activity of the most active cell in the gating layer.

The synaptic weights between the state cells and gating cells are updated as 
follows:

ΔwS� G
ij ¼ kGrG

i rS
j (35) 

and the synaptic weights between SA cells and gating cells are updated as 
follows:

ΔwSA� G
ij ¼ kGrG

i rSA
j (36) 

and the synaptic weights between gating cells and action cells are updated as 
follows:

ΔwG� A
ij ¼ kGrA

i rG
j (37) 

where kG is a learning rate constant.
These synapses are then rescaled so that:

X

i
wS� G

ij ¼ 0:5 "j; (38)  

X

i
wSA� G

ij ¼ 0:5 "j; (39) 
X

i
wG� A

ij ¼ 1 "j; (40) 

Results
To test the self-organization of gating cells we used an information-theoretic 
measure. This measure tests whether the response of a gating cell can be 
linked to a specific combination of state and SA inputs. A gating cell has high 
single-cell information if its activity is sufficient to predict the presence or 
absence of a particular state cell & SA cell combination; in other words if that 
gating cell reliably responds to one state cell & SA cell combination and 
reliably does not respond to any other state-SA combination.

To generate this measure, we generate every combination of state cell and 
SA cell that could be encountered in the environment on which the model 
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was trained (every state that was not covered by a wall, combined with every 
cell in the SA layer). For each combination, the appropriate state cell and SA 
cell are activated, and the activity propagates to the gating cells as in 
Equation (32). We then thresholded the gating cells as follows:

rG
i ¼

hG
i hG

i > tG

0 hG
i � tG

�

(41) 

where tG is a thresholding constant. We use thresholding (Equation 41) 
rather than the bandstop and WTA inhibition described earlier in this 
section (Equations 33 and 34) because this is the form of inhibition that 
gating cells experience during the planning process (Equation 6).

Gating cells that were still firing at a high rate after inhibition were 
recorded. The responses of these cells were used to calculate the amount of 
information that each gating cell’s response give about the stimulus. This 
calculation was as follows:

Iðs;~RÞ ¼
X

r2~R

PðrjsÞ log2
PðrjsÞ
PðrÞ

(42) 

wheresis a particular stimulus (a particular state-SA combination) and ~R is 
the set of recorded responses of the gating cell. The maximum possible 
information for a gating cell is equal to:

log2 NSTNSAð Þ (43) 

where NST is the number of free states in the environment (see Figure 5) and 
NSA is the number of cells in the SA layer.

Figure 18 shows that the model was able to self-organize gating cells with 
the maximum possible information in both an open and a 4-room environ
ment, and was able to do so for every state-SA combination that needed to be 
encoded. The maximum possible information for a gating cell is calculated 
according to Equation (43): log2 64 � 900f g ¼ 15:81 for the open environ
ment and log2 44 � 900f g ¼ 15:27 for the 4-room environment. If a gating 
cell encodes the maximum possible information, this means that it has 
learned to respond uniquely to a single combination of state and SA cells. 
Figure 18 shows that the maximum possible number of gating cells are able 
to learn the maximum possible information in both open and more complex 
4-room environments.

Figure 19 shows that these gating cells covered every valid14 combina
tion of state cell and SA cell; in other words, that at least one gating cell 
fires uniquely for each valid combination of state and SA cell, and 
therefore that the gating layer is able to pass output from any SA cell 
to the action layer provided that they have the appropriate efferent 
connectivity to the action cells. Figure 20 indicates that this efferent 
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connectivity has also self-organized; it shows that the appropriate num
ber of gating cells have formed strong connections to one and only one 
action cell, allowing them to pass on activity to that cell and so produce 
action output as in Sec. 3.

Figure 21 then explores the learned model’s ability to plan (according to 
the mechanisms in Sec. 3). This figure shows the percentage of correct 
navigation trials (navigating from one random state to a random goal state) 
that this model is able to achieve after exploring for a given number of 
timesteps during training. During training, the model uses the learning 
mechanisms described in this section as it explores the environment; during 
planning the model uses the planning mechanism described in Sec. 3. We see 
that the percentage of successful planning trials rises very quickly, even with 
relatively little training time. Figure 22 makes this clearer by showing the 
number of state-action combinations that the model experiences during 
learning. By comparing the percentage success rates in Figure 21 with the 
percentage of SA combinations experienced in Figure 22, we can see that the 
model’s ability to plan grows much faster than its experience of the environ
ment. We also see that the model reaches 100% planning success long before 
it has experienced all SA combinations in the environment. In fact, only 
about 65% knowledge of the environment seems to be required for the model 
to navigate perfectly.

Figure 18. Single cell information analysis of gating cells after learning. A horizontal dashed line 
indicates the maximum possible information that a gating cell can encode. This is calculated as 
log2 NST NSAð Þ, where NST is the number of available states and NSA is the total number of SA cells. 
A vertical dashed line indicates the maximum number of gating cells that can self-organize; this 
is effectively equal to NST NA where NA is the number of available actions (9). This is because there 
are only NST NA legitimate combinations of state and SA in any environment that a simulated 
agent can experience, since the state represented by the state cells must always be the same 
state as represented by the SA cells during exploration. We see that in both experiments, the 
maximum number of gating cells that can self-organize have learned to encode the maximum 
possible single-cell information.
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Figure 19. The number of gating cells that encode each state-SA combination before and after 
training. Figure 19(a) shows that no gating cell fires uniquely for any combination of state and 
SA cells before the exploration period. Figure 19(b) shows that after training, gating cells fire 
uniquely for certain combinations of state and SA cells. Unlike the equivalent figure (Figure 13) in 
Sec. 4.1, which shows that at least one SA cell responds uniquely to every state-action 
combination after training, there is not a unique gating cell for every state and SA combination. 
This is because an SA cell (which encodes a unique combination of state and action) will only fire 
in conjunction with its associated state during exploration. Most state and SA cell combinations 
are therefore invalid: the cells in the gating layer will never experience this combination of 
inputs. We have therefore sorted the x-axis so that the valid state and SA cell combinations, 
which the agent can actually experience, lie along a diagonal, and we see that one gating cell 
has learned to respond to each of these valid combinations. Figure 19(c) zooms in on this 
diagonal (from Figure 19(b)) and shows that there are in fact several valid state-SA combinations 
for each state cell. This is because a number of SA cells exist for each state, each representing 
a different action in that state. We see that a gating cell fires uniquely for all of the state-SA 
combinations available for each state.
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Discussion
Earlier we hypothesized that the similarity between gating cells and state- 
action cells meant that the mechanisms which self-organize SA cells could 
also self-organize gating cells. As described previously, the purpose of the 
gating cells is to pass activity from the SA cells to the action cells if and 
only if the SA activity is related to the agent’s current state. A gating cell 
should therefore receive activity from one SA cell and the state cell (or 
combination of state cells) that encode that SA cell’s preferred state, and 
should be able to propagate activity to that SA cell’s preferred action. 
Gating cells are under heavy inhibition such that they can only produce 
firing if they are receiving both SA and state input (see Equation 6), 
meaning that they only pass on activity from an SA cell when that SA 
cell matches the current state.

The results of this experiment demonstrate that the procedure described in 
Section 4.3.4 can fully self-organize the required connectivity between state 
cells, SA cells and gating cells (Figure 18). We also show that the resultant 
cells can be used to successfully plan solutions to grid world tasks 
(Figure 21). The number of gating cells increases relatively slowly but the 

Figure 20. Efferent synaptic connectivity of gating cells after self-organization in an 8 × 8 open 
environment using the method described in Section 4.3. The x-axis shows the postsynaptic 
action cells, and the y-axis shows the presynaptic gating cells. For clarity, the y-axis has been 
sorted so that cells with a strong efferent connection to a particular action cell are grouped 
together. We see that the majority of gating cells (specifically NST NA = 576) form a strong 
synapse to one and only one action cell. This is what we expect: as in Figure 18(a) the maximum 
number of gating cells that can self-organize is 576, and these cells have also formed strong 
efferent connections to action cells, allowing them to pass on activity to the action cells and so 
produce action output as in Sec. 3.
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Figure 21. The percentage of successful trials if the model explores for a certain number of 
timesteps during training and is then used (instead of a hardwired model) to perform planning 
tasks identical to those in Section 3.

Figure 22. The percentage of SA combinations that the model has experienced after a certain 
number of timesteps. The model explores randomly, and so as its knowledge of the map grows 
more comprehensive, it becomes less likely to experience unknown SA combinations. The 
amount of environmental knowledge that the model contains therefore increases very quickly 
during early exploration but it takes many timesteps for the model’s knowledge of the environ
ment to become comprehensive.
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ability to plan improves very quickly, demonstrating that relatively low SA 
and gating coverage is necessary for successful planning.

This section is the last of three experimental sections that are each devoted 
to methods of self-organizing an aspect of the model described in Section 3 
as biologically plausibly as possible. Section 4.1 investigated mechanisms for 
self-organizing the afferent connectivity to SA cells. Section 4.2 investigated 
how the recurrent synapses between SA cells could learn to encode the causal 
transition structure of the environment in terms of states and actions. And 
finally Section 4.3 investigated mechanisms for self-organizing the afferent 
and efferent connectivity of the gating cells. In each section we have added 
the new mechanisms to the previous procedure, so that this section finally 
shows how each mechanism (SA self-organization, SA map learning, and 
gating cell self-organization) comes together to self-organize the main net
work used to perform planning tasks in Sec. 3. Section 5 will then cover the 
process of learning the sequences used by the hierarchical mechanism.

There remain certain biological implausibilities in this series of models. In 
particular, each of the three self-organization sections has required a longer 
list of activity propagation, inhibition and synaptic weight update events to 
happen in a precise order (algorithm 4). There is also the issue that the 
process described in algorithm 4 relies heavily on bandstop inhibition. 
However, bandstop inhibition is not a frequently used mechanism in model
ling of this type and we cannot guarantee that it occurs in the brain.

Replication of a detour task

Having shown that the model can perform grid world tasks, we now demon
strate that it can replicate the characteristic performance of rats running 
a detour maze task. This task is still considered one of the key tasks 
demonstrating that cognitive maps exist (Simon and Daw 2011; Russek 
et al. 2016); work in humans strongly suggests an ability to solve detour 
tasks without re-learning, and these results have not yet been replicated by 
model-free or successor-representation based models (Russek et al. 2016; 
Fakhari et al. 2018).

The detour task was originally performed by Tolman and Honzig in the 
1930’s, was re-performed by Alvernhe 2011 (Alvernhe et al. 2011) and used 
as a measure of model performance by Martinet 2011 (Martinet et al. 2011). 
Each version of this task has minor differences; this section replicates the 
version described by Martinet 2011 because it allows the fairest and most 
direct comparison between two neural network models of this task: the one 
proposed in this paper and Martinet 2011. We see it as a useful litmus test of 
the model’s basic ability to replicate map-based planning.
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Planning with probabilistic propagation
Statement of problem. In the simulations described previously in this paper, 
the propagation of activation has been considered to be essentially determi
nistic. The predictable nature of activity propagation in these simulations 
means that the model tends to produce very similar paths if it re-encounters 
the same problem (the same agent and goal positions). This does not match 
the results from rats performing a detour task: Figure 26(a) shows that 
although rats tend to take the optimal path to a goal, they will take an 
alternative path in some trials. This suggested that our model’s planning 
mechanism was overly deterministic.

Furthermore, although most of the alternative models described in 
Sec. 2 do not consider transition probabilities,15 those models that do 
consider them are based on the principle of planning through decaying 
activation. In the paradigm of decaying activation, the passage of acti
vation outwards from the goal produces the planning process. 
Activation decays as it propagates and so an optimal state-action or 
equivalent cell with receive a larger amount of activation compared to 
a less optimal cell, because the optimal state-action cell is connected to 
the source of activation (the goal) by fewer transitions and so receives 
activation that has decayed less. In this way the activation in these 
models becomes a crude approximation of the value-function that 
would be calculated by a model-based algorithmic planner (explicitly 
so in Friedrich et. al. 2016 (Friedrich and Lengyel 2016)). Decaying- 
activation models can account for transition probabilities quite easily by 
encoding them in the recurrent weights between SA cells (or their 
equivalents). Lowering the synaptic weight between two cells encodes 
that the corresponding transition is low probability and heavily reduces 
the amount of activity that propagates through this synapse. Essentially, 
low-probability transitions impart extra decay to activity passing 
through them, signalling their undesirability.

