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ARTICLE

A speed-accurate self-sustaining head direction cell path
integration model without recurrent excitation
Hector J. I. Pagea,b, Daniel Waltersa, and Simon M. Stringera

aOxford Center for Theoretical Neuroscience and Artificial Intelligence, Department of Experimental
Psychology, University of Oxford, Oxford, UK; bInstitute of Behavioural Neuroscience, University College
London, London, UK

ABSTRACT
The head direction (HD) system signals HD in an allocentric frame
of reference. The system is able to update firing based on internally
derived information about self-motion, a process known as path
integration. Of particular interest is how path integration might
maintain concordance between true HD and internally repre-
sented HD. Here we present a self-sustaining two-layer model,
capable of self-organizing, which produces extremely accurate
path integration. The implications of this work for future investiga-
tions of HD system path integration are discussed.
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Author Summary

Head direction (HD) cells are neurons that represent the current HD of an
animal with respect to the environment. Whilst not geomagnetic, they
represent an internal compass. HD cells can anchor to the environment on
the basis of visual information, but can also use vestibular and other self-
motion signals to update their firing as the animal’s head rotates. This
process is known as path integration.

Using computer simulation, we investigate a new model of the rat HD system
which learns to perform highly accurate path integration (when the internal
representation of HD matches the current direction of the head). Our model
also attempts to explain two further related questions: why the operation of the
HD system seems to be dependent on vestibular input, and howHD cells, without
direct excitatory projections to one another, can maintain their firing in the
absence of visual input.

We propose a system in which cells responding to conjunctions of HD and
angular head velocity can be used to both sustain HD cell firing and update
this firing at the correct speed during head turns. We also demonstrate how
the required synaptic connectivity between neurons can develop during an
initial period of visually-guided learning.
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Introduction

Head direction (HD) cells respond to the animal’s HD in the yaw plane
(Taube et al. 1990a). Their responses reflect a combination of externally
derived (allothetic) and internally derived (idiothetic) information (Knight
et al. 2014; Page et al. 2014). Although they are anchored to visual cues
(Taube et al. 1990b), HD cells are able to sustain and update their firing
based solely on idiothetic information, a process known as path integration
(Mittelstaedt and Mittelstaedt 1980; Etienne and Jeffery 2004).

One important question relating to the path integration process is how con-
cordance is maintained between the current HD representation and true HD. That
is, how does theHD system learn to perform path integration at close to the correct
speed? Although the system may accumulate error, which is likely to be reset by
visual landmarks, path integration is quite accurate (Goodridge et al. 1998). As it
currently stands, this is an underinvestigated question. One theory of accurate path
integration (Walters and Stringer 2010; Walters et al. 2013) involves associations
being formedbetween successively activeHDcells via connectivity containing some
natural time delay (e.g., axonal conduction delay). In effect, this allows for predic-
tion of where anHD activity packet will be after a fixed time delay, given a constant
rotational velocity and a known starting location. HD cells project to a postsynaptic
HDcellwith anoffset inHDspacedeterminedby timedelay and rotational velocity.
However, computer simulations exploring this hypothesized mechanism have
demonstrated at best 81% accuracy (Walters 2011; Walters et al. 2013).

The investigation into the sources of simulated path integration inaccuracy (Page
et al. 2015) reveals two major factors. First is the presence of within-layer recurrent
collateral excitatory connectivity betweenHD cells. Such connectivity can only learn
a single rotational speed of any arbitrary value (including 0). Recurrent connectivity
will, therefore, interfere with the system’s attempts to update HD cell firing at
anything other than this rotational speed. Second is the time between when
a neuron receives stimulation and when it begins firing, known as rise time (tR).
In a system in which path integration speed is based on a specific conduction delay,
the rise time represents an increase in this delay. Specifically, if a postsynapticHDcell
is supposed to fire some time interval Δt after presynaptic firing, then it will, in fact,
begin firing atΔt þ tR. In thismanner, rise time introduces error in path integration.

This paper addresses the first of these issues. Following the attractor
hypothesis of Skaggs and colleagues (Skaggs et al. 1995), most computa-
tional models have been based on continuous attractor neural networks
(CANNs). However, such models typically incorporate within-layer exci-
tatory recurrent collaterals of the sort which will negatively affect path
integration accuracy. In addition, there is currently no evidence for such
connectivity in the HD system in vivo. There have been several HD
system models without such recurrent connectivity, although they appear
to have been motivated by this latter physiological reason rather than
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a consideration of path integration accuracy (Rubin et al. 2001; Boucheny
et al. 2005; Song and Wang 2005).

