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Abstract
A key issue is how networks in the brain learn to perform path integration, that is update a represented
position using a velocity signal. Using head direction cells as an example, we show that a competitive
network could self-organize to learn to respond to combinations of head direction and angular head
rotation velocity. These combination cells can then be used to drive a continuous attractor network
to the next head direction based on the incoming rotation signal. An associative synaptic modification
rule with a short term memory trace enables preceding combination cell activity during training to be
associated with the next position in the continuous attractor network. The network accounts for the
presence of neurons found in the brain that respond to combinations of head direction and angular
head rotation velocity. Analogous networks in the hippocampal system could self-organize to perform
path integration of place and spatial view representations.

Keywords: Continuous attractor networks, self-organization, trace learning, competitive learning, head
direction cells, path integration

Introduction

The orientation or position of an animal within its environment, and where it is looking,
are represented by neurons in different brain areas. Examples of such cells include head
direction cells in rats (Ranck 1985; Taube et al. 1990a, 1996; Muller et al. 1996) and primates
(Robertson et al. 1999) which respond maximally when the animal’s head is facing in a
particular preferred direction, and hippocampal place cells in rats (O’Keefe & Dostrovsky
1971; McNaughton et al. 1983; O’Keefe 1984; Muller et al. 1991; Markus et al. 1995)
that fire maximally when the animal is in a particular location. In primates, hippocampal
spatial view cells have been discovered in the hippocampus that code for the location at
which a primate is looking (Rolls et al. 1997, 1998; Robertson et al. 1998; Georges-François
et al. 1999; Rolls 1999; Rolls & Xiang 2006). A key problem is how can these systems
learn to perform path integration, i.e., update their spatial representations using velocity
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(e.g., idiothetic) signals in the dark. Many models have hardwired synaptic weights (Skaggs
et al. 1995; Redish et al. 1996; Zhang 1996). We have developed a series of self-organising
path integration models for head direction cells, place cells and spatial view cells (Stringer
et al. 2000a, 2000b, 2005). However, these models utilize Sigma–Pi synaptic connections,
which may not be biologically plausible as described below.

In this paper, we introduce a network which does not need Sigma–Pi connections, but
which uses a competitive layer of cells that self-organize to represent combinations of velocity
and the positional state of the agent. The proposal is backed by experimental evidence for
the existence of such combination cells in various spatial processing areas of the brain.
For example, in the rat head direction system some cells represent a combination of head
direction and rotation in a particular direction (Taube et al. 1990b; Sharp 1996; Bassett
& Taube 2005). In the hippocampus, cells are responsive to combinations of place and
forward velocity (McNaughton et al. 1983). Similarly, in the entorhinal cortex some grid cells
(Hafting et al. 2005) are modulated by running speed (Sargolini et al. 2006). By combining
such combination responsive neurons with a coupled attractor network, we show how path
integration could be performed and how the whole system could self-organize. The same
approach could in principle be applied to other path integration systems, which represent, for
example, place in the environment or spatial view. In this paper, we show how this principle
can be applied to the problem of head direction cells.

Head direction cells in rats (Ranck 1985; Taube et al. 1990a, 1996; Muller et al. 1996)
respond maximally when the animal’s head is facing in a particular preferred direction.
These cells are able to maintain their firing in the absence of visual input. In particular,
an important function of these cells is orientation path integration. That is, when the animal
moves in darkness, the spatial representation may be updated by idiothetic (self-motion) cues
(Taube et al. 1996). Similar cells have been found in primates and also show path integration
(Robertson et al. 1999). Some cells have been found in rats which represent a combination
of head direction and angular rotation velocity (Taube et al. 1990b; Sharp 1996; Bassett &
Taube 2005). Computer modelling studies need to address how such combination cells fit
into an overall head direction system in the rat, and the role that combination cells play in
path integration.

A number of models of head direction cells rely on ‘Continuous Attractor’ neural networks
(CANN) (Skaggs et al. 1995; Redish et al. 1996; Zhang 1996). In a continuous attractor
network there are not only associatively modifiable recurrent connections between the nodes,
but also the representation is continuous, in that neighbouring nodes have overlapping (typ-
ically Gaussian) receptive fields (Amari 1977; Taylor 1999; Rolls & Deco 2002). The state
space is thus inherently continuous. These network models are able to maintain a local packet
(or bubble) of neuronal activity representing the current head direction in the absence of vi-
sual input. In addition, some models can use idiothetic (self-motion) cues to update the
representation of head direction as the agent moves in the dark (Skaggs et al. 1995; Redish
et al. 1996; Zhang 1996; Xie et al. 2002; Hahnloser 2003). A major limitation of some of
the models studied so far is that the connections are pre-specified by the modeller, with for
example two types of connections to deal with clockwise and anticlockwise turns (Skaggs
et al. 1995; Redish et al. 1996; Zhang 1996). For example, the model of Skaggs et al. (1995)
had a head direction cell layer and a layer with cells responding to combinations of head
direction and angular velocity, but was not a self-organising model. A self-organising model
of head direction cells, in which the synaptic weights in the network are learned through
interaction with the environment, was proposed by Stringer et al. (2002a). The model used
a ‘trace’ learning rule to associate a combination of two presynaptic terms, namely the recent
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activity within the layer of head direction cells and an angular velocity of rotation signal, with
the current postsynaptic activity of head direction cells. The model thus relied on the use of
higher order Sigma–Pi synapses, which suffer from a lack of biological plausibility. Sigma–Pi
synapses learn an association between a combination of two or more presynaptic inputs and
the post-synaptic state. They are thus second (or higher) order synapses. One anatomical
arrangement that might achieve this would be for the rotation cells to have presynaptic ter-
minals on every (recurrent collateral) head direction cell synapse onto a head direction cell
neuron, but this is not very biologically plausible as an implementation. Another possibility
might be closely paired synapses from rotation and head direction synapses onto a very thin
dendrite that would allow only local voltage interactions (Koch 1999), but again this is not
known to occur. Because Sigma–Pi synapses are not thought to be a feature of many con-
nections in the brain, an important aim of the work described here was to investigate how
a self-organising path integration neuronal system might be set up with simpler first order
associative synapses, which are common in many brain areas.

In this paper, we investigate a new 2-layer self-organising model of the rat head direction
system, which does not rely on the use of biologically unrealistic Sigma–Pi synapses. The
model incorporates a layer of head direction cells and a new additional layer of combination
cells, which learn to respond to combinations of head direction and rotation. In this paper,
we investigate how the synaptic connections may develop in the network using biologically
plausible learning rules. During training, connections from the head direction cells and ro-
tation cells to the combination cells self-organise using unsupervised Hebbian competitive
learning (described by Hertz et al. (1991) and Rolls & Deco (2002)) to enable the combina-
tion cells to learn to represent combinations of head direction and rotation. At the same time,
a trace learning rule associates the recent activity within the layer of combination cells with
the current activity of the head direction cells. The additional layer of combination cells thus
removes the need in the model of Stringer et al. (2002a) to combine separate inputs from
separate populations of head direction cells and rotation cells within higher order Sigma–Pi
synapses to update the representation within the layer of head direction cells during path
integration. The new model described here also is consistent with and helps to account for
the presence of neurons in for example the rat presubiculum and dorsal thalamic nucleus
that respond to combinations of head direction and angular rotation (Taube et al. 1990b;
Sharp 1996; Bassett & Taube 2005). The new model is also prototypical of path integration
systems that may be implemented in the brain, including those used for path integration in
rat hippocampal place cells (McNaughton et al. 1983; O’Keefe 1984; Muller et al. 1991;
Markus et al. 1994) and primate hippocampal spatial view cells (Robertson et al. 1998). We
emphasize that all the synaptic connections in the model are completely self-organizing, and
the only inputs needed are head direction and head rotation velocity inputs during training,
and only head rotation velocity inputs during the path integration.