However, in the model that we have proposed in this paper (see Sec. 3), 
the wave-propagation planning mechanism relies exclusively on the timing 
of goal-based activity propagation through cells encoding the cognitive 
map, rather than how much activation those cells receive. The first SA cell 
to receive activation in each state represents the optimal action to take in 
each state, and the level of activation is not relevant. This planning 
mechanism has two primary advantages: it allows planning to become 
faster, and it removes the requirement for goal-based activation to decay, 
allowing the model to hypothetically cope with problems of much greater 
scale. It has an important disadvantage in that – because the precise 
activation of SA cells becomes irrelevant – the model cannot indicate 
transition probabilities by reducing the level of propagated activation to 
indicate a reduced transition probability. Increasing or decreasing the 
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level of activation that an SA cell receives will not change the output of 
the proposed model, because it does not change whether that SA cell was 
the first cell to receive activation.

Hypothesis. We hypothesize that a timing-based planning model must 
instead indicate transition probabilities by altering the timing of activity 
propagation, and that this can be done either by delaying propagation or 
by making the probability of propagation dependent on the strength of the 
synapse, which in turn roughly indicates the transition probability (see 
previous section). Although this is a primarily practical decision, the nature 
of synaptic transmission makes this possible, even likely, especially if we 
expect planning to take place over a relatively short period of time.

This is because synaptic transmission is naturally unreliable (Maass 
2014). Specifically, the spike of a presynaptic neuron does not reliably 
produce vesicle release. The probability of vesicle release (which depends 
on both the number of sites and the probability of release at individual 
sites) is affected by synaptic plasticity and makes up part of what is 
generally called synaptic weight (Abbott and Regehr 2004). The weaker 
the synaptic weight, the less likely that an action potential is to produce 
a postsynaptic spike at any given time. Furthermore, although cells con
nected by many tens of synaptic contacts show reliable responses to 
similar spike trains, cells that are connected by fewer synaptic contacts 
show much more variable responses because they are more reliant on the 
behaviour of individual synapses.

Modelling this process is not entirely straightforward as the stochastic 
propagation of this sort occurs on a short timescale whereas rate-coded 
models usually describe a longer period of time, averaging out individual 
spikes to produce activation values. However, we expect the planning process 
to take place over a relatively short timescale in order to produce useful 
behaviour (we explore the issue of planning speed at more length in Sections 
3 and 6) and so we hypothesize that planning may occur using a stochastic 
propagation mechanism like the one we describe.

Task. An 8 × 8 grid world is bisected by a wall into two “rooms”. There are 
two points at which the agent may pass through the wall (Figure 9) called 
“gates”. The agent is placed in one room, equidistant from both gates, and 
the goal is placed in the other room, likewise equidistant. The number of 
trials in which the agent passed through each “gate” is recorded. The model 
may perform the task in one of two conditions.

Normal The model has learned the environment using the mechanisms 
described in the previous section, and performs the task “as is”. The recur
rent SA to SA synapses that indicate the existence of transitions in the 

98 H. O. C. JORDAN ET AL.



cognitive map are equal in weight, and all other recurrent synapses remain at 
zero.

Reduced The model is the same as in the “Normal” condition but the 
synapse representing the transition through the lower gate has been reduced 
to 10% of its original value.

Method. The network carries out planning as described in Sec. 3, with the 
single exception that the mechanism for propagating activity through the 
network has changed. In Sec. 3, SA cells are activated as follows:

hSA
i ¼

X

j
wGL� SA

ij rGL
j þ

X

j
wSA� SA

ij rSA
j (44) 

where 
P
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j is the summed input received from the goal cells and 
P

j wSA� SA
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j is the summed recurrent SA input.
In this experiment, in which we introduce probabilistic planning, SA 

activation is as follows:
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where pGL� SA
ij is stochastic, being either 1 or 0 depending on the value of wij 

as follows:
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As described in Sec. 4.2, the recurrent weights between SA cells are scaled 
such that:

X

j
wSA� SA

ij ¼ 4 "i (47) 

where 
P

i wSA� SA
ij is the sum of afferent weights received by postsynaptic cell 

i. In practice a cell will receive synapses from 9 cells (encoding 9 actions in its 
predicted successor state) so an individual synapse will usually have a value 
of 0.44 (4/9).

Results. Figure 23 shows that if the agent’s encoded cognitive map indicates 
(by way of reduced synaptic weights) that one path to a goal has a lower 
transition probability than another path, then the agent is much more likely 
to take the latter alternative path. In this experiment, the weight of the SA to 
SA synapses encoding the lower gate was reduced to 10% of their original 
value. We can see that in the normal condition (where the weights of the SA 
to SA synapses encoding both gates are equal) the agent ends up with an 
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approximately equal chance of taking either gate. However, in the reduced 
condition, the agent has a much lower chance of taking the gate encoded by 
reduced SA to SA synaptic weights. In other words, if we reduce the weight 
of an SA to SA synapse to indicate a lower transition probability, the model is 
less likely to attempt that transition and more likely to prefer a more certain 
alternative route. The probabilistic propagation mechanism allows the model 
to incorporate transition probability into the planning process.

Discussion. The biological plausibility of the probabilistic planning mechan
ism is debatable, and largely depends on the timescale of the planning 
process because at longer timescales synaptic variability will simply translate 
into higher or lower firing rates. The probabilistic propagation mechanism 
makes much more sense if planning is considered to operate close to the level 
of individual spikes, similar to the model proposed by Ponulak 2013 
(Ponulak and Hopfield 2013), but interpreted as a rate coded model.

Figure 23. The probability that an agent will take the lower gate in the “normal” and “reduced” 
conditions, based on 100 trials in each condition. In the normal condition, the SA to SA weights 
encoding a transition through the lower gate (see Figure 9 for the structure of the two-gate 
environment) are kept at their original value of 0.44. The synaptic weights for both gates are 
therefore equal, and so the agent takes each path with approximately equal (50%) probability. In 
the reduced condition, the synaptic weights associated with the lower gate are reduced to 10% 
of their original value. Under the probabilistic planning paradigm described in Sec. 4.4, activation 
has a significantly lower probability of passing through the lower gate in any given timestep due 
to the reduced synaptic weights encoding this transition and therefore the agent is much less 
likely to pass through the lower gate. Note that the likelihood of taking either path depends on 
the ratio between the synapses encoding transitions through each gate and not on the absolute 
value of these synapses.
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If we assume that planning occurs on a relatively short timescale, say, 
1 second, and that state-action cells fire at a rate between 5 and 50 Hz, and 
that most plans require activity to propagate through somewhere between 
five and twenty synaptic connections (more on this in Sec. 3) then it seems 
likely that the form of planning detailed here will rely on a relatively small 
number of spikes. If this is the case, then the probability of synaptic trans
mission between SA cells can genuinely affect the propagation of activation 
through the network and therefore a mechanism on the lines of that detailed 
in this section could exist and allow the network to plan in environment with 
probabilistic transitions.

Description of the detour task
The Tolman detour task (illustrated in Figure 24) is a maze with three paths 
of varying length: Path 1 (short), Path 2 (medium) and Path 3 (long). At the 
end of the maze is a food source (a goal state in the model). Put briefly, rats 

Figure 24. The maze used in the Tolman & Honzig detour task, in which rats navigate through 
a maze to a food box (Martinet et al. 2011). The maze consists of three pathways (Path 1, Path 2 
and Path 3) with different lengths. A block can be introduced at point A (preventing the rat from 
navigating through Path 1), or point B (preventing the rat from navigating through Path 1 or 2). 
A gate near the second intersection prevents rats from going right to left. This figure is 
reproduced from Martinet et. al. 2011 (Martinet et al. 2011) in accordance with the Creative 
Commons Attribution (CC BY) licence.
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are allowed to explore the maze and are then expected to seek the reward. 
Path 1 is shortest; if it is open, rats will take it. If Path 1 is blocked at point A, 
so that only Path 2 and Path 3 are accessible, rats will then take Path 2 the 
majority of the time, without extensive retraining. If Path 1 is blocked at 
point B, rats take Path 3. This behaviour happens quickly, without extensive 
exploration, suggesting that rats are relying on a previously learned map of 
their environment to predict the outcomes of alternative trajectories through 
the environment.

Detour task simulation procedure
A fully self-organizing version of the model (as formulated in Sec. 4) was 
trained using a protocol given in Martinet 2011, which was designed to 
emulate the protocol originally designed by Tolman and Honzig (Martinet 
et al. 2011). The training process took place over 14 simulated “days” and 
consisted of several different procedures. The model plans using probabilistic 
propagation (as described in Sec. 4.4). This was required to allow the net
work’s environment model to encode unexpected obstacles in a more realistic 
manner that includes some uncertainty about a newly encountered obstacle, 
rather than operating on the deterministic proposition that a transition is 
either possible or impossible, and so to allow the model to replicate the 
uncertainty and mistakes made by the experimental rats. Without this 
mechanism, the model simply takes the best path at all times. The probabil
istic propagation mechanism is not therefore required to successfully com
plete the task, but is required to reproduce realistic results.

A consequence of representing transition probabilities using synaptic 
weights, and of the fact that the agent lacks any ability to probe a state 
without actually entering it, is that it is possible for the agent to believe that 
all three paths are blocked, and so refuse to enter any of them, thus not 
discovering that one of them is now open. To counteract this tendency, 
a stochastic exploration mechanism is used whereby if the agent has not 
moved for 200 timesteps the agent will then begin a short period of explora
tion (20 timesteps). A similar mechanism was used in Martinet 2011 
(Martinet et al. 2011).

Day 1: A series of 3 “forced runs” were carried out. Each forced run 
consisted of a sequence of actions that the agent was forced to carry out. In 
other words, where the agent in Sec. 4 explored randomly, learning the SA 
cell responses, SA cell connectivity and gating cell connectivity as it went, the 
model now does the same for a pre-planned set of actions. Each forced run 
moved the agent from its start position along one path (P1 or P2 or P3) until 
the agent reached the goal; the three forced runs explored P1, P2 and P3 in 
succession. These forced runs were carried out by the network in Learning 
mode (see Section 4)
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The forced runs were followed by nine trials in the open maze, where the model 
was switched into Planning mode (see Section 3) and all of the paths were 
unblocked. The end of the maze was set as a goal (see Figure 24) and the agent 
was allowed to navigate freely towards the goal. (Although these nine trials are 
identical and are not not strictly necessary in our formulation, we have kept the 
training procedure exactly as given in Martinet 2011 (Martinet et al. 2011).) 

Days 2–14: On these days the model remained in Planning mode, although 
synapses were altered at unexpected obstacles. The model ran twelve trials 
every “day” for thirteen days, with the end of the maze set as a goal. In ten of 
these trials, Path 1 was blocked at point A. However, the entrances to Paths 2 
and 3 were also blocked, forcing the agent to move to block A. Every time the 
agent encountered a block, the synapses making up the cognitive map were 
manually altered. This alters the cognitive map to include the block, and so 
alters the propagation of planning activity through the SA layer.

When the agent reached the block at point A, the entrances to Paths 2 and 3 were 
reopened so that the agent was free to choose either Path 2 or Path 3. The agent’s 
choice was recorded (see Figures 25 and 26). For each day, the 10 block A trials 
were randomly mixed with 2 non-successive runs with paths 2 and 3 blocked, to 
maintain the preference for Path 1. By non-successive, we mean that the agent 
never experienced 2 of these runs in a row. 

Figure 25. Occupancy grids for Tolman & Honzig detour task. The occupancy grids show the 
probability that a modelled agent will at some point pass through each section of the maze 
during the various trial types. The scale runs from 0 to 1. An occupancy of 1 means that every 
agent passed through that point during every trial of that type; an occupancy of zero shows that 
no agent ever passed through that point in any trial of that type. We see that in the majority of 
Open trials, the agent takes the shortest possible route to the goal: the direct Path 1. In the 
majority of trials where Path 1 is blocked at Point A, the agent takes the now-shortest Path 2. 
Finally, in the majority of trials where Paths 1 and 2 are blocked at Point B, the agent takes the 
now-shortest Path 3. The qualitiative performance of both the Martinet model and the proposed 
model is similar.
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Day 15: Seven trials (in Planning mode) were run with a block placed at 
point B. As before, paths 2 and 3 were blocked until the agent reached point 
B, and then reopened. The agent therefore had a choice between choosing 
path 2, which was unsuitable given the block at point B, or choosing path 3. 
The results from both Alvernhe 2011 and Martinet 2011 (Martinet et al. 
2011) showed that the agents reliably chose path 3, as did the proposed 
model. See Figures 25 and 26.