The model in this paper extends previous work by providing a self-organizing
two-layer HD system model capable of highly accurate path integration. We
begin by demonstrating near-perfect path integration accuracy in a pre-wired
model with fixed synaptic weights in order to clarify the computational mechan-
isms underpinning accurate path integration.We then extend this work to a self-
organizing system using biologically plausible local associative learning rules to
set-up the required synaptic connectivity. The implications of these results on
the computational understanding of path integration inaccuracy are discussed.

Materials and methods

Pre-wired model description

The model in this paper draws from the existing literature of HD cell
modelling and can be considered an extension of the standard CANN
approach. It consists of three layers: one layer of HD cells, one layer of
cells responding to angular head velocity (AHV cells), and one layer of cells
responding to combinations of HD and AHV (COMB cells). Its architecture
is pictured in Figure 1. Within the HD ring, each cell i has a preferred firing

Figure 1. Network architecture of pre-wired model. The model consists of three layers of
neurons: a head direction (HD) layer, a layer of COMB cells comprizing ROT COMB and NOROT
COMB cells, and a layer of angular head velocity (AHV) cells which include both ROT and NOROT
cells. The layers are connected by w1 connections from HD to COMB cells, w2 connections from
COMB to HD cells, w3 connections from ROT cells to ROT-COMB cells, and w4 connections from
NOROT cells to NOROT-COMB cells.
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direction xi in the range 0� 360�. These directions are distributed evenly
around the HD ring. Cells are arranged topographically such that adjacent
HD cells have adjacent preferred firing directions. This arrangement is for
ease of visualization and analysis. It does not reflect HD cell organization in
the brain, where no such topography has been observed, nor does it affect
model operation. In this manner, a contiguous Gaussian packet of activity in
the HD layer represents current head direction. A crucial aspect of this model
is that HD cells do not have a direct excitatory influence on one another.
Instead, HD cells only project to (w1) and receive from (w2) the COMB cell
layer. This HD to COMB and COMB to HD connectivity contains an axonal
conduction delay Δt in both directions.

Cells in the COMB layer receive connections from the HD andAHV layers and
project back onto the HD layer. The AHV layer consists of two kinds of a cell:
a ROT cell, which is active during head rotation, and aNOROT cell which is active
when the head is not rotating. Accordingly, COMB cells are conceptually split into
two subpopulations: those that receive from the ROT cells (ROT-COMB cells) via
w3 connectivity and those that receive from the NOROT cells (NOROT-COMB
cells) via w4 connectivity. Connectivity from the AHV to COMB layer does not
contain any delays. BothNOROT andROTvariants of COMB cells have preferred
directions similar to HD cells, by virtue of the connectivity they receive from the
HD cell layer, as described below. These two COMB cell variants have separate
preferred direction distributions, each evenly distributed from 0� 360�.

Whilst ROT and NOROT cells are programmed as distinct in this
model, it should be kept in mind that this is a simplification of the
known physiology: in reality, they originate from the same layer of cells,
and do not exist as distinct populations. Indeed, the binary nature of the
ROT and NOROT cells simply signals whether or not the head is
rotating at the target velocity. This too is a simplification of angular
head velocity (AHV) cells in the brain, which have complex firing
responses to angular head velocity. The aim with these ROT and
NOROT cells is simply to capture the fact that the AHV cell population
as a whole will provide information about when the head is rotating at
any given AHV, including 0, to the COMB cell layer.

Connectivity between the HD and COMB, as well as that between COMB
and HD layers, is based on COMB subpopulations. Individual NOROT-
COMB cells receive and project from the same HD cell. These NOROT-
COMB cells thus respond to a combination of head direction and a lack of
head rotation. ROT-COMB cells receive maximally from an offset region of
the HD layer and project back onto a further offset region of the HD layer.
These offsets are based on the conduction delay Δt in each direction and the
speed of head rotation signalled by the corresponding ROT cells. The oper-
ating principles of this connectivity will be fully detailed below.
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Individual HD and COMB cells are simulated using a leaky-integrator
firing rate model. Consequently, individual spikes are not modelled, and
instead, cell firing is measured as an instantaneous average firing rate. ROT
and NOROT cells are modelled as binary units, being either on (firing rate
of 1) or off (firing rate of 0).