The model

The model has the neural architecture shown in Figure 1. There are two connected networks.
Firstly, there is a network of head direction cells (with firing rate r HD

i for head direction cell
i) which represent the current head direction of the agent. The head direction cell network
operates as a rotation path integrator using a continuous attractor neural network (CANN),
which is a recurrently connected network that can maintain the firing of its neurons to
represent any location along a continuous physical dimension representing the state of the
agent (Amari 1977; Taylor 1999). Secondly, there is a network of combination cells (with
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Figure 1. Network architecture for two-layer self-organising neural network model of the head direction system.
The network architecture contains a layer of head direction (HD) cells representing the head direction of the agent, a
layer of combination (COMB) cells representing a combination of head direction and rotational velocity, and a layer
of rotation (ROT) cells which become active when the agent rotates. There are four types of synaptic connection in
the network, which operate as follows. The w1

i j synapses are Hebb-modifiable recurrent connections between head
direction cells. These connections help to support stable packets of activity within this continuous attractor layer
of head direction cells in the absence of visual input. The combination cells receive inputs from the head direction
cells through the Hebb-modifiable w3

i j synapses, and inputs from the rotation cells through the Hebb-modifiable
w4

i j synapses. These synaptic inputs encourage combination cells by competitive learning to respond to particular
combinations of head direction and rotational velocity. In particular, the combination cells only become significantly
active when the agent is rotating. The head direction cells receive inputs from the combination cells through the w2

i j
synapses. The w2

i j synapses are trained using a ‘trace’ learning rule, which incorporates a temporal trace of recent
combination cell activity. This rule introduces an asymmetry into the w2

i j weights, which plays an important role in
shifting the activity packet through the layer of head direction cells during path integration in the dark.

firing rate r COMB
i for combination cell i), which represent combinations of head direction

and rotation. The combination cells operate as a competitive network, and develop their
firing properties during training. Neurons in the brain that have Gaussian tuning to head
direction, and are also tuned for the direction of angular head velocity have been described
in for example the dorsal tegmental nucleus (Bassett & Taube 2005).

During the initial learning phase, each head direction cell i receives an external visual input
ei, which carries information about the head direction of the agent. When visual cues are
available, these external inputs dominate other excitatory inputs to the head direction cells,
and force each head direction cell to respond best to a particular head direction of the agent,
with less firing as the agent’s head direction moves away from the preferred head direction.

During learning, the recurrent connections w1
ij from head direction cell j to head direction

cell i use associative synaptic modification so that the synaptic strengths between the head
direction cells reflect the distance between the directions represented by the head direction
cells. The recurrent connectivity implemented by w1

ij allows the network of head direction
cells to operate as a continuous attractor network and support stable patterns of firing in the
absence of external visual input, so that the agent can operate in the dark.
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The layer of combination cells receives two kinds of synaptic connections: w3
ij from head

direction cell j to combination cell i, and w4
ij from rotation cell j to combination cell i .

During training, the w3
ij and w4

ij connections to the layer of combination cells self-organise
using a Hebbian competitive learning rule, which enable the layer of combination cells to
operate as a competitive network and thus learn to represent combinations of head direction
and rotation. That is, after the unsupervised learning, different cells in this network respond
to different combinations of head direction and rotation.

The path integration uses the connections w2
ij from combination cell j to head direction

cell i . These connections are learned by an associative learning rule with a short term mem-
ory trace in the presynaptic firing, which allows the traced activity within the combination
cell network (which represents a combination of the preceding head direction and rotation
signal) to be associated with the current head direction. The principle of operation is that dur-
ing training the combination cells that were active in the immediately preceding time become
associated with the particular head direction currently represented in the head direction cell
continuous attractor network. Then, later on after training, if this particular set of combi-
nation cells is active (as a result of activity in the w3 and w4 synapses), the head direction
cell attractor is moved by the associatively modified w2 inputs from the combination cells to
the next appropriate head direction position. Thus, after training, the firing of a particular
cluster of combination cells should stimulate the firing of further head direction cells such
that the pattern of activity within the network of head direction cells evolves continuously to
faithfully reflect and track the changing head direction of the agent as it rotates.

The activation hHD
i of head direction cell i in the model is governed by

τ
dhHD

i (t)
dt

= −hHD
i (t) + φ1

C HD → HD

∑
j

(
w1

ij − wINH)
r HD

j (t) + ei + φ2

C COMB → HD

∑
j

w2
ij r

COMB
j

(1)
where the activation hHD

i is driven by the following terms. The term r HD
j is the firing rate of

head direction cell j, w1
i j is the excitatory (positive) synaptic weight from head direction cell

j to head direction cell i , and wINH is a global constant describing the effect of inhibitory
interneurons within the layer of head direction cells.1 Further terms in Equation 1 are as
follows. The term τ is the time constant of the system. The term ei represents an external
visual input to head direction cell i . When the agent is denied visual input, the term ei is
set to zero. Thus, in the absence of visual input, the key term driving the head direction
cell activations in Equation 1 is a sum of inputs from the combination cells

∑
j w2

ij r
COMB
j ,

where r COMB
j is the firing rate of combination cell j , and w2

ij is the corresponding strength
of connection from this cell.2 The firing rate r HD

i of head direction cell i is determined from
the activation to hHD

i and the sigmoid activation function

r HD
i (t) = 1

1 + e−2β(hHD
i (t)−α)

, (2)

where α and β are the sigmoid threshold and slope, respectively.

1 The scaling factor (φ1/CHD → HD) controls the overall strength of the recurrent inputs to the layer of head direction
cells, where φ1 is a constant and CHD → HD is the number of presynaptic connections received by each head direction
cell from other head direction cells.

2 The scaling factor φ2
C COMB → HD controls the overall strength of the combination cell inputs, where φ2 is a constant,

and C COMB → HD is the number of connections received by each head direction cell.
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The recurrent synapses w1
ij in the head direction cell continuous attractor are trained by a

local associative (Hebb) rule

δw1
ij = k1r HD

i r HD
j . (3)

This rule increases the strength of the synaptic connections between head direction cells that
represent nearby head directions of the agent, and which tend to be co-active due to broadly
tuned, overlapping receptive fields. To bound the synaptic weights, weight normalization
was used. To implement weight normalization, after each timestep of the learning phase, the
recurrent synaptic weights between neurons within the continuous attractor network were
rescaled to ensure that for each head direction cell i we have√∑

j

(
w1

ij

)2 = 1, (4)

where the sum is over all head direction cells j . Such a renormalization process may be
achieved in biological systems through synaptic weight decay (Oja 1982; Rolls & Treves 1998;
Rolls & Deco 2002). The renormalization (Equation 4) helps to ensure that the learning rules
are convergent in the sense that the recurrent synaptic weights between neurons within the
continuous attractor network settle down over time to steady values.

The learning rule used to update the synapses w2
i j can be expressed by

δw2
ij = k2r HD

i r̄ COMB
j , (5)

where r̄ COMB
j refers to a memory trace of the firing r COMB

j . The trace value r̄ of the firing
rate r of a cell is calculated according to

r̄ (t + δt) = (1 − η)r (t + δt) + ηr̄ (t) (6)

where η is a parameter in the interval [0,1] which determines the relative contributions of the
current firing and the previous trace. For η = 0 the trace becomes just the present firing rate,
and as η is increased the contribution of preceding firing at times earlier than the current
timestep is increased (Földiák 1991; Stringer et al. 2000a, 2000b; Rolls & Deco 2002). The
equation simulates exponential decay of the trace value r̄ .

Possible ways in which such traces of previous neuronal activity could be implemented
include short-term memory related firing in networks, and biophysical processes within
neurons (see Stringer et al. (2002a)). To bound the synaptic weights, after each timestep
of the learning phase, the w2

ij synaptic weights were rescaled to ensure that for each head
direction cell i we have √∑

j

(
w2

ij

)2 = 1, (7)

where the sum is over all combination cells j . As noted above, such a renormalization process
may be achieved in biological systems through synaptic weight decay (Oja 1982; Rolls &
Treves 1998; Rolls & Deco 2002).