In summary, the protocol included three types of trials:
Open: In this condition, all of the paths are unblocked and the agent is 

allowed to navigate freely. This condition was present on Day 1.
Block A: In this condition a block was placed at point A, blocking Path 1 

and forcing the agent to choose between Path 2 and Path 3. This condition 
was present on Days 2–14.

Block B: In this condition a block was placed at point B, blocking 
Path 1 and forcing the agent to choose between Path 2 and Path 3. 

Figure 26. Comparison of model output to previous experimental and modelling results. Each 
box plot shows the distribution of route choices over trials of a particular type (Open, Blocked 
A or Blocked B). (a) shows experimental results from rats. (b) shows the results of the proposed 
model. The chosen path in each trial is recorded by measuring the last section of maze that the 
agent moves through before it reaches the goal.
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However, in this condition the placement of the block renders Path 2 
useless, so that the agent must use its knowledge of the environment to 
realize that Path 3 is the only way to reach the goal. This condition was 
present on Day 15.

As in Martinet 2011 (Martinet et al. 2011), 40 agents were simulated, and 
their results collated to produce the final analyses, shown in Figures 25 
and 26.

Results of the detour task
Figures 25 and 26 demonstrate that the proposed model is capable of 
reproducing the behavioural results of Alvernhe 2011 (Alvernhe et al. 2011).

On Day 1, after exploring each of the three possible paths, the proposed 
model is allowed to navigate in the open maze (with no paths blocked) and 
shows a preference for Path 1, replicating the Path 1 preference seen in 
Martinet 2011 (Martinet et al. 2011). This is the shortest and most optimal 
route.

On Days 2–14, when the path is blocked at point A, the model chooses the 
shorter and more optimal Path 2 more frequently, whilst occasionally choos
ing Path 3, which is longer but also valid. When the path is blocked at point 
B on Day 15, the model reliably chooses Path 3, the only valid option.

Discussion
The behaviour of the model on the detour task replicates the essential finding 
of experimental and modelling literature: the agent reliably chooses shorter 
routes towards the goal. This result is intended to demonstrate that the 
model is able to replicate quantitative experimental results on one of the 
key model-based planning tasks. We have reused the detour task procedure 
described by Martinet 2011 (Martinet et al. 2011), which was taken from the 
original Tolman and Honzig paper (Tolman and Honzik 1930). The model 
proposed in this section differs from that proposed by Martinet 2011 in 
several significant ways.

Firstly, the model described by Martinet 2011 (Martinet et al. 2011) plans 
using the value of activation at different points in the map. Specifically, 
activity is injected into the map at the goal state and allowed to propagate 
through the map. As it propagates, the activity decays. This creates 
a gradient: the cell with the highest activation in each state represents the 
optimal action to take in that state. Unfortunately, the propagating activity 
eventually decays too much for SA cells to plausibly react to it, as described 
in Martinet 2011 (Martinet et al. 2011). The activity gradient can therefore 
only extend so far through the map, and in a complex map such as a maze 
this activity may decay very quickly. Martinet introduces a variable- 
resolution mapping mechanism that can extend this range, but this mechan
ism requires that the environment is composed primarily of long straight-line 
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segments connected by sharp discontinuities, a condition that is true of the 
detour maze task but does not extend well to other environment types. See 
Sec. 2 for more details.

In constrast, the proposed model does not require an activation gradi
ent. In the proposed model, the optimal SA cell for each state receives 
activity first, and so the first SA cell to receive activation in each state 
inherently represents the optimal action to take in that state. The level of 
activation is not relevant. This means that the activity does not need to 
decay, and so we do not experience the dropoff problem described in 
Martinet 2011 (Martinet et al. 2011). The planning mechanism is there
fore more extensible to different map types and sizes, and also allows us 
to introduce a flexible hierarchical system for improving the efficiency of 
planning (see Sec. 3 and 5).

The proposed model and Martinet 2011 (Martinet et al. 2011) also 
differ in how they adapt to dynamically changing environments. 
Martinet 2011 manually identify cells whose synapses must be adjusted 
to encode a new obstacle and then hardwire the synapses between these 
cells to encode this information. To be specific, they set the relevant 
synaptic weight to 0.9 if the agent experiences a successful state transi
tion, and halve the weight if the agent experiences a failed transition. 
We used a similar mechanism to obtain the detour task results that we 
have show in Figures 25 and 26, but the Hebbian mechanisms for 
learning state transitions during initial training (see Sec. 4) are equally 
able to adjust the cognitive map to reflect later changes in the 
environment.

Having described both the learning and planning mechanisms of the 
proposed model, and tested it on a canonical behavioural task, the next 
sections (3 and 5) will discuss the extension of this model to a formulation 
that encompasses hierarchical behaviour.

Encoding useful behavioural sequences by self-organizing a layer of 
sequence cells

Statement of problem

The work described in Section 3 demonstrated that sequence cells (Figure 1) 
can be used to improve the efficiency of the network’s planning. The plan
ning process requires a wave of activity to travel from the SA cells represent
ing the goal state to the SA cells representing the agent’s current location. 
Sequence cells assist this process by acting as a “shortcut” for the wave, 
allowing it to travel faster through frequently experienced areas of the state- 
action space. To do this, the sequence cells require a particular pattern of 
connectivity with and from the SA cells.
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We wish to explain how the model could self-organize such connectivity. 
Furthermore, since the number of possible trajectories that the agent may 
take is very large, including many that are not helpful in the majority of tasks, 
the sequence cells should learn to encode the most behaviourally-useful 
sequences that the agent has experienced: sequences that move the agent 
directly between important states such as bottlenecked areas of the environ
ment. How should the sequence cells identify and encode these sequences as 
the agent performs tasks?

Hypothesis

We hypothesize that the connectivity between sequence cells and SA cells 
comes about through a form of trace learning, similar to that seen in Sec. 
4.2. As discussed in that section, the trace learning rule is a variant of 
Hebbian learning that ties together cells which fire close together in time. 
In this case a sequence cell that has been stimulated by an SA cell will 
remain in an active learning state for several more state-action combina
tions, therefore building up afferent and efferent connectivity to 
a sequence of SA combination cells.

The most behaviourally relevant sequences are those which provide 
a direct path through an important area of state-action space and so provide 
maximum augmentation to the network’s ability. We hypothesize that such 
sequences are likely to be encountered more frequently than other 
sequences16 when moving purposefully through the state space under the 
kinds of route planning mechanisms demonstrated in this paper. Specifically, 
the basic route planning mechanisms described earlier in this paper tend to 
move the agent along a direct route from its current state to a goal state. If 
sequence cells are incorporated into the network, then these cells can learn 
these direct routes through the state space that emerge from the basic 
planning mechanism.

In this way, the basic planning mechanism (which generates direct routes 
between states) operates in tandem with the hierarchical model extension 
incorporating sequence cells (which learn these useful direct routes). The 
final model formulation presented in this section therefore offers 
a biologically plausible solution to how hierarchical behaviour can self- 
organize in the brain through unsupervised learning.

The requirement for humans to accumulate extensive task experience to 
achieve a high level of automaticity supports this hypothesis, as does the fact 
that it seems to be necessary for learners to spend disproportionate amounts 
of time on aspects of a task that they find difficult if they wish to further 
improve their skills. To mimic this process, we decided to take the grid world 
navigation tasks that we had used to test the model in Section 3 and now use 
them to train the model.
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Task

The task is fundamentally similar to the grid world navigation task described 
by Section 3. The agent is placed at a random position in one of four grid 
worlds. Two of these worlds are the small (8x8) open and maze worlds 
depicted by Figure 5. The other two worlds are the same but scaled by 
~2:1, so that they are 18 × 18. The agent can move one space at a time in 
eight compass directions17 or stay still, giving nine possible actions.

A random state is designated as the goal and the agent is required to 
navigate to this state to complete the task. If the agent reaches the goal 
location then the task has been been completed successfully. If the agent fails 
to reach the goal location within 1000 timesteps then the agent has failed the 
task. At the same time, the agent is both learning and using sequences of 
actions by altering the connectivity between the sequence cell layer and the 
SA cell layer (see below).

Network model

Algorithm 5 Learning Sequences During Planning. This describes the 
network’s operations during one step in the planning process, based on 
alg. 1. The steps that have been added in this version are emphasized 
with italics. Steps in (brackets) only occur if there is activity in the 
action cell layer signifying that an action has been selected for the 
agent’s current state. All plasticity is Hebbian unless otherwise speci
fied.  

Cell Firing State Cells & Goal Cells Fire (one-hot) 
Activity Propagation SA Cells & Goal Cells to SA Cells (3) 
Inhibition SA Cells: Rescale SA Activity in All Active States (4) 
Activity Propagation State Cells & SA Cells to Gating Cells 5) 
Inhibition Gating Cells: Threshold ((6)) 
Activity Propagation Gating Cells to Action Cells (7) 
Inhibition Action Cells: Winner-Take-All (8) 
(Agent) Agent Moves to Successor State 
(Activity Propagation) State Cells, Action Cells and SA Cells to SA Cells (49) 
(Inhibition) SA Cells: Winner-Take-All (50) 
(Activity Propagation) SA Cells to Sequence Cells (1) 
(Inhibition) Sequence Cells: Winner-Take-All (51) 
(Synaptic Plasticity) Set Memory Trace: Sequence Cells (52) 
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(Synaptic Plasticity) Set Memory Trace: SA Cells (52) 

(Synaptic Plasticity) Trace Learning: Sequence Cells to SA Cells (53) 
(Synaptic Plasticity) Trace Learning: SA Cells to Sequence Cells (54) 
(Synaptic Plasticity) Trace Learning: Synaptic weights rescaled (55) and (57) 
(Reset) All Cells Reset to Zero Activation

The network architecture
The network used in this experiment has the same structure as that used in 
the Section 3 (Figure 1). It is assumed that basic environmental learning has 
already taken place, i.e. that the agent has already explored its environment 
and that the self-organization of SA cell responses, recurrent SA connectivity 
and gating cell connectivity has already occurred as in Section 4. For the 
purposes of this experiment, only the connectivity between the sequence cell 
layer and the SA cell layer is considered to be plastic.

As stated previously, the bi-directional connectivity between the sequence 
cells and SA cells is learned during the performance of planning tasks, 
where the network is exploiting a previously learned causal model in the 
recurrent connections between SA cells. In the simulations that follow, 
during the training phase in which the connections between the SA cells 
and sequence cells self-organize, the sequence cells are not actually allowed 
to influence the planning mechanism as goal-related activity propagates 
through the SA layer. This simplification of the training phase is designed 
to demonstrate how the development of sequence cells encoding a motor 
hierarchy can be driven by route planning using just the causal model 
previously learned in the recurrent connections within the SA layer. 
However, during this training phase, the connections between the sequence 
cells and SA cells are updated using trace learning rules incoroporating 
a trace whenever the agent takes an action. This allows the sequence cells to 
learn to encode the most frequently used state-action sequences over time. 
As with gating cells, the layer of sequence cells operates as a competitive 
layer during learning, with individual sequence cells inhibiting each other. 
This has the effect that individual sequence cells compete to learn to 
represent particular state-action sequences, within different cells learning 
different sequences. After this training phase has self-organized the bi- 
directional connections between the SA cells and sequence cells, the 
sequence cells are then allowed to influence activity within the SA layer 
during subsequent testing of the effects of sequence cells on route planning 
and movement through the environment.
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Route planning – a timestep where no action is taken
The state cells fire, encoding the current state using a one-hot encoding. At 
the same time, the goal cells fire, encoding the location of the goal. The SA 
cells are then updated by activity from the goal cells and from other SA cells 
according to the following equation:

hSA
i ¼

X

j
wGL� SA

ij rGL
j þ

X

j
wSA� SA

ij rSA
j (48) 

where 
P

j wGL� SA
ij rGL

j is the input received from the goal cells, and 
P

j wSA� SA
ij rSA

j is the recurrent SA input. (The SA layer does not receive 
activation from the state cells – this occurs only during learning for the 
purpose of self-organizing the state-action responses and consequently the 
cognitive map.) SA cells experience divisive inhibition, rescaling the activity 
of SA columns so that each currently active column is rescaled to sum to 1, 
and each inactive column remains inactive (with a sum of 0) as shown in 
Equation (4).