Pre-wired model equations

The activation level hiHD of head direction cell i is given by

τHD
dhHDi ðtÞ

dt
¼ �hHDi ðtÞ þ eiðtÞ � 1

NHD

X
j

~wHDrHDj ðtÞ

þ ϕ2
CCOMB!HD

X
j

w2
ijr

COMB
j ðt � ΔtÞ (1)

where hHDi ðtÞ is the activation level of head direction cell i at time t. The term
� hHDi ðtÞ represents an exponential decay term, whereby in the absence of
presynaptic input, the activation of head direction cell i will fall to zero as
determined by the time constant τHD. The term eiðtÞ represents external
visual input to head direction cell i at the time t. This input term is used
to generate an initial packet within the head direction cell layer. It is
determined by a Gaussian profile described in pre-wired model simulation
protocol (section 1.3). The term � 1

NHD

P
j
~wHDrHDj ðtÞ represents inhibitory

feedback within the head direction cell layer, summed over all presynaptic
head direction cells j. ~wHD is a global constant describing the effect of
inhibitory interneurons, and NHD is the total number of head direction

cells in the layer. The term ϕ2
CCOMB!HD

P
j
w2
ijr

COMB
j ðt � ΔtÞ represents excitatory

input from the COMB cell layer back onto the HD layer, summed across all
presynaptic COMB cells connected to cell i. It consists of rCOMB

j ðt � ΔtÞ, the
firing of presynaptic COMB cell j at time t � Δt, where Δt represents axonal
conduction delay, and w2

ij, the synaptic weight from presynaptic COMB cell

j to postsynaptic HD cell i. It is important to note that neither the w2 weights,
nor any other weights, are updated during simulation, and thus remain at the
same initial values throughout. The entire term is scaled by the factor

ϕ2
CCOMB!HD , which controls the overall strength of COMB synapses onto the

head direction cell layer where ϕ2 is a constant and CCOMB!HD is the number
of synapses each postsynaptic head direction cell receives from presynaptic
COMB cells.

The firing rate riHD(t) of head direction cell i at time t is a sigmoid
function of the activation level of cell i
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rHDi ðtÞ ¼ 1

1 þ e�2βHDðhHDi ðtÞ�αHDÞ (2)

where αHD and βHD are the sigmoid threshold and slope, respectively. As this
model is firing-rate based, no individual action potentials are simulated, and
neuronal activity is represented as a spontaneous average firing rate.

The equations governing the activation level hiCOMB of ROT-COMB cells
and NOROT-COMB cells indexed by i differ slightly. The ROT-COMB cell
activation is given by

τCOMB dh
COMB
i ðtÞ
dt

¼ � hCOMB
i ðtÞ

� 1
NCOMB

X
j

~wCOMBrCOMB
j ðtÞ

þ ϕ1
CHD!COMB

X
j

w1
ijr

HD
j ðt � ΔtÞ

þ ϕ3
CROT!COMB

X
j

w3
ijr

ROT
j ðtÞ

(3)

whilst NOROT-COMB activation is given by

τCOMB dh
COMB
i ðtÞ
dt

¼ � hCOMB
i ðtÞ

� 1
NCOMB

X
j

~wCOMBrCOMB
j ðtÞ

þ ϕ1
CHD!COMB

X
j

w1
ijr

HD
j ðt � ΔtÞ

þ ϕ4
CNOROT!COMB

X
j

w4
ijr

NOROT
j ðtÞ

(4)

where hCOMB
i ðtÞ is the activation level of COMB cell i at time t. The term

� hCOMB
i ðtÞ represents exponential decay, where in the absence of any input

the activation of COMB cell i will fall to zero as determined by the time
constant τCOMB. The term � 1

NCOMB

P
j
~wCOMBrCOMB

j ðtÞ represents inhibitory

feedback within the COMB cell layer, summed over all presynaptic COMB
cells j. ~wCOMB is a global constant describing the effect of inhibitory inter-
neurons, and NCOMB is the total number of COMB cells in the layer. The

term ϕ1
CHD!COMB

P
j
w1
ijr

HD
j ðt � ΔtÞ represents excitatory input from the HD cell

layer back onto the COMB layer, summed across all presynaptic HD cells
connected to cell i. It consists of rHDj ðt � ΔtÞ, the firing of presynaptic HD
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cell j at time t � Δt, where Δt represents an axonal conduction delay, and w1
ij,

the synaptic weight from presynaptic HD cell j to postsynaptic COMB cell i.

It is scaled by the factor ϕ1
CHD!COMB , which controls the overall strength of HD

synapses onto the COMB cell layer, where ϕ1 is a constant and CHD!COMB is
the number of synapses each postsynaptic COMB cell receives from presy-
naptic HD cells.

The final term in the activation equation differs for NOROT-COMB and

ROT-COMB cells. For ROT-COMB cells it is ϕ3
CROT!COMB

P
j
w3
ijr

ROT
j ðtÞ, whereP

j
w3
ijr

ROT
j ðtÞ is the summed excitatory input from presynaptic ROT cells

indexed by j at time t, and w3
ij is the synaptic weight from presynaptic ROT

cell j to postsynaptic COMB cell i. This is scaled by the factor ϕ3
CROT!COMB where ϕ3

is a constant and CROT!COMB is the number of synapses each postsynaptic
COMB cell receives from presynaptic ROT cells. These terms are similar for
NOROT-COMB cells, with the substitution of NOROT for ROT and ϕ4 for ϕ3.
In these simulations, the number of ROT cells NROT ¼ 1 and the number of
NOROT cellsNNOROT ¼ 1, and the synaptic weightsw3

ij andw
4
ij are both set to 1.