The combination cells are driven by synaptic inputs w3
ij from the layer of head direction

cells and synaptic inputs w4
ij from a layer of rotation cells. The rotation cells are external

inputs which become active when the agent starts to rotate. There would need to be two
separate populations of rotation cells, for clockwise and anticlockwise rotation. Thus, the
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activation hCOMB
i of combination cell i is governed by

τ
dhCOMB

i (t)
dt

= −hCOMB
i (t) + φ3

CHD → COMB

∑
j

w3
ij r

HD
j + φ4

CROT → COMB

∑
j

w4
ij r

ROT
j (8)

where the activation hCOMB
i is driven by the following terms. The first term driving the

activations of the combination cells in Equation 8 is the input from the head direction cells∑
j w3

ij r
HD
j , where r HD

j is the firing rate of head direction cell j , and w3
ij is the corresponding

strength of the connection from this cell. The second term driving the activations of the
combination cells in Equation 8 is the input from the rotation cells

∑
j w4

ij r
ROT
j , where r ROT

j

is the firing rate of rotation cell j , and w4
ij is the corresponding strength of the connection

from this cell.3

Activity within the network of combination cells is driven by the head direction cells if
and only if the rotation cells are also active. If the rotation cells stop firing then the activity
in the combination cell network decays to zero according to the time constant τ . The firing
rate r COMB

i of combination cell i is determined from the activation hCOMB
i and the sigmoid

activation function

r COMB
i (t) = 1

1 + e−2β(hCOMB
i (t)−α)

(9)

where α and β are the sigmoid threshold and slope, respectively.
The synaptic weights w3

ij from the head direction cells to the combination cells are updated
during learning according to

δw3
ij = k3r COMB

i r HD
j . (10)

To bound the synaptic weights, after each timestep of the learning phase, the w3
ij synaptic

weights were rescaled to ensure that for each combination cell i we have√∑
j

(
w3

ij

)2 = 1, (11)

where the sum is over all head direction cells j .
The synaptic weights w4

i j from the rotation cells to the combination cells are updated
during learning according to

δw4
ij = k4r COMB

i r ROT
j . (12)

To bound the synaptic weights, after each timestep of the learning phase, the w4
ij synaptic

weights were rescaled to ensure that for each combination cell i we have√∑
j

(
w4

ij

)2 = 1, (13)

where the sum is over all rotation cells j .
During training in the light, the agent rotates on the spot and the synaptic connections

are established as follows. Visual input drives the layer of head direction cells according to
Gaussian head direction related tuning profiles. (The firing rates of head direction cells in

3 The scaling factor φ3
CHD → COMB controls the overall strength of the inputs from the head direction cells, where φ3 is

a constant, and CHD → COMB is the number of connections received by each combination cell from head direction
cells. The scaling factor φ4

CROT → COMB for the rotation inputs is defined equivalently.
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both rats (Taube et al. 1996; Muller et al. 1996) and macaques (Robertson et al. 1999) are
known to be approximately Gaussian.) The layer of combination cells is driven by inputs
from the head direction cells and rotation cells. The synaptic weights w1

ij , w2
ij , w3

ij and w4
ij are

updated according to the simple and local learning rules discussed above. During training,
the connections to the combination cells self-organise using competitive learning to enable
the second layer of cells to learn to represent combinations of head direction and rotation.
That is, the combination cells learn to reflect the current head direction of the agent, but
are only active if the agent is rotating. At the same time, the model is able to learn to
perform path integration by using a trace learning rule to associate recent activity in the
layer of combination cells with the current representation in the layer of head direction cells.
After training, the network is able to perform path integration in the absence of visual cues.
That is, the network can update the representation in the layer of head direction cells using
inputs from the layer of combination cells. A key advantage of this two-layer model over
the earlier self-organising model of Stringer et al. (2002) is that the incorporation of the
layer of combination cells avoids the need for higher order Sigma–Pi synapses to update the
representation in the layer of head direction cells during path integration.

Stabilization of the activity packet within the continuous attractor network of head direction cells
when the agent is stationary

As described by Stringer et al. (2002a), the recurrent synaptic weights within the continuous
attractor network of head direction cells may be corrupted by a certain amount of noise
from the learning regime. This problem is compounded by diluted connectivity. This in
turn can lead to drift of the activity packet within the continuous attractor network of head
direction cells even when the agent is not moving when there is no external visual input
available. Stringer et al. (2002a) proposed that in real nervous systems this problem may be
solved by enhancing the firing of neurons that are already firing. This might be implemented
through mechanisms for short term synaptic enhancement (Koch 1999), or through the
effects of voltage dependent ion channels in the brain such as NMDA receptors. In the
model presented in this paper, we simulate these effects using an additional non-linearity
in the activation functions (2) (such as might be implemented by NMDA receptors, see
Wang (1999) and Lisman et al. (1998)) by adjusting the sigmoid threshold αi for each head
direction cell i according to

αi =
{
αHIGH if ri < γ

αLOW if ri ≥ γ
(14)

where γ is a firing rate threshold. This helps to stabilize the current position of the activity
packet within the continuous attractor network of head direction cells. The sigmoid slopes
are set to a constant value, β, for all cells i . The value of αHIGH was 0 and of αLOW was −40
as shown in Table I, and the difference between these values is less than 2% of the typical
activation values of HD neurons in the network.

Training and testing

We next present numerical (simulation) results to prove and illustrate the main properties of
the model Figure 1 shows the details of the network architecture used for the simulations. In
the simulations there were 1000 head direction cells, 1000 combination cells and 1000 rota-
tion cells. In the model simulations the head direction cells were mapped onto a regular grid
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Table I. Simulation parameter values for Experiment 1

Network parameters
No. HD cells 1000
No. COMB cells 1000
No. ROT cells 1000
No. w1 connections onto each HD cell 50
No. w2 connections onto each HD cell 50
No. w3 connections onto each COMB cell 50
No. w4 connections onto each COMB cell 50
Firing sparsness in COMB layer 0.05
σHD 20◦
Learning rates k1, k2, k3, k4 0.001
Trace parameter η 0.9
τ 1.0
φ1 3 × 105

φ2 3 × 107

φ3 5 × 102

φ4 3 × 102

HD cell parameters
γ 0.5
αHIGH 0.0
αLOW -40
β 0.1

COMB cell parameters
α 10.0
β 0.3

Training parameters
No. training epochs 100

of different head directions, where for each head direction cell i there was a unique preferred
head direction xi of the agent for which the cell was stimulated maximally by the visual cues.

During training, the agent is rotated on the spot. One revolution of the agent through 1000
consecutive head directions from 0–360◦ constitutes 1 epoch of training. In total, 100 training
epochs are performed. As the agent rotates to each head direction, the head direction cells
are set to fire according to prescribed Gaussian activity profiles. During the initial learning
phase it was assumed that the external input ei to the head direction cells would dominate
all other excitatory inputs. Therefore, in the simulations presented below we employed the
following modelling simplification. During the learning phase in which the agent received
external visual input, rather than implementing the dynamical Equations 1 and 2, we set the
firing rates of the head direction cells according to the following Gaussian response profile

r HD
i = e−(sHD

i )2/2(σHD)2
, (15)

where sHD
i was the difference between the actual head direction x of the agent and the

preferred head direction xi for head direction cell i , and σHD was the standard deviation.
For each head direction cell i , sHD

i was given by

sHD
i = MIN(|xi − x|, 360 − |xi − x|) (16)

During training, the activity of the combination cells is driven by the w3
ij synaptic inputs

from the head direction cells and the w4
ij synaptic inputs from the rotation cells. The aim of

the training was to check that standard competitive learning can by self-organization set up
the correct COMB cells that respond to particular combinations of the head direction and
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rotation velocity inputs, and therefore a standard competitive learning instantiation was used
as follows. During learning we set the activations of the combination cells according to

hCOMB
i = φ3

CHD → COMB

∑
j

w3
ij r HD

j + φ4

CROT → COMB

∑
j

w4
ij r ROT

j . (17)

Next, mutual inhibition between the combination cells implements competition to ensure
that there is only a small winning set of combination cells left active. The mutual inhibition
(which would be implemented by inhibitory feedback neurons which implement lateral in-
hibition in the brain) ensures that the sparseness of the activity in the combination cell layer
is kept to a fixed value, set in these simulations to 0.05. There are many ways in which com-
petition between cells may be modelled. In the simulations, the competition was achieved by
setting to 1 the firing rates of the 5% of the combination cells with the greatest activations
hCOMB

i , with the firing rates of the remaining 95% of the combination cells set to 0.
The numerical simulations began with the learning phase in which the synaptic weights,

w1
i j , w2

i j , w3
i j and w4

i j , were self-organized. At the start of the learning, the synaptic weights
were initialized to random positive values. Then learning proceeded with the agent rotating
on the spot. During this, the synaptic weights were updated as described above according to
the learning rules (Equations 3, 5, 10, and 12). At the start of training all trace values were
initialised to zero.