The effect of this recurrent SA stimulation combined with firing from the 
goal cells is to create a propagating wave of activity spreading through the SA 
layer. The wavefront of this activity spreads a little further every timestep.

After the SA cells have been updated, they propagate activity to the gating 
cells (Equation 6). The gating cells are under heavy inhibition such that they 
can only produce firing if they are receiving both SA and state input 
(Equation 6). Activity propagates from the gating cells to the action cells 
(Equation 7). If no gating cell fires, then no action cell will fire; in this case 
no action will be taken at that moment and the wave will continue to 
propagate, allowing SA activation to spread further through the layer. 
However, if any action cell becomes active, then the set of events described 
in the rest of this simulation produce (below) will take place. These events 
are bracketed in algorithm 5.

Learning hierarchy of action sequences – if an action is taken
The agent takes an action, and updates the world.

The SA layer receives a combination of sensory and motor inputs (as well 
as input from the recurrent synapses wSA� SA

ij ) that reflect the state-action 
combination chosen by the planning mechanism as follows:

hSA
i ¼

X

j
wS� SA

ij rS
j þ

X

j
wA� SA

ij rA
j þ

X

j
wSA� SA

ij rSA
j (49) 

where hSA
i is the activation of a state-action cell, 

P
j wS� SA

ij rS
j is input from 

state cell j weighted by the incoming synapse, 
P

j wA� SA
ij rA

j is the equivalent 
input from action cell j and 

P
j wSA� SA

ij rSA
j is the recurrent SA input. This 

combination of inputs strongly activates the specific SA cell that represents 
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the correct combination of state and action. WTA competition is then 
applied as follows:

rSA
i ¼

hSA
i hSA

i ¼ maxi hSA
i

� �

0 hSA
i <maxi hSA

i
� �

�

(50) 

where maxi hSA
i

� �
is the activation value of the most active cell in the SA 

layer. This leaves only one SA cell active: the SA cell representing the state- 
action combination that the agent is currently experiencing.

The activity from this SA cell feeds into the sequence cell layer (Equation 1). 
WTA competition is then applied to the sequence cells as follows:

rSQ
i ¼

hSQ
i hSQ

i ¼ maxi hSQ
i

� �

0 hSA
i <maxi hSQ

i
� �

(

(51) 

where maxi hSQ
i

� �
is the activation value of the most active cell in the 

sequence cell layer.
A trace rule is used to alter the connectivity between the SA layer and the 

sequence cell layer (in both directions). The trace rule is similar to those 
described in Sec. 4.2 (Equation 23) but uses a more complex trace value, 
which is calculated at this point in the timestep as follows:

�ri
t ¼ rt

ið1 � ηÞ þ �rt� 1
i η (52) 

where rt
i is the current firing rate of a sequence or SA cell i at time t, �ri

t is the 
memory trace value of ri at time t, �rt� 1

i is the memory trace value of ri at time 
t � 1, and η 2 0; 1½ � is a constant that determines how much the current trace 
value reflects past firing rates as opposed to present firing rates. This trace 
value varies from that used in Sec. 4.2, which only considered cell firing one 
timestep in the past. In Sec. 4.2 only one timestep of information is necessary 
to encode a transition from one state to another. By contrast, in this section 
we are interested in forming sequence cells that will learn to associate 
a sequence of SA cells over a period of several timesteps. A slowly fading 
memory trace is therefore required, where the parameter η effectively deter
mines the decay rate. Note that both forms of trace rule are purely local, 
relying only on the activities of the pre- and post-synaptic neurons. As such, 
these learning rules can be considered relatively biologically plausible. The 
effect of trace learning is to connect cells that fire over a period of time.

The synapses between SA cells and sequence cells are then updated 
according to a trace rule as follows:

ΔwSQ� SA
ij ¼ kSQ� SA�rSQ

j �rSA
i (53) 

ΔwSA� SQ
ij ¼ kSA� SQ�rSA

j �rSQ
i (54) 
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where �rSQ
i and �rSQ

j are the trace values of sequence cells i and j respectively, 
�rSA

i and �rSA
j are the trace values of SA cells i and j respectively, and k is 

a constant denoting learning rate. Note that kSA� SQ is considerably larger 
than kSQ� SA. This is necessary because it means that the last SA cell to fire in 
a sequence will have an extremely strong weight to the sequence cell. This 
brings about the characteristic sequence cell connectivity described in Sec. 3, 
where the sequence cell receives strong inputs from the last SA cell in the 
sequence (and therefore the first to receive activation from the propagating 
wavefront, which propagates from the goal) whereas all of the SA cells in the 
sequence receive relatively similar activity from the sequence cell. This is 
further effected by the rescaling mechanism, which ensures that:

X

j
wSA� SQ

ij ¼ 1 "i (55) 

and any synaptic weights that are too low are reduced to zero:

wSA� SQ
ij ¼

wij wij � tSA� SQ

0 wij < tSA� SQ

�

(56) 

where tSA� SQ is a threshold constant.
wSQ� SA

ij are rescaled so that
X

i
wSQ� SA

ij ¼ 1 "j (57) 

Note that the rescaling is performed with reference to the sequence cells in 
both Equations 55 and 57. This is because each sequence cell is intended to 
represent a single sequence, and so the amount of afferent connectivity that 
each sequence cell receives, as well as the amount of efferent connectivity, 
must be regulated. By contrast, a given SA cell may be part of many 
sequences or none.

Finally, the activity of all cells is reset. Parameters are given in Table 5.

Results

Figure 27 shows some examples of the sequence connectivity that self- 
organizes using this method. We see that these learned sequences are 

Table 5. Table of parameters for the learning of sequence 
cells as described in Section 5.

Parameter Value

Trace Constant Eta η 0.5
Sequence Cells to SA Cells Learning Rate (kSQ� SA) 11
SA Cells to Sequence Cells Learning Rate (kSA� SQ) 1026

SA Cells to Sequence Cells Threshold (tSA� SQ) 0:1
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composed of a set of state-action combinations that describe a reasonably 
logical journey from one area of the map to the other. The learned sequences 
have a single “entry” point at the beginning of a sequence and a single “exit” 
point at the end of this sequence. This contrasts with an approach that might 
produce multiple entry points and multiple exit points (see for example 
(Pickett and Barto 2002; Botvinick et al. 2009)). The weight structure is 
consistent with that described in Section 3, with sequence cells receiving 
synapses only from the last SA cell in a sequence and sending synapses to all 
SA cells in that sequence.

Figure 27. Examples of two learned sequences. The magnitude of each arrow represents the 
weight of the synapse from the sequence cell to that SA cell (left column) or the weight of the 
synapse to the sequence cell from that SA cell (right column). Synapses have been normalized so 
that 1 is the maximum synapse. We see that the weight structure is consistent with that 
described in Section 3, with sequence cells receiving synapses only from the last SA cell in 
a sequence (b, d) and sending synapses to all SA cells in that sequence (a, c). See Figure 3(b) for 
legend.
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Figure 28 shows the results of a set of planning experiments using 
sequences learned in the manner described in this section. These tasks 
were conducted as standard planning tasks: the agent was placed in the 
8 × 8 open environment and the 8 × 8 4-room environment (Figure 5). In 
each trial a random location within this grid is designated as the agent’s goal 
and another random location is designated as the agent’s starting point. The 
agent can move one space at a time in eight compass directions18 or stay still, 
giving nine possible actions. The task is for the simulated agent to navigate to 
the goal location. If the agent reaches the goal location then the task has been 
been completed successfully. If the agent fails to reach the goal location 
within 100 timesteps then the agent has failed the task. Figure 28 shows 
that under these conditions the model is able to achieve 100% success rates in 
both the 8 × 8 open environment and the 8 × 8 4-room environment.

Figure 29 shows that states that are occupied more often have more 
associated sequences. To obtain this figure we count the number of 
sequences associated with each state by counting the number of synapses 
that each SA cell receives and then associating them with the state which that 
SA cell represents. The results strongly suggest that the model tends to learn 
sequences that are “useful”, in other words sequences that occur frequently in 
the solutions to planning tasks that take place in this environment. We also 
see that, at least in the relatively small 8 × 8 environment, most states are 
associated with at least one sequence, suggesting that the learned sequences 
cover the environment reasonably well and so may be useful even in less 
commonly used areas of the state space.

Figure 28. Success rates in planning task when using learned sequences. This figure shows the 
percentage success rates of the network in 100 trials.
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Discussion

In Section 3 we demonstrated that the network can use a layer of sequence 
cells to assist planning, reducing the time it takes for activity to propagate 
through the SA layer and so reducing the amount of planning time required 
to reach decisions. There remained, however, the question of how the agent 
should produce the required connectivity between the sequence cells and SA 
layer, thus learning useful state-action sequences.

In this section we have demonstrated that the network is able to success
fully learn state-action sequences which cover the commonly used area of the 
state-action space. Because the learned state-action sequences tend to be 
those that occur most frequently during the performance of navigation 
tasks (Figure 29) they are in the main appropriate for the structure of the 
environment (e.g. moving from one room to another in a four-room maze). 
The learning procedure described in this section requires that trace learning 
takes place at specific times in each timestep, when the SA cells are repre
senting the appropriate information about combinations of state and action. 
We hypothesize that the firing of the action cells once planning is complete 

Figure 29. The occupation of different states during the sequence-learning period. (a) shows the 
probability of an agent occupying any given state in this 4-room environment (Figure 5) while 
(b) shows the number of sequences associated with each state after 300 planning tasks in this 
environment. By comparing the two, we see that states that are occupied more often have more 
associated sequences. This strongly suggests that the model tends to learn sequences that are 
“useful”, in other words sequences that occur frequently in the solutions to planning tasks that 
take place in this environment.
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and the next action has been decided, and the flood of sensory and motor 
feedback produced by the performance of that action, strongly activate the 
SA cell representing the current state and action, allowing sequence cells to 
connect to that SA cell.

The question then arises of why the sequence cells only form synapses to 
the SA layer at this point in the timestep. It is possible that SA cells fire very 
strongly at this point, boosted by sensory and motor feedback, while the level 
of SA activity during the planning process is much weaker. Equally, it is 
possible that plasticity is gated in some fashion such that the synapses are 
only plastic at this point in the timestep.

Replication of human planning times
As humans spend more time in an environment, they will learn 
a cognitive map but will also begin to learn useful sequences of actions 
for performing tasks in that environment. In wayfinding experiments, this 
means that as humans perform more navigation tasks in an 
environment,19 they should show faster decision times at choice points. 
This prediction is difficult to validate, because very few papers on human 
navigation give planning times and none describe how planning time 
changes with experience. However, there is circumstantial evidence 
which supports this account.

In particular, Howard 2014 (Howard et al. 2014) found that the decision- 
making time of humans doing a wayfinding task in a virtual reality 
replication of the London borough of Soho was proportional to the absolute 
path length between the current choice point and the goal. The correlation 
was strongly significant, and of medium strength (correlation con
stant = 0.363; p < .01). Although the proposed model reproduces this 
correlation between planning time and path length, in its base state without 
sequence cells the proposed model gives a much stronger correlation 
(correlation constant = 0.88) than is shown in the Howard 2014 data. 
Introducing the hierarchical mechanism (utilizing sequence cells) decreases 
planning time and introduces more variation, giving results (correlation 
constant = 0.69) that are closer to Howard 2014’s data. As environments 
become larger, and the available repertoire of learned sequences becomes 
larger and more complex, we believe that the effect of the hierarchical 
mechanism on planning time would be even stronger, and so potentially 
produce planning-time vs. path length correlations close to those found by 
Howard et. al. 2014.
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Discussion

Aim 1: Learn and use a causal cognitive map

After considerable study over the last few years, the production of a cognitive 
map and the use of it for consequent/concurrent model-based planning 
seems to be a necessary element for the production of some behaviours 
(see Sec. 1). Such maps appear to be particularly important in the context 
of revaluation and contingency-change tasks Russek2016,Fakhari2018.