After the learning phase was completed, the simulations continued with the testing phase,
in which the agent had to perform path integration in the absence of visual input. For the
testing phase, the full ’leaky integrator’ dynamical Equations (1, 2, 8 and 9), were imple-
mented, because in the model the path integration occurs as an evolutionary process that is
continuous in time. In the simulations, the differential Equations 1 and 8 were approximated
by Forward Euler finite difference schemes with a timestep of 0.2 (which was shown to be
sufficiently short to model the dynamics). At the start of the testing phase, all of the firing
rates, r HD

i , r COMB
i , and r ROT

i , were set to zero. Then the agent was simulated with visual input
available, with the agent in an initial state x = 72◦, but with no rotation cells active, for 500
timesteps. While the agent maintained this head direction, the visual input term ei for each
head direction cell i was set to a Gaussian response profile identical (except for scaling) to
that used for the head direction cell during the learning phase given by Equation 15. Next
the visual input was removed by setting all of the ei terms to zero, and the agent was allowed
to rest in the same head direction x = 72◦ for a further 500 timesteps. This process led to
a stable packet of activity within the layer of head direction cells that represented the initial
head direction of the agent.

When the agent started to rotate, the firing rates r ROT
i of the rotation cells were set to

1. When the rotation cells fired, the co-firing of the rotation cells and the head direction
cells stimulated an activity packet in the layer of combination cells. Then the firing of the
combination cells stimulated further head direction cells in the appropriate direction in the
head direction cell layer to reflect the altering head direction of the agent given that the
agent was rotating. That is, the head direction representation was updated by the signal
from the combination cells. As the activity packet within the head direction network moved,
the activity packet in the combination network, which was stimulated by the co-firing of
the head direction cells and rotation cells, also moved. Thus, the two networks moved in
tandem while the rotation cells were active. In this way the network learned to perform path
integration. When the rotation cells stopped firing, the driving input to the combination cells
disappeared, and the combination cells ceased to fire. Then the activity packet within the
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head direction network was no longer updated by the signals from the combination cells,
and the head direction representation remained static.

Simulations

Experiment 1: Diluted connectivity for all types of synaptic connection w1, w2, w3 and w4

In Experiment 1, the 2-layer neural network architecture shown in Figure 1 was simu-
lated with diluted 5% connectivity for all of the four different types of synaptic connection
wl , w2, w3 and w4. Specifically, each head direction (HD) cell received 50 w1 connections
and 50 w2 connections, while each combination (COMB) cell received 50 w3 connections
and 50 w4 connections. The diluted connectivity implemented in this simulation (and present
in the brain) helps the competitive network to allocate different neurons to different combi-
nations of its inputs (Rolls & Treves 1998; Rolls & Deco 2002). Simulation parameter values
for Experiment 1 are given in Table I. Results after training are shown in Figures 2 to 5.

Figure 2 shows the recurrent weights w1 within the layer of head direction cells after
training with the Hebb rule (Equation 3) and weight normalization (Equation 4). Each of
the four plots shows the learned recurrent synaptic weights to a different postsynaptic head
direction cell from the other 1000 presynaptic head direction cells in the network. In the
plots, the 1000 presynaptic head direction cells are arranged in the graphs according to
where they fire maximally in the head direction space of the agent when visual cues are
available. For each plot, a dashed vertical line is drawn to mark where the postsynaptic head
direction cell fires maximally in the light. In each of the four plots, except for the effects of
diluted connectivity, the weight profile is approximately symmetric about the head direction
at which the postsynaptic head direction cell fires maximally in the light. This will help to
support an activity packet within the head direction network during subsequent testing in
the absence of visual input.

Figure 3 shows the weights w3 from the layer of head direction cells to the layer of com-
bination cells after competitive learning with the Hebb rule (Equation 10) and weight nor-
malization (Equation 11). Each of the four plots shows the learned w3 synaptic weights to a
different postsynaptic combination cell from the 1000 presynaptic head direction cells. The
1000 presynaptic head direction cells are arranged in the graphs according to where they fire
maximally in the head direction space of the agent when visual cues are available. For each
plot, a dashed vertical line is drawn to mark the presynaptic head direction cell from which
the postsynaptic combination cell has maximal w3 weight. Except for the effects of diluted
connectivity, each of the w3 weight profiles is centred on a small cluster of similarly-tuned
head direction cells, with a profile that is approximately symmetric about the presynaptic
head direction cell from which the postsynaptic combination cell has maximal w3 weight.
Thus, the learned w3 weights show that the cells in the second layer learn to receive maximal
stimulation from particular head directions. Given that the model parameters φ3 and φ4 are
tuned to ensure that a strong rotation input through the w4 synapses is also needed to fire the
cells in the second layer, these cells in fact learn to respond to combinations of a particular
head direction and rotation velocity.

Figure 4 shows the weights w2 from the layer of combination cells to the layer of head direc-
tion cells after learning with the trace rule (Equation 5) and weight normalization (Equation
7). Each of the four plots shows the learned w2 synaptic weights from a different presynap-
tic combination cell to the 1000 postsynaptic head direction cells. The 1000 postsynaptic
head direction cells are arranged in the graphs according to where they fire maximally in
the head direction space of the agent when visual cues are available. For each plot, a dashed
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Figure 2. The recurrent weights w1 within the layer of head direction cells after training with the Hebb rule
(Equation 3) and weight normalization (Equation 4). In these simulations, the w1 weights are trained with diluted
connectivity. Each of the four plots shows the learned recurrent synaptic weights to a different postsynaptic head
direction cell from the other 1000 presynaptic head direction cells in the network. In the plots, the 1000 presynaptic
head direction cells are arranged in the graphs according to where they fire maximally in the head direction space of
the agent when visual cues are available. For each plot, a dashed vertical line is drawn to mark where the postsynaptic
head direction cell fires maximally in the light. In each of the four plots, except for the effects of diluted connectivity,
the weight profile is approximately symmetric about the head direction at which the postsynaptic head direction cell
fires maximally in the light. This will help to support an activity packet within the head direction network during
subsequent testing in the absence of visual input.

vertical line is drawn to mark the postsynaptic head direction cell from which the presynaptic
combination cell has maximal w3 weight as shown in Figure 3. Thus, the dashed vertical
line shows the head direction to which the presynaptic combination cell is tuned. Even with
diluted connectivity, it is still evident that the w2 weight profiles are asymmetric about the
head direction to which the presynaptic combination cell is tuned. In each plot there is an
asymmetric bias to the right, i.e., towards increasing head direction θ ∈ [0, 360]. This asym-
metry is necessary for the network to perform path integration in the absence of visual input.
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Figure 3. The weights w3 from the layer of head direction cells to the layer of combination cells after competitive
learning with the Hebb rule (Equation 10) and weight normalization (Equation 11). In these simulations, the w3

weights are trained with diluted connectivity. Each of the four plots shows the learned w3 synaptic weights to a
different postsynaptic combination cell from the 1000 presynaptic head direction cells. The 1000 presynaptic head
direction cells are arranged in the graphs according to where they fire maximally in the head direction space of the
agent when visual cues are available. For each plot, a dashed vertical line is drawn to mark the presynaptic head
direction cell from which the postsynaptic combination cell has maximal w3 weight. Except for the effects of diluted
connectivity, each of the w3 weight profiles is centred on a small cluster of similarly-tuned head direction cells, with
a profile that is approximately symmetric about the presynaptic head direction cell from which the postsynaptic
combination cell has maximal w3 weight. Thus, the learned w3 weights show that the cells in the second layer learn
to receive maximal stimulation from particular head directions. Given that the model parameters φ3 and φ4 are
tuned to ensure that a strong rotation input through the w4 synapses is also needed to fire the cells in the second
layer, these cells in fact learn to respond to combinations of a particular head direction and rotation velocity.

When the combination cells are activated by a signal from the rotation cells, the asymmetry
in the w2 weights will drive the activity packet around the continuous attractor network of
head direction cells in the direction of the asymmetric weight bias set up through the trace
learning rule (Equation 5).
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Figure 4. The weights w2 from the layer of combination cells to the layer of head direction cells after learning with
the trace rule (Equation 5) and weight normalization (Equation 7). In these simulations, the w2 weights are trained
with diluted connectivity. Each of the four plots shows the learned w2 synaptic weights from a different presynaptic
combination cell to the 1000 postsynaptic head direction cells. The 1000 postsynaptic head direction cells are
arranged in the graphs according to where they fire maximally in the head direction space of the agent when visual
cues are available. For each plot, a dashed vertical line is drawn to mark the postsynaptic head direction cell from
which the presynaptic combination cell has maximal w3 weight as shown in Figure 3. Thus, the dashed vertical line
shows the head direction to which the presynaptic combination cell is tuned. Even with diluted connectivity, it is still
evident that the w2 weight profiles are asymmetric about the head direction to which the presynaptic combination
cell is tuned. In each plot there is an asymmetric bias to the right, i.e., towards increasing head direction θ ∈ [0,
360]. This asymmetry is necessary for the network to perform path integration in the absence of visual input. When
the combination cells are activated by a signal from the rotation cells, the asymmetry in the w2 weights will drive the
activity packet around the continuous attractor network of head direction cells in the direction of the asymmetric
weight bias set up through the trace learning rule (Equation 5).

Figure 5 shows firing rates during testing in the layer of 1000 rotation cells (top left), the
layer of 1000 head direction cells (top right), the layer of 1000 combination cells (bottom
left), and the first 20 combination cells (bottom right). Regions of high firing are represented
by dark shading. During timesteps 1–200, there was a stable packet of activity in the layer
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Figure 5. Firing rates during testing in the layer of 1000 rotation cells (top left), the layer of 1000 head direction
cells (top right), the layer of 1000 combination cells (bottom left), and the first 20 combination cells (bottom right).
Regions of high firing are represented by dark shading. During timesteps 1–200, there was a stable packet of activity
in the layer of head direction cells, which was supported by the w1 recurrent connections. During this period, all of
the rotation cells were quiescent and there was no significant activity within the layer of combination cells. During
timesteps 201–1050, the rotation cells became active, which in turn drove activity within the layer of combination
cells. The combination cells received inputs from the head direction cells through the w3

i j synapses, and inputs from
the rotation cells through the w4

i j synapses. The combination cells had learned to respond to particular combinations
of head direction and rotational velocity. In particular, the combination cells only became significantly active during
the rotation period. Due to the asymmetry in the w2 connections from the combination cells to the head direction
cells, the activity in the layer of combination cells drove the activity packet through the layer of head direction cells.
The network thus performed path integration. That is, the representation of head direction within the layer of head
direction cells was updated using the rotation signal in the absence of external visual cues. From the bottom right
plot, it can be seen that individual combination cells switch on and off according to the current head direction of the
agent (as represented by the activity packet within the layer of head direction cells) as the agent rotates through two
360◦ cycles. From timestep 1051, the rotation cells stopped firing, which caused the combination cells to become
quiescent and the activity packet within the layer of head direction cells remained stationary once more.
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of head direction cells, which was supported by the wl recurrent connections. During this
period, all of the rotation cells were quiescent and there was no significant activity within the
layer of combination cells. From timestep 201–1050, the rotation cells became active, which
in turn drove activity within the layer of combination cells. The combination cells received
inputs from the head direction cells through the w3

i j synapses, and inputs from the rotation
cells through the w4

i j synapses. The combination cells had learned to respond to particular
combinations of head direction and rotational velocity. In particular, the combination cells
only became significantly active during the rotation period. Due to the asymmetry in the
w2 connections from the combination cells to the head direction cells, the activity in the
layer of combination cells drove the activity packet through the layer of head direction cells.
The network thus performed path integration. That is, the representation of head direction
within the layer of head direction cells was updated using the rotation signal in the absence of
external visual cues. From the bottom right plot, it can be seen that individual combination
cells switch on and off according to the current head direction of the agent (as represented
by the activity packet within the layer of head direction cells) as the agent rotates through a
couple of 360◦ cycles. From timestep 1051 the rotation cells stopped firing, which caused
the combination cells to become quiescent and the activity packet within the layer of head
direction cells remained stationary once more.

We now consider how well this path integration system would track continuously vary-
ing movements, as might occur in a natural environment. We addressed this by performing
simulations in which the head rotation velocity signal varied continuously, to determine
whether the path integration would follow this accurately. The left part of Figure 6 shows
a linearly increasing rotation speed (shown by the darkness of the rotation cell firing in
the top left panel) as a function of time, and that this produces a linear increase in the
speed of movement of the activity packet in the head direction network (shown in the lower
left panel). The head direction position represented as a result of the path integration thus
accurately takes account of the changing velocities. A similar tracking by the path integra-
tion process of a linearly decreasing head rotation velocity driving input is shown on the
right. In the next paragraph we address quantitatively the relation between the speed of the
head direction packet that is the result of the path integration, and the head rotation ve-
locity driving signal. In the Discussion, we consider the effects of the time constants in the
system.

An important property of a path integration system would be the ability to compute the
correct distance when the speed of the (rotation) inputs is altered. We therefore tested whether
after training on even one rotation velocity, the network would generalize correctly to other
velocities of the rotation inputs. Figure 7 shows how path integration in the network is able
to generalize across different rotation speeds, after training at only one speed. The model
assumes that the firing rates of the rotation cells increase approximately linearly with the
speed of rotation of the agent. In these simulations, the network was trained with only one
speed of rotation, at which the firing rates of the rotation velocity cells (ROT in Figure 1)
were set to a value of 1.0. Then, during subsequent testing, the agent was rotated over a
range of slower speeds with the firing rates of the rotation velocity cells set within the interval
0.0 to 1.0. The plot shows how the speed of the activity packet within the layer of head
direction cells varies with the firing rates of the rotation cells after training. The speed of
path integration depends approximately linearly on the firing rates of the rotation cells. If
the firing rates of the rotation cells vary linearly with the speed of rotation of the agent, then
the speed of path integration in the network increases in correct proportion to the increasing
speed of the agent. The path integration network is thus able to generalize successfully across
different speeds of rotation.
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Figure 6. Path integration which tracks the changing speed of the rotation signal. On the left a linearly increasing
rotation speed (shown by the darkness of the rotation cell firing in the top left panel) produces a linear increase in
the speed of movement of the activity packet in the head direction network (shown in the lower left panel). The
lower left panel shows the firing rates of the 1000 head direction cells (by the darkness of the plot) as a function of
time. A similar tracking by the path integration process of a linearly decreasing head rotation velocity driving input
is shown on the right.