Given the apparent importance of this mechanism, one of the primary 
aims of this work was to investigate this process in the context of 
a (biologically plausible) neural network and there are two fundamental 
elements that therefore had to be replicated: the ability to learn a causal 
model of the simulated agent’s environment, and the ability to use this model 
to generate behaviour. The other aims of this work – to remain broadly 
consistent with known neurobiology, to address outstanding questions raised 
by previous models of this mechanism and to extend this mechanism to 
include hierarchical mechanisms – rest on the prerequisite that the model is 
ultimately able to produce the desired behaviour, or at least represents 
a meaningful step towards such a model.

Progress made by this paper
The model described in this paper had to replicate two primary elements of 
model-based planning: the production of a cognitive map and the use of this 
map to produce behaviour. In the process of doing so, we attempted to 
address the limitations of the decaying-activation theory (in particular, its 
inability to solve problems of arbitrary length) by using an alternative plan
ning mechanism.

Section 3 demonstrated that a particular network architecture was capable 
of producing solutions to grid world tasks, so long as the model was provided 
with a valid cognitive map that described the state transitions that were 
possible in each grid world. An advance of the work in this paper has been 
to give a full account of how a propagating wavefront mechanism would 
work as the basis for planning using a cognitive map. The reason for doing so 
is that such a mechanism is more efficient, more robust and more powerful 
than the decaying-activation mechanism used by previous models.

As described in Sec. 3, a propagating wavefront mechanism fundamen
tally relies on the timing of goal-based activity propagation through the 
cognitive map, rather than how much activity different cells receive. Rather 
than hypothesizing that activity decays as it propagates (which leads to the 
aforementioned problem that this activity may eventually decay to nothing) 
we hypothesize that activity propagates along the shortest path to the goal 
fastest. In other words, we hypothesize that optimal actions are driven by 
the timing of activation rather than the level of activation. The first SA cell 
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to receive activation in each state is considered the optimal action to take in 
each state, and its level of activation is not relevant. This mechanism owes 
inspiration to work by Ponulak & Hopfield 2013 (Ponulak and Hopfield 
2013). Their paper described a model in which a wave of activity propa
gates through a 2D layer of topologically organized pure state cells (neigh
bouring state cells were recurrently connected) and showed that this wave 
carried information about the direction of the goal. Specifically, if the goal 
is east of a state cell, the wavefront will “hit” the state cell from that 
direction. Ponulak showed that an anti-STDP mechanism could record 
this information in the recurrent synaptic connectivity of the layer by 
strengthening the synapses between cells to indicate the direction from 
which they were “hit” by the wave.

The mechanism that we have proposed retains the insight that the 
propagation of a wavefront can carry information about the direction of 
a goal, but uses this information in a rather different way. Rather than use 
a propagating wavefront to adjust the synapses between pure state cells and 
thus produce a synaptic vector field, we have proposed that a propagating 
wavefront can identify and output the most valuable state-action combina
tion for a given state. The proposed mechanism is therefore able to improve 
on the mechanism described by Ponulak & Hopfield in several key ways. 
Firstly, because the proposed planning mechanism is able to work in 
a state-action map, it is able to output explicit actions that move the 
agent towards the goal (see below). Secondly, because the proposed plan
ning mechanism is able to perform planning without requiring a period of 
synaptic plasticity, it seems likely that an agent using this mechanism would 
be able to plan more quickly, and would not have to “undo” the new 
synaptic weights if there is a change in the goal state or the transition 
structure of the environment. Thirdly, because the proposed planning 
mechanism is able to plan without altering the synaptic weights that encode 
the cognitive map, we can store information in these weights, such as 
transition probabilities. Finally, the proposed planning mechanism is able 
to interface with a hierarchical behaviour mechanism.

The proposed propagating wavefront mechanism will produce a suggested 
action as soon as the propagating goal-based activity reaches the agent’s 
current state, and it is therefore the fastest way of producing an action 
using propagating activity. It is, after all, impossible to read the value of 
decaying activation at the agent’s current state until the neurons representing 
actions at that state become active. And the gating mechanism that we 
describe provides a way of ensuring that the first active neuron in the current 
state is detected and the appropriate action read out. By contrast, Cuperlier 
2007 (Cuperlier et al. 2007) reads out an action only when the activity in the 
network is considered “stable”, which presumably requires a significant 
further period of stabilization; Hasselmo 2005 (Hasselmo 2005) waits for 
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a specific period of time before reading out an action and thereby risks 
reading out too early (before activity has reached the right part of the map) 
or too late (when the situation has changed or time has been wasted).

Mechanistic efficiency does not, of course, mean that the theory is true, 
and thoughts on testing the contrasting predictions made by decaying- 
activation theory and the propagating wavefront theory based on timing 
are given in the next section (6.1). However, the prediction made by the 
propagating wavefront mechanism that planning times will be dependent on 
the distance of the goal can potentially by used to compare it with other 
theories.

The propagating wavefront mechanism also seems likely to be more robust 
to noise. The decaying-activation method relies on comparing the precise 
value of activation over different states or state-actions, and if noise alters 
these values a decaying-activation mechanism may therefore produce mala
daptive results. By contrast, the precise effect of noise on a propagating 
wavefront model is likely to depend on how it interacts with inhibitory 
mechanisms.

Finally, the propagating wavefront mechanism is able to perform longer 
and more complex tasks than a decaying-activation mechanism. The level 
of activity in cells is not relevant, and the activity is not required to decay, 
so the level of activity can be kept high and the propagation of activity 
can continue indefinitely.

As stated previously, we intended to give a full explanation of how plan
ning with propagating wavefronts could work. To do this, we needed to show 
not only how the actual propagation would occur, but also to explore the 
mechanisms that would be needed to support it. In particular, the use of 
a propagating wavefront mechanism adds new complexity to the problem of 
how to read out actions from the planning mechanism, and how to plan 
when the transition structure of the environment is not deterministic. We 
have therefore introduced a probabilistic propagation mechanism (Section 
4.4) in order to incorporate transition probabilities into the planning process, 
and used a layer of gating cells under heavy inhibition to output actions from 
the planning mechanism.

Predictions and falsification
The model that we have proposed predicts that certain tasks can be solved by 
model-based planning mechanisms, implemented by a specific set of neural 
mechanisms. By studying the model, we can elaborate on this prediction, 
highlighting areas in which this model can be compared to other models and 
to experimental data, and therefore in which aspects of the model can be 
improved or discarded.

One way that this model, or a more advanced version of this model, 
could be falsified is if further inquiry into the mechanism of model-based 
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planning falsifies the idea that planning results from the propagation of 
activity through some form of map representation. An alternative planning 
hypothesis, not based on propagation, is that task solutions are calculated 
by some sort of heuristic. For example, there are models of spatial planning 
that suppose that planning is done by triangulating the direction of the goal 
and then moving in that direction, without planning an explicit path 
through the environment (Burgess et al. 1994). However, this does not 
seem to fit the available evidence given by planning times: work on street 
navigation (Howard et al. 2014) and the Tower of London task (Ward and 
Allport 1997; Cazalis et al. 2003) suggest that planning times are propor
tional to the length of solution, which suggests that the planning process 
involves trying to produce a solution rather than merely a direction of 
travel through state space.

Another way that the backward (goal-based) propagation mechanism 
could be (partially) falsified is if it were demonstrated that map-based plan
ning activity propagates forwards from the agent to various goal locations. 
The evidence conflicts on this point. The findings of Kurth-Nelson et al. 
(Kurth-Nelson et al. 2016) indicate that retrieval of state transition sequences 
occurs in a backwards direction (Kurth-Nelson et al. 2016). In contrast, the 
findings of Johnson et. al. 2007 show that sequences of states travel forward 
from a rat’s position to investigate different potential paths when deciding 
which branch of a T-maze to search for food (Johnson and Redish 2007). 
Finally, the verbal reports of London taxicab drivers indicate that an impor
tant mechanism for wayfinding is to identify the compass direction of the 
goal and then plan a short distance of actions forwards from their current 
state that will take them in the correct direction (Spiers and Maguire 2008). 
We are not aware of robust map-based network models which plan using 
a forward mechanism and other modellers have criticized the idea of plan
ning based on forward sweeps through a synaptic map (Chersi and Pezzulo 
2012). It is, however, entirely possible that forward and backward propaga
tion coexist in the brain, either as cooperating parts of a planning mechanism 
or as epiphenomena reflecting other processes.

The model predicts, unlike other models, that the timing of the activation 
propagation is important to the planning process and that the relative 
activation of cells is largely irrelevant. Implementing a decaying activation 
planning paradigm either requires neurons to be able to distinguish very 
similar firing rates (because the local gradient is usually very small) or is only 
able to plan over a very limited number of consecutive actions before the 
activity decays to noise level. If it is not possible for neurons to detect fine 
differences in firing rates then the prevailing paradigm of planning by decay
ing activation becomes less credible.

In this light, it is perhaps important to bear in mind that neurons 
exhibit substantial trial-to-trial variability that seems to be linked to 

H. O. C. JORDAN ET AL.120



intrinsic factors such as synapse unreliability and synaptic background 
noise (Faisal et al. 2008; Maass 2014). Even if a presynaptic cell is driven 
repeatedly with identical stimuli, there is trial-to-trial variability in the 
postsynaptic response (Faisal et al. 2008). This variability primarily 
affects the membrane voltage and consequently the production of indi
vidual action potentials, but it suggests that it would be difficult for 
a neural system to reliably set up and maintain a large-scale decaying- 
activation gradient in which small variations in relative firing rates carry 
crucial information. Furthermore, patch-clamp experiments by London 
et. al. 2010 (London et al. 2010) found that small variations in firing rate 
(a perturbation consisting of a single extra spike in one neuron) pro
duced approximately 28 additional spikes in that neuron’s postsynaptic 
targets. This again suggests that it would be difficult to reliably set up 
a large-scale fine-grained activation gradient, although it also suggests 
that small differences in relative firing rates could be plausibly amplified 
and read out.

Another way to falsify the propagating wavefront hypothesis is to investi
gate whether the planning process takes the same time regardless of the 
number of steps involved. If this is so, then it suggests that the timing of 
neuron activation does not depend on the task, and so that the timing of 
different neurons does not affect the planning process. As we argued earlier 
in this section, available experimental evidence seems to indicate that plan
ning time is at least partly proportional to the number of the number of steps 
to the solution of the task (Ward and Allport 1997; Cazalis et al. 2003; 
Howard et al. 2014).

Further work
Further modelling work is required to discover whether the current 
limitations of the model that we propose are inherent in the mechan
isms that we are using or whether they can be improved. Further 
experimental work is also required, to test the predictions of this 
model with of other models where they conflict, and thus to determine 
which theories more accurately represent the planning mechanisms in 
human and animal brains.

Obviously, both the model-based and the model-free formulations of 
reinforcement learning are extremely active research topics at present. 
There is also a field investigating how these paradigms might compete and 
cooperate in the production of behaviour (Keramati et al. 2011; Dolan and 
Dayan 2013; Nagabandi et al. 2017; Chebotar et al. 2017). Further research 
will make it clearer what tasks are and are not solvable with each of these 
approaches, and how they might need to be combined. With reference to this 
model more specifically, future modelling work will need to test whether the 
model can be made to work with a continuous representation that can 
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encode large, complex state spaces similar to those described by Friedrich 
2016 (Friedrich and Lengyel 2016). Not only will this allow experiments to 
compare the model’s behaviour on tasks of different scales (as described in 
Sec. 6.3) but it will also demonstrate that the proposed mechanisms can work 
with realistic state spaces, or whether a different encoding or planning 
mechanism is required.

On the experimental side, work is needed to discover whether model- 
based planning is truly based on a mechanism that searches forwards or 
backwards through an encoded map. The findings of Johnson et. al. 
(Johnson and Redish 2007) and Kurth-Nelson et. al. (Kurth-Nelson 
et al. 2016) seem to indicate the existence of such a mechanism, but do 
not prove it. Furthermore, experimental work is needed to distinguish 
between the various planning mechanisms that we have discussed: the 
decaying-activation paradigm, the propagating wavefront paradigm, and 
the various extensions proposed by Martinet 2011, Matsumoto 2011 and 
Erdem & Hasselmo 2012 (Martinet et al. 2011; Matsumoto et al. 2011; 
Erdem and Hasselmo 2012).