Experiment 2: Full connectivity for connections w3

In Experiment 2, we show the effects of increasing the level of connectivity for the w3 con-
nections. In this simulation, the number of w3 connections received by each combination
cell is increased from 50 to 1000. The neural network architecture shown in Figure 1 was
simulated with full w3 synaptic connectivity, while maintaining diluted 5% connectivity for
the three other types of connection w1, w2 and w4. Specifically, each head direction (HD) cell
received 50 w1 connections and 50 w2 connections, while each combination (COMB) cell
received 1000 w3 connections and 50 w4 connections. The remaining simulation parameter
values were as for Experiment 1.
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Figure 7. Generalisation across different rotation speeds after training with only a single speed. The plot shows
how the speed of the activity packet within the layer of head direction cells varies with the firing rates of the rotation
cells during path integration. The speed of path integration depends approximately linearly on the firing rates of
the rotation cells. If the firing rates of the rotation cells vary linearly with the speed of rotation of the agent, then the
speed of path integration in the network increases in correct proportion to the increasing speed of the agent. The
path integration network is thus able to generalise successfully across different speeds of rotation.

Results after training are shown in Figure 8. Each of the four plots shows the learned w3

synaptic weights to a postsynaptic combination cell from the 1000 head direction cells in the
network. Full w3 connectivity destroys competitive learning in the layer of combination cells,
which was responsible for these cells learning to respond to particular combinations of head
direction and rotation in the diluted network of Experiment 1. Instead, a quite different style
of self-organisation occurs in the layer of combination cells, called continuous transformation
(CT) learning. Continuous transformation (CT) learning has been proposed as a way in
which transform invariant representations may develop in the ventral visual system (Stringer
et al. 2006). The learning mechanism is quite general, and may operate in brain areas with
the architecture of a competitive network that is trained with continuous patterns.

The continuous transformation learning process operates as follows, and is illustrated in
Figure 9 in the context of the HD–COMB network. When the agent is situated in a first
head direction, a small group of HD cells is activated. Activity is then propagated through
feedforward synaptic connections w3, from the HD cells to the layer of COMB cells. Next,
a small winning set of neurons in the COMB layer will modify (through associative learning)
their afferent connections from the HD layer to respond well to the HD cells which are
active in that head direction. Because there is spatial continuity as the agent rotates, many
of the same HD cells are still active when the agent is in a nearby head direction. These
active neurons with their strengthened synapses ensure that the same neurons in the COMB
layer will be activated because some of the active afferents are the same as when the agent
was in the first head direction. The key point is that if these afferent connections have been
strengthened sufficiently while the agent is in the first head direction, then these connections
will be able to continue to activate the same neurons in the COMB layer when the agent is
situated in overlapping nearby head directions. Then any newly active synapses because of
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Figure 8. Results of training with full w3 synaptic connectivity. In this simulation, the number of w3 connections
received by each combination cell is increased from 50 to 1000. That is, each combination cell receives w3 inputs
from all 1000 head direction cells. Conventions as above in Figure 3. Each of the four plots shows the learned
w3 synaptic weights to a postsynaptic combination cell from the 1000 head direction cells in the network. Full
w3 connectivity destroys competitive learning in the layer of combination cells, which was responsible for these
cells learning to respond to particular combinations of head direction and rotation in the diluted network. Instead,
continuous transformation (CT) learning occurs. This produces cells in the second layer that have strong weights
from every head direction, while some other cells remain untrained. The peak in the w3 weight profiles is merely
due to the continuous weight normalisation process, which causes the most recently updated weights to be stronger
than weights updated slightly earlier. The lack of head direction specificity in the second layer of cells will cause
path integration to fail in the overall network. Thus, diluted connectivity can help to eliminate CT learning, and
the elimination of CT learning is a requirement in the w3 connections for the 2-layer path integration system to
self-organise successfully.

the change of head direction of the agent have conjunctive pre- and post-synaptic activity,
and these synapses are increased in strength by Hebbian associativity. As can be seen in
Figure 9, the process can be continued for subsequent rotations, provided that a sufficient
proportion of HD cells stay active between individual changes of head direction. This process
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Figure 9. An idealised illustration of how CT learning would function in a network with a single layer of forward
synaptic connections w3 between a layer of HD cells and a layer of COMB neurons. Initially the forward synaptic
weights w3 are set to random values. The top part (a) shows the initial HD pattern with the agent in head direction
1. Activation from the (shaded) active input cells is transmitted through the initially random forward connections to
stimulate the cells in the COMB layer. The shaded cell in the COMB layer wins the competition in that layer. The
weights from the active HD cells to the active COMB neuron are then strengthened using an associative learning
rule. The bottom part (b) shows what happens after the agent has rotated by a small amount to a new partially
overlapping head direction 2. As some of the active HD cells are the same as those that were active when the
agent was in head direction 1, the same COMB cell is driven by these previously strengthened afferents to win
the competition again. The rightmost shaded HD cell activated by the agent being in head direction 2, which was
inactive when the agent was in head direction 1, now has its connection to the active COMB cell strengthened
(denoted by the dashed line). Thus the same COMB neuron has learned to respond to the two HD patterns that
have similar vector elements in common. As can be seen, the process can be continued for subsequent rotations,
provided that a sufficient proportion of HD cells stay active between individual rotations.

can lead individual COMB cells to develop response fields over large continuous regions of
the head direction space of the agent.

It can be seen in Figure 8 that continuous transformation learning produces cells in the
second layer that have strong weights from every head direction, while some other cells
remain untrained. Thus, the COMB cells no longer learn to respond to particular head
directions, but instead respond significantly to all head directions. The peak which can be
seen in each of the w3 weight profiles shown in Figure 8 is merely due to the continuous
weight normalisation process, which causes the most recently updated weights to be a little
stronger than weights updated slightly earlier. The lack of head direction specificity in the
layer of COMB cells will cause path integration to fail in the overall network. Thus, diluted
connectivity can help to eliminate CT learning, and the elimination of CT learning is a
requirement in the w3 connections for the 2-layer path integration system to self-organise
successfully.
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Experiment 3: Clockwise and anticlockwise rotation

To demonstrate that the network can learn to perform appropriate path integration for dif-
ferent directions of input, in Experiment 3 the 2-layer neural network architecture shown in
Figure 1 was simulated with both clockwise and anticlockwise rotation. A crucial requirement
tested in this experiment is that different combination cells (COMB) would self-organize so
that some encoded a combination of rotation in one direction with a particular head di-
rection, and other cells encoded a combination of rotation in the opposite direction with a
particular head direction. Having these different types of combination cells would be crucial
for the network to path integrate in different directions given different directions of the veloc-
ity input. In this simulation, the model was similar to that used for experiment 1, except that
500 of the rotation cells responded to clockwise rotation, while the remaining 500 rotation
cells responded to anticlockwise rotation. During training, the agent was simulated rotating
in both clockwise and anticlockwise directions.

Simulation results with clockwise and anticlockwise rotation are shown in Figure 10. The
figure shows the firing rates during testing in the layer of 1000 rotation cells (top left), the
layer of 1000 head direction cells (top right), the layer of 1000 combination cells (bottom
left), and the first 20 combination cells (bottom right). Regions of high firing are represented
by dark shading. During timesteps 1–200, there was a stable packet of activity in the layer of
head direction cells. During timesteps 201–800, the clockwise rotation cells became active,
which in turn drove the activity of those combination cells which had learned to respond
to a combination of clockwise rotation and a particular head direction. This activity in the
layer of combination cells drove the activity packet through the layer of head direction cells
in the clockwise direction. During timesteps 801–1000, no rotation cells were firing, and the
packet of activity in the layer of head direction cells was stationary. During timesteps 1001–
1600, the anticlockwise rotation cells became active, which in turn drove the activation of
those combination cells which had learned to respond to a combination of anticlockwise
rotation and a particular head direction. This activity in the layer of combination cells drove
the activity packet through the layer of head direction cells in the anticlockwise direction.
During timesteps 1601–1800, no rotation cells were firing, and the packet of activity in the
layer of head direction cells was again stationary.