Further research on how planning times vary with the number of 
(remaining) actions in a task could show us whether neural activation 
needs to settle, as argued in several of the decaying-activation accounts, or 
whether the planning process outputs an action according to the amount 
of time that it takes goal-based activity to propagate to the agent’s posi
tion, as in the proposed propagating wavefront mechanism. Studying how 
the level of activation in prefrontal areas varies during planning and with 
different numbers of remaining actions could show us whether planning is 
being carried out by a decaying activation mechanism (in which case the 
cumulative amount of activity is likely to stop rising after a certain 
amount of time as the propagating activity decays to unreadability) or 
whether activity is maintained at high levels as in our proposed model, in 
which case cumulative activity is likely to continue rising linearly or 
quadratically until an action is output. Studying what happens if partici
pants are asked to give an action after different delay periods might also 
allow us to distinguish between these different accounts. If a participant is 
unexpectedly asked to give an action early or late in the planning process, 
it might show how sensitive the period of action read-out is.

One of the important differences between the decaying-activation and 
propagating wavefront accounts is that – unless it is supplemented by 
a hierarchical mechanism similar to that described by Martinet 2011 – 
the decaying-activation mechanism will be unable to plan over more 
than a certain number of actions before the decaying activation decays 
too far. By contrast, the propagating wavefront mechanism predicts that 
the number of remaining actions is not a limit provided that sufficient 
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time is given to plan. These predictions can to some extent be investi
gated experimentally.

Finally, further recording work needs to be done to test what kind of 
neural encoding is used for cognitive maps. Place cell representations 
are well known (O’Keefe and Nadel 1978) but – as we argued pre
viously – do not represent the causal relationships between states. The 
rapid remapping of place cells in new environments also makes it 
unlikely that long-term task knowledge is stored in the recurrent con
nectivity between them, as this would become completely maladaptive 
every time the agent entered a different environment and would pre
sumably have to be destroyed and relearned on redoing the original 
task (Chersi and Pezzulo 2012). Cells encoding various combinations of 
state and action have been found in the prefrontal cortex (Wallis et al. 
2001; Wilson et al. 2014; Schuck et al. 2016; Nogueira et al. 2017) and 
their properties, as well as the connectivity between them, need to be 
further investigated, along with the possibility of the transition cells 
proposed by Cuperlier 2007 (Cuperlier et al. 2007). At the same time, 
work can be done to see whether the transition structure of the 
environment and the knowledge of how to bring about those transi
tions are separate, as suggested by Cuperlier 2007 (Cuperlier et al. 
2007), Matsumoto 2011 and Erdem & Hasselmo 2012.

Aim 2: Remain consistent with known neurobiology

Definition and motivation
As described in Section 6.1, the primary purpose of this model was to show 
how cognitive-map based planning could occur in the brain, and how such 
maps could occur in the first place. In order to guide the modelling process, 
we adopted the secondary aim of trying to keep the model as close to the 
neurobiology as possible whilst still modelling the basic learning and plan
ning processes. This necessitated a series of compromises: our guidelines for 
producing a biologically plausible model had to be stringent enough to be 
meaningful but not so stringent that they made meaningful progress towards 
a working model impossible.

We came up with several core guidelines:

● The model should be neural. It should be comprised of individual 
neurons that communicated by passing activity through the synapses 
that connected them.

● Given that the network’s behaviour relies on the connectivity of the 
neurons that comprise it, as far as possible it should be demonstrated 
that this connectivity can be brought about by biologically plausible 
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learning processes from the sensory and motor feedback that the net
work would receive as it explored its environment.

● Given that the network should be self-organising, the synaptic plasticity 
responsible for this self-organisation should be Hebbian as far as possi
ble, and should rely on local inputs. In other words, synaptic plasticity 
should rely purely on the activities of the presynaptic and postsynaptic 
cells. A consequence of this was that the model should not rely on the 
direct backpropagation of error from a non-local error signal to adjust 
neural weights.20

At the same time, we relaxed several conditions that would have made the 
network more biologically plausible:

● Given that the model is neural, we decided not to enforce that it should 
model the full spiking dynamics of neurons in the brain. (Put another 
way, we decided to use a rate-coded model.) This was partly in order to 
enforce the constraint of least detail when modelling. A simple rate- 
coded model that can capture the appropriate behaviour and neural 
responses is in some ways a better model than a more complex spiking 
model that does not produce further important behaviours or predic
tions. Assuming that spiking behaviour is important to the formation 
and use of cognitive maps, we nevertheless decided that we would 
achieve more progress towards the ideal model of these processes by 
producing an initial model without spiking dynamics and then produ
cing a later, more detailed model that explicitly models spiking 
dynamics.

● We decided not to model the network using continuous time. This 
allowed us to simplify the modelling process by removing the need for 
events to have specific temporal characteristics (beginning, end, dura
tion) and making it easier to model how events took place within 
a timestep (A happens, and then B, and then C).

● We decided to use simple neural codes as far as possible. In particular, 
we have used one-hot state and action encodings for some experiments, 
and we also made heavy use of winner-take-all competition during the 
learning of the map and the self-organisation of the network. The use of 
winner-take-all competition and the resulting grandmother cell repre
sentations for SA cells and gating cells made it considerably easier to 
develop the model and understand its characteristics. This allowed us to 
make more progress towards modelling the relevant behaviour and in 
particular allowed us to investigate sequence-based planning. As part of 
this simplification, we decided to model inhibition implicitly, by passing 
neural activation through various functions, rather than by explicitly 
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modelling inhibitory interneurons and inhibitory synapses. These com
promises are true of other work in this area (see Sec. 2).

Progress made by the proposed model
The model proposed by this paper adheres to the guidelines that we pro
duced reasonably well. It forms and uses a cognitive map entirely through 
neural mechanisms, assuming only that reliable sensory and motor feedback 
are available from external systems. The processing required for both the 
learning and planning mechanisms is performed entirely through the synap
tic communication between neurons. The model therefore attempts to 
address open questions about what the cellular substrate of the cognitive 
map should be, how it should form, and how the recurrent connectivity 
necessary to encoding the synaptic map is created.

In Sec. 4 we show that the self-organization of SA cells can be done using 
lateral inhibition between minicolumns and bandstop inhibition of putative 
SA cells. These mechanisms fit within the guidelines of plausibility that we 
have stated: they rely on neural processes (notwithstanding the use of 
implicit inhibition) and they model the self-organization of SA cells using 
a Hebbian learning rule that relies only on local information. Furthermore, 
we showed that the recurrent connectivity between these state-action cells 
can be established by a local Hebbian learning rule using a memory trace.

In Sec. 6.1, we proposed several mechanisms for supporting propagating 
wavefront planning. In particular, we proposed the idea of probabilistic 
propagation, a mechanism that allowed a propagating wavefront model to 
operate in a nondeterministic world (Sec. 4.4). To our knowledge, we are the 
first to investigate this problem. There are therefore no other paradigms that 
we can compare this theory to. The two modes of interrogating this theory 
are therefore: firstly, to ask how plausible it is in terms of the known 
neurophysiology, and secondly, to ask what predictions it makes and how 
well they match what is known. In Sec. 6.1 we made the prediction that 
planning times would be longer in an environment where the transitions 
were uncertain vs. an equivalent but deterministic environment.

In terms of plausibility, as discussed in Sec. 4.4, the idea of probabilistic 
propagation appears to be plausible if planning is considered to operate over 
short periods of time. This is one instance where using a rate-coded neural 
network appears to be counterproductive. But if we consider synaptic trans
mission as naturally unreliable, such that the likelihood of a postsynaptic 
spike is linked to the synaptic weight, which is in itself linked to the 
probability of neurotransmitter vesicle release at the presynaptic terminal, 
then it seems likely that the strength of the synaptic weight affects the chance 
of a given spike being “passed on”. On a small timescale, it therefore seems 
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possible that the weights of recurrent synapses would affect the speed of 
activity propagation.

Predictions and falsifications
A requirement for modelling the process of planning using a cognitive map is 
modelling the cellular substrate that encodes this map. The models described 
in Sec. 2 show, consistently with the known neurobiology, that usable 
cognitive maps can be encoded using state/place cells, transition cells, or 
state-action cells. However, with the exception of Cuperlier 2007 (Cuperlier 
et al. 2007), these models do not attempt to show how the proposed cellular 
representations could self-organize without external help.

Cuperlier 2007 (Cuperlier et al. 2007) demonstrated a neural network 
model that formed a cognitive map made out of transition cells, and pre
dicted that, given a certain kind of initial hardwired connectivity, cells 
receiving both previous-state and current-state input could self-organize to 
represent a unique combination of these inputs and therefore come to 
represent a particular transition. Although the Cuperlier model as given 
requires this initial hardwiring, in order to ensure that each potential transi
tion cell only received current-state input from one current-state cell, the 
mechanisms that we demonstrate in Sec. 4 should in theory be able to 
reproduce these cells without the requirement for initial hardwiring.

We proposed (in Sec. 4) a “trace learning” mechanism that produces such 
recurrent connectivity using a “memory trace”. Essentially, this mechanism 
proposes that neurons which fire consecutively are able to connect together 
based on a memory of their previous firing. Hasselmo 2005 (Hasselmo 2005) 
predicts the existence of a somewhat similar mechanism, the “memory 
buffer”, which stores activation from the previous timestep to be used for 
learning in the next timestep. Erdem & Hasselmo 2012 (Erdem and 
Hasselmo 2012) do not give an explicitly neural learning rule but calculate 
synaptic weights based on a “recency signal”. Essentially, all of these models 
predict that some mechanism exists which can keep track of previous neural 
firing and use this to form recurrent connectivity. This presupposition can be 
termed the “memory” theory of cognitive map formation. There is some 
evidence that this is possible – Rogerson et. al. 2014 review a set of molecular 
mechanisms that allow neuron to associate events that are separated in time 
during electrophysiological experiments (Rogerson et al. 2014). The most 
important of these mechanisms is the CREB protein, which attaches to 
a firing neuron and increases that neuron’s excitability, thus predisposing it 
to fire again when a new input is received and so to associate these two 
temporally separate inputs. The memory theory of cognitive map encoding 
contrasts with that of Matsumoto 2011, which posits that the cognitive map 
is encoded between state (place) cells with large, overlapping receptive fields 
and therefore that the cognitive map can be encoded using a simple Hebbian 
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rule. Since the rest of the reviewed models do not model the formation of the 
cognitive map in neural at all (Cuperlier 2007, Martinet 2011 and Friedrich 
2016 (Friedrich and Lengyel 2016)), these two theories appear to be the 
primary explanation for the formation of this connectivity. Falsifying one 
or the other of these explanations will require more evidence on the type of 
cells that encode the cognitive map (discrete vs. continuous, state vs. state- 
action).

Further work
In this paper, we have proposed several novel mechanisms for the formation 
and use of cognitive maps, whilst remaining as far as possible within the 
guidelines set out in Sec. 6.2.1. An important avenue of further work is to see 
how many of these mechanisms can still be used if these guidelines are 
tightened. For example, further modelling work needs to be applied to the 
probabilistic propagation mechanism that we have proposed. We presented 
an argument of favour of the plausibility of this idea earlier in this section but 
a detailed spiking network model would be necessary whether or not this 
mechanism could realistically work as we describe. Similarly, we have argued 
that a combination of winner-takes-all and bandstop inhibition operates 
during the self-organization of the SA and gating cell layers, and a more 
detailed model could investigate these processes specifically.

If it becomes clear that some of these mechanisms cannot be implemented 
in more biologically realistic models, further future work would be necessary 
in order to discover whether these mechanisms can be improved or replaced. 
If an alternative mechanism with a similar function cannot be discovered, 
and the proposed model cannot be implemented without these mechanisms, 
it suggests that alternative neural explanations of model-based planning may 
need to be adopted.