From the bottom right plot of Figure 10, it can be seen that individual combination cells
switch on and off according to a particular head direction, and whether the agent is rotating
in either the clockwise or anticlockwise direction. In particular, combination cells with high
firing rate peaks (i.e., dark regions representing high firing rates) either fire during clockwise
rotation or fire during anticlockwise rotation, but do not fire during both. These combination
cells have thus learned to be selective for the direction of rotation, as well as for particular
head directions.

It can be seen from Figure 10 that the performance of the self-organised network model
is not as smooth as the simulation results from Experiment 1. With the network having to
learn two directions of motion, the weight structure within the network is more noisy and
path integration has become less regular. However, these effects may be largely due to the
small size of the network used in our simulations, which has only 1000 neurons in each of
the layers and 50 connections from any one source. This is much smaller than the number
of neurons present in the relevant areas in the brain, and the number of connections per
neuron. Scaling up the network to more biologically realistic numbers of neurons should
therefore offer smoother performance. In particular, large numbers of combination neurons
are needed, so that many different combinations of head direction and rotation speed can
be represented. This hypothesis was supported by simulations in which the COMB network
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Figure 10. Simulation with clockwise (C) and anticlockwise (AC) rotation. Firing rates during testing in the layer
of 1000 rotation cells (top left), the layer of 1000 head direction cells (top right), the layer of 1000 combination
cells (bottom left), and the first 20 combination cells (bottom right). Regions of high firing are represented by
dark shading. During timesteps 1–200, there was a stable packet of activity in the layer of head direction cells.
During timesteps 201–800, the clockwise rotation cells became active, which in turn drove the activation of those
combination cells which had learned to respond to a combination of clockwise rotation and a particular head
direction. This activity in the layer of combination cells drove the activity packet through the layer of head direction
cells in the clockwise direction. During timesteps 801–1000, no rotation cells were firing, and the packet of activity
in the layer of head direction cells was stationary. During timesteps 1001–1600, the anticlockwise rotation cells
became active, which in turn drove the activation of those combination cells which had learned to respond to a
combination of anticlockwise rotation and a particular head direction. This activity in the layer of combination cells
drove the activity packet through the layer of head direction cells in the anticlockwise direction. During timesteps
1601–1800, no rotation cells were firing, and the packet of activity in the layer of head direction cells was again
stationary. From the bottom right plot, it can be seen that individual combination cells switch on and off according
to whether the agent is rotating in either the clockwise or anticlockwise direction, and according to the current head
direction of the agent (as represented by the activity packet within the layer of head direction cells).
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Figure 11. The effect of increasing the size of the combination cell (COMB) network (to 5000) for Experiment 3.
The simulation is otherwise for the same conditions as shown in Figure 10. The simulation is with clockwise (C)
and anticlockwise (AC) rotation separated by a period of zero velocity input, and the firing rates during testing for
the 1000 head direction cells are shown. These results should be compared with the top right part of Figure 10.

size for the simulations illustrated in Figure 10 was increased by a factor of 5, which was
found to make the activity packet in the head direction cell network move more smoothly
when the path integration was being performed. This is illustrated in Figure 11 which should
be compared with figure 10 (top right). For the simulations shown in Figure 11 the part of
the network that was increased in size was the number of neurons in the combination cell
network (while maintaining the same 5% level of connectivity), indicating that the number
of combination cells must be sufficient to cover the head direction x rotation velocity space
smoothly.

Discussion

A key advantage of this two-layer model over earlier self-organising models (Stringer et al.
2002a) is that the incorporation of the second layer of cells representing combinations of head
direction and rotation avoids the need for multiplicative, higher order Sigma–Pi synapses.
This helps to make the new model described here biologically plausible, as the learning uses
first order synapses and simple associative local learning rules.

The new model described here also is consistent with and helps to account for the presence
of neurons in the rat presubiculum and dorsal tegmental nucleus that respond to combina-
tions of head direction and angular rotation (Taube et al. 1990b; Sharp 1996; Bassett &
Taube 2005).

The model described here was intended to illustrate the principle by which competitive
learning could be used in one network to build the position and velocity combination neurons
that provide the useful signal source to be used as an input to drive the continuous attractor to
represent a new position. The model was therefore kept simple. We showed that with different
rotation inputs, for example clockwise and counterclockwise, the network can be trained to
move in either direction, with this depending on the competitive self-organisation in the
combination cell layer of neurons that respond to combinations of current head direction
and rotation in either one or the other direction. We also showed that in this type of network,
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the position represented in the continuous attractor can be driven at different speeds by
different magnitudes of the rotation inputs, even when the network has been trained on only
one velocity (Stringer et al. 2002a, 2003). Moreover, the path integration performed by the
network linearly reflects the rotation cell input, as shown in Figure 7. Further, the system can
arbitrarily track continuous variations in the rotation cell input, as shown in Figure 6. The
dynamics of the system do not lead to significant delays or overshoots on the time scale of
Figure 5 as shown in that Figure, but it is useful to consider the dynamics further in relation
to how they might operate in a biologically implemented network. In the model, there is a
single time constant τ , which determines how long it takes a layer of the network to respond
to its input. What would be the order of τ in the brain? If we consider the combination cell
layer in Figure 1, we see that as a competitive network, the dominant factor in determining
how soon the output neurons fire is the time constant of the synapses (Rolls & Deco 2002).
Indeed, a single layer network of this type including the feedback competition implemented
by the GABA neurons takes in the order of the time constant of the synapses to settle (Panzeri
et al. 2001), which will be in the order of 10 ms for AMPA synapses. The situation in the
head direction cell network is similar. The combination cell input, working through the
asymmetrical synapses illustrated in Figure 4, biases up the firing rates of the continuous
attractor on one side of the current activity packet in a direction towards which the attractor
should move. This process is dynamically that described for a one-layer network, and the
time it takes for the HD cells to respond to the input that causes the packet of activity to
move will be of order τ . Thus the delay dynamics of the system shown in Figure 1 will not
be a great deal longer than τ , and in terms of brain time, the path integration system might
take 20–30 ms to respond. However the overall time over which the integration occurred,
and thus the distance covered, would not be affected by the time constants as the delays
would be similar for starting and stopping. In practice, the small delays in the time it takes
the integration process to start and stop would be small in relation to the time it takes an
animal to rotate.

The new model is also prototypical of path integration systems that may be implemented
in the brain, including those used for path integration in rat hippocampal place cells (Mc-
Naughton et al. 1983; O’Keefe 1984; Muller et al. 1991; Markus et al. 1994) and primate
hippocampal spatial view cells (Robertson et al. 1998; Rolls & Xiang 2006; Rolls & Kesner
2006). For these systems to operate in the way we now propose, there would need to be in
these other systems neurons that respond to combinations of for example place and running
velocity and head direction. It has been shown that hippocampal place cells can have their
activity modulated by running speed and direction (McNaughton et al. 1983), and can even
be tuned to particular velocities (Wiener 1989). The current theory provides an account
of the presence of such cells in the hippocampus. The origin of these signals, and indeed
a possible brain region for path integration for place to be implemented, is the dorsocau-
dal medial entorhinal cortex, which contains spatial grid cells that are modulated by head
direction (Hafting et al. 2005; Sargolini et al. 2006).

There are a number of ways in which a temporal trace of preceding neuronal activ-
ity in a presynaptic term could be implemented in the brain. One is that the binding
period of glutamate in the NMDA channels, which may last for 100 or more ms, may
implement a trace rule by producing a narrow time window over which the average ac-
tivity at each presynaptic site affects learning (Rolls 1992; Rhodes 1992; Rolls & Kesner
2006).

The possibility that head direction cells and path integration are performed via the ex-
citatory connections from the lateral mammillary nucleus (LMN) to the dorsal tegmental
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nucleus (DTN) which in turn inhibits the lateral mammillary nucleus, and without using
recurrent excitatory connections, has been modelled by Song and Wang (2005) and
Boucheny et al. (2005), but in contrast to the present, no self-organizing learning process
for the synaptic weights needed in the model has been described. The model described here
does not need recurrent excitatory connections in the combination cell (COMB) network,
and this would fit with architectures such as those of the DTN and LMN. Moreover, if the
angular head velocity (ROT or AHV) input is zero, the firing of the combination cells in the
network described here does decrease, as is the case of for example DTN neurons (Bassett
& Taube 2005). The network described here does need recurrent connections in part of
the system, the HD network, to perform the functions of maintaining some head direction
cell firing when the animal is not moving, and of performing the path integration, and this
part of the system could be in a brain region other than the DTN and LMN but which is
connected with these brain areas. However, the network described here has a primary aim of
showing how path integration systems could self-organize without using Sigma–Pi synapses,
by including a network with neurons that by competitive learning build combination neu-
rons for velocity and position in the state space. The networks we have in mind where such
competitive learning could easily be introduced to replace Sigma–Pi connections include
networks involved in the path integration of the place where an animal is located (Stringer
et al. 2002a), and of spatial view (Stringer et al. 2005).

A new concept introduced in this paper is that a competitive network can be used to help
a path integration system, by allowing neurons by self-organising learning to respond to
combinations of head direction and head rotation velocity. The use of these combination
cells allows the head direction cell path integration network to use only first order synapses,
that is synapses with one presynaptic terminal acting at each post-synaptic site, rather than
a combination of two presynaptic terminals interacting multiplicatively with a post-synaptic
site, which is a second order, Sigma–Pi, synapse. Some of the implications for neuroscience
are as follows. First, it is predicted that neurons will be found that respond to combinations
of head direction and head rotation velocity. Such neurons are present in the nervous system,
for example in the presubiculum and dorsal tegmental nucleus (Taube et al. 1990b; Sharp
1996; Bassett & Taube 2005). A point made in this paper is that these neurons would be
useful as part of a self-organizing path integration system. Second, it is predicted that first
order synapses may be sufficient in a path integration system, with no need for Sigma–Pi
synapses. Third, it is predicted that there will be associatively modifiable connections from
the Head Direction to the combination cells. Fourth, there should be competitive interaction
between the combination cells, implemented for example through a population of inhibitory
neurons. Fifth, there should be diluted (sparse) connectivity from the HD cells to the com-
bination cells, to avoid the Continuous Transformation learning effect shown in Figure 8.
Sixth, there should be a short term memory trace in the associative synaptic modification
implemented at the combination to HD cell synapses w2. This could be implemented by
a process as simple as the long unbinding time constant of glutamate at NMDA synapses
(Spruston et al. 1995; Hestrin et al. 1990), or it could be implemented by a transmission
delay in the connections from the combination cells to the w2 synapses in the order of 10–
20 ms.

Finally, we suggest that path integration implemented in the generic way described here
could be performed in other brain systems, including the hippocampal spatial view system of
neurons which respond when a primate looks at a particular location in space, and which are
updated by idiothetic eye movements made in the dark (Robertson et al. 1999; Rolls 1999;
Rolls & Xiang 2006).
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Redish AD, Elga AN, Touretzky DS. 1996. A coupled attractor model of the rodent head direction system. Network:

Comput Neural Systems 7:671–685.
Rhodes P. 1992. The open time of the NMDA channel facilitates the self-organisation of invariant object responses

in cortex. Soc Neurosci Abstracts 18:740.
Robertson RG, Rolls ET, Georges-François P. 1998. Spatial view cells in the primate hippocampus: Effects of

removal of view details. J Neurophysiology 79:1145–1156.
Robertson RG, Rolls ET, Georges-François P, Panzeri S. 1999. Head direction cells in the primate pre-subiculum.

Hippocampus 9:206–219.
Rolls ET. 1992. Neurophysiological mechanisms underlying face processing within and beyond the temporal cortical

visual areas. Phil Trans Royal Soc 335:11–21.
Rolls ET. 1999. Spatial view cells and the representation of place in the primate hippocampus. Hippocampus

9:467–480.
Rolls ET, Deco G. 2002. Computational neuroscience of vision. Oxford University Press, Oxford.
Rolls ET, Kesner RP. 2006. A theory of hippocampal function, and tests of the theory. Prog in Neurobiology

79:1–48
Rolls ET, Robertson RG, Georges-François P. 1997. Spatial view cells in the primate hippocampus. Eur J. Neurosci

9:1789–1794.



Continuous attractor networks 445

Rolls ET, Treves A. 1998. Neural Networks and Brain Function. Oxford University Press, Oxford.
Rolls ET, Treves A, Robertson RG, Georges-François P, Panzeri S. 1998. Information about spatial view in an

ensemble of primate hippocampal cells. J. Neurophysiology 79:1797–1813.
Rolls ET, Xiang J.-Z. 2006. Spatial view cells in the primate hippocampus, and memory recall. Rev Neuroscis

17:175–200.
Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, Moser MB, Moser EI. 2006. Conjunctive represen-

tation of position, direction, and velocity in entorhinal cortex. Science 312:758–762.
Sharp PE. 1996. Multiple spatial-behavioral correlates for cells in the rat postsubiculum: multiple regression analysis

and comparison to other hippocampal areas. Cerebral Cortex 6:238–259.
Skaggs WE, Knierim JJ, Kudrimoti HS, McNaughton BL. 1995. A model of the neural basis of the rat’s sense of

direction. In Tesauro G. Touretzky DS. Leen TK. editors. Advances in neural information processing systems,
Vol. 7, MIT Press, Cambridge, Massachusetts, pp. 173–180.

Song P, Wang X-J. 2005. Angular path integration by moving “hill of activity”: a spiking neuron model without
recurrent excitation of the head-direction system. J. Neurosci 25:1002–1014.

Spruston N, Jonas P, Sakmann B. 1995. Dendritic glutamate receptor channel in rat hippocampal CA3 and CA1
pyramidal neurons. J. Physiology 482:325–352.

Stringer SM, Perry G, Rolls ET, Proske JH. 2006. Learning invariant object recognition in the visual system with
continuous transformations. Biolo Cybernetics 94:128–142.

Stringer SM, Rolls ET, Trappenberg TP. 2005. Self-organizing continuous attractor network models of hippocampal
spatial view cells. Neurobiology of Learning and Memory 83:79–92.

Stringer SM, Rolls ET, Trappenberg TP, De Araujo IET. 2002a. Self-organizing continuous attractor networks and
path integration: Two-dimensional models of place cells. Network: Comput Neural Systems 13:429–446.

Stringer SM, Rolls ET, Trappenberg TP, De Araujo IET. 2003. Self-organizing continuous attractor networks and
motor function. Neural Networks 16:161–182.

Stringer SM, Trappenberg TP, Rolls ET, De Araujo IET. 2002b. Self-organizing continuous attractor networks
and path integration: One-dimensional models of head direction cells. Network: Comput Neural Systems
13:217–242.

Taube JS, Goodridge JP, Golob EG, Dudchenko PA, Stackman RW. 1996. Processing the head direction signal: a
review and commentary. Brain Res Bull 40:477–486.

Taube JS, Muller RU, Ranck Jr. JB. 1990a. Head-direction cells recorded from the postsubiculum in freely moving
rats. I. Description and quantitative analysis. J. Neurosci 10:420–435.

Taube JS, Muller RU, Ranck Jr. JB. 1990b. Head-direction cells recorded from the postsubiculum in freely moving
rats. II. Effects of environmental manipulations. J. Neurosci 10:436–447.

Taylor JG. 1999. Neural ‘bubble’ dynamics in two dimensions: foundations. Biolo Cybernetics 80:393–409.
Wang XJ. 1999. Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory.

J. Neurosci 19:9587–9603.
Wiener SI, Paul CA, Eichenbaum H. 1989. Spatial and behavioural correlates of hippocampal neuronal activity. J.

Neurosci 9:2737–2763.
Xie X, Hahnloser RH, Seung HS. 2002. Double-ring network model of the head-direction system. Physical Review

E 66:041902.
Zhang K. 1996. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble:

A theory. J. Neurosci 16:2112–2126.