All of the models that we have reviewed have two separate modes of 
operation: one for learning a cognitive map, the other for using it to plan. 
This is necessary because the patterns of activation required, the inhibition 
and propagation required to produce them, and the level of plasticity in the 
model all vary between these two modes, and the learning/planning separa
tion remains an unsolved problem. There are two potential routes to 
a solution. The first is to investigate oscillatory or episodic neural mechan
isms that could alter the properties of the relevant neural circuits to move 
them between these modes. Experimental data demonstrates that switching 
between exploration and exploitation radically changes prefrontal cortex 
dynamics, making activity less predictive of choice (Becket Ebitz et al. 
2017). It is also thought that neural rhythms play a role in the periodic 
modulation of synaptic transmission and plasticity and many excitatory and 
inhibitory neurons fire preferentially at different phases during a theta cycle 
(Lengyel et al. 2005).

NETWORK: COMPUTATION IN NEURAL SYSTEMS 127



An alternative solution is to find learning and/or planning mechanisms 
that are not incompatible with each other. For example, in the case for 
probabilistic propagation we argue that the propagating wavefront mechan
ism may operate at a very fast timescale, and in consequence that the number 
of spikes involved is likely to be low. It may then be the case that there is not 
enough sustained activity to produce meaningful synaptic plasticity and so 
there is no need to worry that these patterns of activation would affect the 
connectivity of the cognitive map, whereas the agent receives strong state and 
action feedback when it enters or leaves a state and so learns the appropriate 
elements of the map. In this way the learning and planning mechanisms may 
be made more compatible.

These two solutions to the learning/planning problem may coexist. For 
example, it is possible that the recurrent plasticity in the SA layer may in fact 
be left on during planning. The primary element of the planning stage (in the 
proposed model) is that activity propagates through the SA layer in a pattern 
that is defined by the cognitive map, allowing the model to output actions 
that move it towards the goal. If the cognitive map is defined by recurrent 
connectivity between SA cells, it follows that the activity propagating through 
the SA layer in the planning mode is likely to do so according to the pre- 
existing recurrent connectivity. In other words, one SA cell will drive another 
SA cell according to the pre-existing recurrent connectivity between them. It 
is therefore possible that plasticity could remain active in the SA layer even 
when the agent is planning. This seems to be more likely to occur if the 
model encodes a forward map, because the pattern of activation in the SA 
layer during learning would then be qualitatively similar to the pattern of 
activation during planning. Specifically, during the learning phase one SA 
cell would become active and then its successor cell(s) would become active, 
and during the planning phase if an SA cell becomes active, all of its 
successor SA cell(s) will become active just afterwards.

Aim 4: Learn and use a hierarchical planning mechanism

Definition and motivation
There is strong evidence that humans and animals represent space in 
a hierarchical fashion and this seems to play an important role in planning 
(Sec. 1.5). There is also evidence that humans and certain animals (rats and 
bats) are able to plan over very different spatial and temporal scales, ranging 
from a few centimetres to thousands of kilometres (Geva-Sagiv et al. 2015).

Our initial findings, as well as experimental evidence, suggested that 
planning time correlates reasonably closely with the size of the task. 
Howard 2014 found that during a spatial navigation task the planning time 
for participants was correlated to the distance to the goal (Howard et al. 
2014), and Ward & Allport 1997 found that when participants were required 
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to prepare a solution to a 5-disc Tower of London task21 the preparation time 
was correlated to the number of movements required to reach the goal 
(Ward and Allport 1997). This correlation seems to be incompatible with 
the idea that humans and animals plan over vastly different spatial scales. If 
planning time is correlated to the number of moves required to solve the 
5-disc task (between 2 and 12) then how could humans and animals plan 
over thousands of kilometres and millions of movements in a reasonable 
period of time?

As an example, the 5-disc task used by Ward & Allport 1997 (Ward and 
Allport 1997) used 2–12 actions and recorded mean planning times on the 
order of seconds. Meanwhile, the navigational task used by Howard et. al. 
2014 (Howard et al. 2014) asked participants to navigate a complex street 
map to a goal several hundred metres away and again recorded planning 
times on the order of seconds. In both cases, planning times were correlated 
with the number of actions/the length of the route. And yet, even though 
these tasks occur on very different scales, the planning times appear very 
similar. This comparison is not rigorous, for reasons that we will explore 
further in Sec. 6.3, but it potentially shows that planning can occur at 
different scales and levels of detail, and thus planning time can correlate 
with complexity within a task without correlating between tasks.

Our hypothesis is that a hierarchical mechanism might be responsible for 
the apparent lack of effect that task scale has on planning time. Essentially, if 
a “move” can be of arbitrary size and complexity, such that movement over 
a few centimetres can consist of ~10 “moves” but movement over a hundred 
metres (10, 000 times that distance) would also consist of ~10 “moves”, then 
it makes sense that on any given scale planning time depends on the number 
of moves but that if the scale changes by orders of magnitude then the 
“move” increases correspondingly in size so that the planning time remains 
within a limited (and feasible) range. This corresponds with the findings of 
Ward & Allport 1997 (Ward and Allport 1997), who found that although 
participants’ planning time correlated with the number of moves in the 
solution, it correlates more strongly to the number of “subgoal chunks” in 
the task. A “subgoal chunk” referred to a consecutive series of moves that all 
transfer discs to and from the same pegs, presumably in a relatively pre
dictable manner. Ward & Allport speculate that such chunks comprise 
a “mental unit of planning” (Ward and Allport 1997).

Progress made by this paper
In this paper we propose an alternative hierarchical mechanism that works 
on the principle of learned sequences. Rather than merge similar states into 
a low-resolution map, the proposed model learns frequently used sequences 
and uses these to speed up the planning process.
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In Section 3, we showed that the use of the hierarchical mechanism allows 
for faster planning in large state spaces, particularly on tasks with longer 
solutions that require more actions (Figures 7 and 8). In Section 5 we 
explained how the required connectivity could self-organize whilst remaining 
within the biologically plausible guidelines described in Sec. 6.2. We then 
briefly investigated the kind of sequences that are learned, and showed that 
they seem to be primarily located within the areas of state-space that are 
most commonly encountered by the agent (Figure 29).

The mechanism that we describe may provide a better explanation of the 
tendency of people to rely on familiar routes through large spaces and when 
under time pressure (Spiers and Maguire 2008; Brunyé et al. 2017; 
Payyanadan 2018) than the variable-resolution approach proposed by 
Martinet 2011 (Martinet et al. 2011). The low-resolution map, once formed, 
covers of all encountered state space and is then used to perform optimal 
planning. In other words, the low-resolution map approach does not speci
fically encourage the repetition of previously useful behaviour. By contrast, 
the sequence-based approach we propose explicitly produces a hierarchy 
based on stereotyped sequences of motor primitives and so is likely to 
produce highly stereotyped behaviour in familiar circumstances (Figure 10).

A sequence-based approach based on a propagating wavefront mechanism 
also provides more definite predictions about planning time. The effect of 
learned sequences on planning time is distinct, measurable, and depends on 
the type and number of sequences that are learned (Figure 7). Although the 
model is not currently able to provide predictions for very large state spaces, 
because of its discrete state-action map encoding (Sec. 6.1) the mechanisms 
we describe should inherently produce testable predictions on this basis. At 
present, the hierarchical models produce planning times roughly equal to the 
number of moves required to reach the goal, where each encoded sequence is 
counted as a move. Planning time therefore increases with the number of 
actions required to reach the goal, but this increase is modulated by the 
presence of learned sequences (Figure 7). This seems to correlate with the 
observations of Ward & Allport that planning times in a Tower of London 
task correlate with the number of high-level actions involved in the task 
solution (Ward and Allport 1997).

The hierarchical mechanism that we describe also makes the relationship 
between the hierarchical levels very clear. The variable-resolution mechanism 
proposed by Martinet 2011 (Martinet et al. 2011) uses the low-resolution 
map to supplement activity in the high-resolution map, a relatively complex 
and subtle interaction. By contrast, the sequence-based mechanism makes 
clear and testable predictions about when and why sequence cells should fire 
or not fire. This allows us to compare their behaviour to existing recording 
studies such as the comparison to pre-SMA sequence cells made in Figure 11.
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The mechanism by which the sequence cells are activated should also 
ensure that the learned sequences are not utilized unless they are adaptive 
(Sec. 3). By contrast, a decaying-activation mechanism which uses a low- 
resolution map to inject activity into faraway states, as Martinet 2011 
(Martinet et al. 2011) seems to be at risk of producing local maxima of 
activity. Essentially, it may be possible for the local gradient to be highest at 
the source of injected activity, such that the activity is attracted to a state or 
set of states that is being stimulated by the low-resolution map and then 
remaining there rather than move towards the true goal. We experienced 
similar difficulties in early experiments that used a similar hierarchical 
decaying-activation mechanism; this was one of the reasons for choosing to 
use a propagating wavefront planning mechanism instead.

Predictions and falsification
This model predicts that if an animal performs many tasks in an environ
ment and forms sequence cells, it should begin to perform tasks faster. 
Specifically, the correlation between planning time and path length (or 
number of moves) should decrease, as the animal moves from planning 
without sequence cells to planning with sequence cells (Figure 7).

Furthermore, the model predicts that sequence cells exist in the brain, in 
an area that is directly involved with planning or is connected to one. 
Recording results from Shima & Tanji show that cells exist in the pre-SMA 
that seem to fit the expected properties of sequence cells (Shima and Tanji 
2000). These cells are active for a sequence of movements, but they are not 
active any particular one of those movements outside the context of that 
sequence. Furthermore, they are not active for other sequences that use the 
same movements in a different order. Experiments in Sec. 3 seem to show 
that the firing patterns of a sequence cell in the proposed model are similar to 
those recorded by Shima & Tanji (Figure 11(c)).

As we mentioned previously, the main hypothesis driving our hierarchical 
work is that such a mechanism could account for the discrepancy between, 
on the one hand, the observation that planning time correlates with the 
number of remaining actions in any given task (Ward and Allport 1997; 
Cazalis et al. 2003; Howard et al. 2014); and on the other hand, the observa
tion that planning times seems to vary over a relatively small range regardless 
of the scale of the task in question. This prediction is difficult to test. Part of 
the reason for this is that there is a paucity of data on planning at very 
different scales. Geva-Sagiv et. al. (Geva-Sagiv et al. 2015) argue that this is 
because these scales have traditionally been the preserve of different disci
plines: psychologists have conducted experiments on (rodent) planning on 
the scale of laboratory tasks (e.g. the Tolman detour task (Tolman 1948; 
Alvernhe et al. 2011), the Morris water maze task (Morris 1981)) while long- 
distance animal navigation has been investigated primarily by zoologists. 
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Furthermore, data from different tasks is very difficult to compare rigorously. 
In Sec. 6.3 we argued that the planning times for a 5-disc Tower of London 
task requiring 2 to 12 movements to produce a solution (Ward and Allport 
1997) were in fact higher than the planning times for a task navigating 
through Soho that required 200 to 400 movements over distances of hun
dreds of metres (Howard et al. 2014). However, the navigational task was 
conducted in a laboratory, so that participants watched a video of the route 
rather than physically making the movements, and participants only gave 
input at each street intersection. Are these inputs “high-level movements” 
similar to those we model as being learned by the sequence cells (with 
footsteps as state-action combinations)? Alternatively, are the street intersec
tions actually the state-action combinations in this task? If the second sce
nario is true, then it is perfectly natural for the planning times to be lower in 
the navigational problem than in the 5-disc Tower of London problem and 
no hierarchical explanation is necessary.

Furthermore, it is very difficult to separate planning from other processes. 
In the Ward & Allport 1997 (Ward and Allport 1997) experiment described 
above, participants were required to produce the entire plan in their head in 
advance and then to carry it out after a button press, failing the task if they 
took longer than 2.5s to produce any movement. In the Howard 2014 
navigation task, participants were asked to output an action at every street 
intersection and their reaction times were measured (Howard et al. 2014). It 
is, again, unclear how comparable this data is. Ultimately, we cannot rigor
ously test the hypothesis that the relationship between planning time and 
task size is as we predict without further experimental work.

More difficulty comes from the fact that as yet the model is not able to 
form cognitive maps for large environments. We have run experiments on 
environments of different sizes but it is not currently possible to encode state 
spaces that vary in size by orders of magnitude. Therefore it is impossible for 
the model in its current state to produce behaviour across tasks that vary in 
scale by 10x or 100x. To make predictions about the model’s behaviour at 
larger scales we have therefore been forced to extrapolate from the model’s 
performance on small-scale tasks (Figure 8). There are several ways in which 
the model could be altered to do so, both by using more continuous and 
complex state representations and by making more efficient use of the 
limited number of state-action cells that the model has available.

Further work
Further modelling and experimental work is necessary to investigate the 
hierarchical elements of model-based planning. Further modelling work 
should address the limitations of the sequence-cell and variable-resolution 
hierarchical mechanisms, and characterize their behaviours more widely. 
Modellers may also find other potential hierarchical mechanisms. Further 
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experimental work is also needed, in order to distinguish which of these 
mechanisms is operating in the brain, as well as to confirm that a hierarchical 
mechanism is at work at all.

Perhaps the most important modelling problem at present is to investigate 
mechanisms for encoding continuous state spaces and consequently to plan 
in large, complex state spaces. This would allow the hierarchical mechanisms 
to be modelled and tested on tasks of different scales.

Furthermore, the sequences that the model learns, and the mechanisms 
that encode them, needed to be investigated and modelled in more depth. 
At present, the proposed model learns one sequence (usually of two to five 
state-action combinations) per sequence cell. These sequence cells are 
individually activated by activity propagating through the state-action 
layer, and provide this activity with a short-cut to travel through the 
layer faster. It is possible that in very large tasks (for example, taxi drivers 
crossing a city (Spiers and Maguire 2008) or bats travelling hundreds or 
thousands of kilometres (Geva-Sagiv et al. 2015)) that this would require 
the activation of hundreds or thousands of sequence cells, and that this 
process would still be insufficient to plan in a reasonable period of time. It 
is therefore possible, even likely, that these sequence cells are combined into 
larger and more complex representations. If each sequence cell encodes 
between two to five actions, then a “higher” sequence cell could receive 
connectivity from two to five sequences and therefore up to twenty-five 
state-actions. It would be very interesting to investigate this possibility of 
a “hierarchy of hierarchies” and how it might interact with large-scale 
planning, habits, and the formation of skills.

Experimentally, as Geva-Sagiv (Geva-Sagiv et al. 2015) suggest, more 
experimental work is needed to investigate planning at different scales, 
merging the work done by experimental psychologists on laboratory plan
ning tasks and the work done by biologists on long-distance navigation. It is 
necessary to investigate the extent to which animals and humans can carry 
out goal-based planning at different scales, and whether the same planning 
mechanisms are used to do so. Ideally, such work would produce data that 
was directly comparable over these scales.

It is also necessary to investigate the role that frequently-used sequences 
play in planning: how the preference for familiar routes evolves over time 
and how adaptive and maladaptive sequences of actions are integrated into 
planning.

Conclusions

We began this project with three main interests: how to model the formation 
and usage of cognitive maps in the brain using neural mechanisms, how to 
do so whilst staying as close as possible to the neurobiology, and how to 
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model a hierarchical mechanism for more efficient planning at larger spatial 
scales.

These areas had been the subject of previous modelling work, some of 
which we have reviewed in Sec. 2, but we felt that this work was limited in 
several important ways: there was little consensus on how these cognitive 
maps were represented and how they were formed, the planning mechanism 
that was used in these models seemed to be inherently limited to performing 
relatively simple tasks, and there had been little consideration of how these 
mechanisms would scale up beyond laboratory tasks.

In order to study these questions, we proposed a novel planning mechan
ism based on the principle that a propagating wave of goal-centred activity 
can carry information about the distance to the goal, originally proposed by 
Ponulak & Hopfield 2013 (Ponulak and Hopfield 2013). Unlike the model 
proposed by Ponulak et. al., the mechanism that we proposed was able to 
work in a state-action map, able to output explicit actions to move towards 
the goal, able to perform planning without altering synaptic connectivity, 
able to plan in nondeterministic environments, and able to interface with 
a hierarchical behaviour mechanism. Furthermore, the planning mechanism 
that we proposed was not subject to the same limits as the decaying activa
tion mechanism used by the models reviewed in Sec. 2. We studied what 
kind of neural mechanisms and connectivity were required to support the 
proposed mechanism and found that a particular cognitive map structure, 
consisting of state-action cells organized into minicolumns, was able to 
implement this planning mechanism. We also found that a layer of gating 
cells was able to read off appropriate actions from this planning process.

We further found that all of these elements could be self-organized during 
unsupervised exploration of the environment whilst remaining reasonably 
constrained to the known neurobiology. In particular, we found that the 
lateral inhibition known to exist between neocortical minicolumns 
(Buxhoeveden 2002) allowed the model to produce ‘state columns’ which 
contain a set of state-action cells encoding different actions in the same state. 
We also showed how the read-out mechanism (the gating cells described 
above) could self-organize during the exploration process at the same time as 
the cognitive map. Finally we showed that a hierarchical planning mechan
ism could be implemented using a layer of sequence cells. This mechanism 
was able to learn frequently-used sequences during the planning process, and 
use them as mental ‘shortcuts’ to reduce the amount of planning required.

At present, there still remain many open questions about forming and 
using cognitive maps. On the theoretical level, there is the question of 
whether cognitive maps and model-based planning are necessary for plan
ning at all. Contemporary experimental and modelling work (Alvernhe et al. 
2011; Russek et al. 2016; Fakhari et al. 2018) suggests that they are – the 
performance (Alvernhe et al. 2011; Fakhari et al. 2018) of rats and humans in 

H. O. C. JORDAN ET AL.134



detour task experiments cannot yet be replicated (Russek et al. 2016) by 
a purely model-free mechanism – but reinforcement learning is a fast- 
moving space and may advance in unexpected directions.

At the neural level, there are various proposed cellular substrates that 
might encode a cognitive map: place cells, state-action cells, and transition 
cells. There are some proposed explanations for how these cells could self- 
organize. However, although these models propose that different cell types 
encode the cognitive map, they all agree that the recurrent connectivity 
between these cells is responsible for encoding individual state transitions 
within that map. They further agree that this recurrent connectivity is 
learned by a mechanism that joins cells which fire consecutively in time. 
Current models also agree to some extent on the planning mechanism that 
produces goal-directed actions using a cognitive map. They agree that this 
mechanism works by propagating activity through the recurrent connectivity 
that encodes the synaptic map, and that this activity can produce a gradient 
which can be climbed to reach the goal (see Sec. for a more detailed 
description of this mechanism). However, they propose subtly different 
implementations of this planning mechanism, and a variety of mechanisms 
for extending it. The model that we propose agrees with some of the theories 
described above, and disagrees with others. It also provides novel alternative 
theories: for example, the idea that lateral inhibition between minicolumns 
and bandstop mechanisms could cooperate to self-organize SA and gating 
cells, the probabilistic planning mechanism, and the formation and use of 
a sequence cell hierarchy.

All of these theories are in principle testable. However, although these 
theories make various predictions about elements of the exploration and 
planning process, most of these predictions are currently difficult to test. 
For example, the decaying activation planning mechanism and the propagat
ing wavefront mechanism can be compared experimentally by investigating 
the planning time taken for tasks that require different numbers of actions. 
Unfortunately most experimental investigations of multi-step planning or 
navigation do not explicitly separate planning time from other processes, or 
seek to measure it, and so planning time is usually invisible. We hope that 
further modelling work will improve and extend both the model that we have 
proposed in this paper as well as other models in the field, and that these 
models will in turn suggest profitable avenues for further experimental work.

Notes

1. This was originally demonstrated in spatial tasks (Tolman 1938; Tolman et al. 1946) 
but proved to be true for more abstract decision making as well (Hampton et al. 2006; 
Kurth-Nelson et al. 2016; Aronov et al. 2017).
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2. See Sec. 2: Literature Review for a review of contemporary neural network models that 
learn and use cognitive maps.

3. It is not clear whether such place cell activity is responsible for producing map-based 
behaviour or whether it represents an input-to/output-from/reflection-of planning 
processes occurring in the basal ganglia and prefrontal cortex. Chersi et. al. (Chersi 
and Pezzulo 2012) explore the incongruities between hippocampal pre-play (as 
described by Johnson & Redish (Johnson and Redish 2007)) and contemporary neural 
network models of map-based planning.

4. States are defined by displaying a unique visual object and were each associated with 
a varying reward. From each state the participant could move “up” or “down” to a different 
state that was identified by a different visual object. Participants were trained to learn the 
structure of the environment in advance and were then asked to enter a sequence of four 
moves with the goal of collecting as much reward as possible. Kurth-Nelson et al. (Kurth- 
Nelson et al. 2016) said that “At debriefing, no participant reported conceiving the 
relationships between objects in a spatial manner” and furthermore “all participants 
reported a subjective experience of deploying knowledge of transitions for planning”.

5. Note that although option discovery papers usually specifically reference the Option 
Framework or another hierarchical formulation, the techniques described are usually 
more general. This makes sense as they are essentially ways to find useful substructures 
within a state space.

6. State-action cells receive state input from state cells and action input from action cells. 
See Figure 1. At this stage it is assumed that the state space is discrete; that there are 
a finite number of discrete states and so that each state is uniquely identifiable and 
separable from any other state. The same is true of actions.

7. Bearing in mind that the activity is spreading backwards from the goal.
8. N, NE, E, SE, S, SW, W, NW.
9. For each gating cell, the state cell and action cell is the same state and action that is 

encoded by the state-action cell. A gating cell receiving input from state-action cell 
S1A2 will also receive input from state cell S1 and send activity to action cell A2. 
Section 4 describes this in more detail and describes a mechanism for self-organizing 
such cells in a biologically plausible fashion.

10. Hasselmo 2005 and Martinet 2011 (Hasselmo 2005; Martinet et al. 2011), see 
Lit. Review.

11. The reverse causal model encoded in the recurrent synapses using a trace learning rule 
with the memory trace in the postsynaptic term represents how a given state may be 
reached by a state-action combination, rather than how a given state-action combina
tion produces a new state. This is discussed more thoroughly in Sec. 3.

12. Sometimes called sensitivity.
13. Winner-take-all competition always leaves one cell active, with the exception that if 

there are no cells firing in the layer then WTA competition will not generate an 
active cell.

14. Unlike the equivalent Figure 13 in Sec. 4.1, which shows that at least one SA cell 
responds uniquely to every state-action combination after training, there is not 
a unique gating cell for every state and SA combination. This is because an SA cell 
(which encodes a unique combination of state and action) will only fire in conjunc
tion with its associated state during exploration. Most state and SA cell combinations 
are therefore invalid: the cells in the gating layer will never experience this combina
tion of inputs.

15. Assuming that all transitions are deterministic in nature, not probabilistic.
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16. Another possible indicator of significant sequences is that they pass through 
a bottleneck in state-action space such a door between rooms (Taghizadeh and 
Beigy 2013). In practice this property is likely to be correlated with sequence 
frequency, because any task that requires moving from one collection of states to 
another will require the agent to pass through the bottleneck that separates them 
and so such bottlenecks are frequently used. We do not investigate this property 
separately.

17. N, NE, E, SE, S, SW, W, NW.
18. N, NE, E, SE, S, SW, W, NW.
19. Particularly if they have already memorized the layout of the environment, as in 

Howard (2014) (Howard et al. 2014).
20. The question of whether or not the brain learns using the backpropagation of error, 

as in a deep learning network, is still debated. It was originally argued that synapses 
in the brain would not be able to determine how to change in the strength of their 
synaptic weights in order to decrease the error made by the network as a whole 
(Crick 1989; Rolls and Treves 1998). Recently, researchers have begun to put forward 
alternative learning rules that produce results similar to the backpropagation of error 
in some circumstances (Marblestone et al. 2016; Pieter 2018), but these methods are 
complex, still under investigation and require very particular synaptic connectivities 
and neural dynamics (Marblestone et al. 2016). The question of if, how and when 
such methods apply is beyond the scope of this research and so we have chosen to 
take a conservative approach.

21. The 5-Disc Tower of London task consists of two configurations of 5 rings placed on 
three pegs. The rings can be moved between the pegs according to specific rules. The 
agent starts at one configuration and must perform a series of moves to produce 
the second configuration.
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