As such the terms ϕ3
CROT!COMB

P
j
w3
ijr

ROT
j ðtÞ and ϕ4

CNOROT!COMB

P
j
w4
ijr

NOROT
j ðtÞ can be

simplified to ϕ3r
ROTðtÞ and ϕ4r

NOROTðtÞ respectively.
Note, then, that the activations of ROT-COMB and NOROT-COMB cells

differ only by whether they receive input from ROT or NOROT cells. In all
other regards, i.e., where inhibition is concerned, COMB cells function as
a homogenous population.

Similar to HD cell firing rates, the firing rate riCOMB(t) of COMB cell i at
time t is a sigmoid function of the activation level of cell i

rCOMB
i ðtÞ ¼ 1

1 þ e�2βCOMBðhCOMB
i ðtÞ�αCOMBÞ (5)

Note that both the sigmoid thresholds αCOMB and αHD, as well as slopes
βCOMB and βHD, may differ in value between COMB and HD cell layers.

In this pre-wired network, all the connectivity is set before simulation
starts and does not change over the course of simulation. w1 connectivity
from HD to COMB cells is set-up in two distinct stages. Firstly, non-offset
connectivity is set-up from HD to NOROT COMB cells. This is calculated as
a Gaussian configuration, with the weight w1

ij for the synapse onto postsy-

naptic NOROT-COMB cell i from presynaptic head direction cell j being

w1
ij ¼ e�ðsHDCOMB

ij Þ2=2ðσHDCOMBÞ2 (6)
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where σHDCOMB is the standard deviation of the Gaussian profile. sHDCOMB
ij is

the difference between the preferred head directions si and sj of the post- and
pre-synaptic cells i and j respectively. It is given by

sHDCOMB
ij ¼ MINð xi � xj ; 360�j jxi � xj

�� ��Þ (7)

where xi and xj are the preferred head directions of cells i and j respectively.
This creates a wrap-around effect, with weights between head direction cells
as a population remaining continuous across the 360=0�divide.

Offset connectivity from HD to ROT-COMB cells is calculated similarly,
with the weight wij for the synapse onto postsynaptic ROT-COMB cell i from
presynaptic head direction cell j being calculated as in equation 6. However,
the difference between preferred head directions of post- and pre-synaptic
cells i and j now includes an additional offset O and is calculated as

sHDCOMB
ij ¼ MINð xi � ðxj þ OÞ ; 360�j jxi � ðxj þ OÞ�� ��Þ (8)

where the offset O is calculated, based on the target speed V �=s and the
axonal conduction delay Δt, as

O ¼ VΔt (9)

This effectively causes presynaptic HD cells to be connected to an offset
region of the ROT-COMB cell layer.

w2 connectivity from COMB to HD cells is pre-wired in an identical fashion
to w1 connectivity. The sole difference is that the perspective is now switched,
with the HD layer becoming post-synaptic cells indexed by i and COMB cells
are presynaptic cells j. The resulting combination of w1 and w2 connectivity
means that individual HD cells both project symmetrically back onto them-
selves via NOROT-COMB cells, as well as asymmetrically back onto a region of
the HD layer with an offset of 2O via ROT-COMB cells.

As this model makes use of a single ROT and a single NOROT cell, both
COMB cell subtypes receive input from their resective AHV cell weighted
directly by the parameters ϕ3 for the ROT cell onto ROT-COMB cells and ϕ4
for the NOROT cell onto NOROT-COMB cells.

The parameter values used for the pre-wired model are as shown in Table 1
unless stated otherwise.

The differential equations given for this model cannot be solved analyti-
cally. They are solved numerically by a Forward Euler finite difference
scheme with a timestep size of δt (as specified in Table 1).

Pre-wired model simulation protocol

At the beginning of the simulation, the firing rates and activations of all cells
are set to zero. The connectivity from HD to COMB, from COMB to HD,
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and from AHV cells to COMB is set. An external visual input, represented as
the term ei, is applied to each cell i in the HD layer for 100ms to
initialize network activity. ei is calculated for a given postsynaptic HD cell i
according to the Gaussian function

ei ¼ λHDe�ðsHDi Þ2=2ðσHDÞ2 (10)

where λHD is a scaling factor determining the strength of this input to head
direction cell i and σHD is the standard deviation of the Gaussian profile. sHDi
is the difference between the true head direction x and the preferred direc-
tion xi of postsynaptic head direction cell i. It is given by

sHDi ¼ MINð xi � x ; 360�j jxi � xj jÞ (11)

which creates a wrap-around effect, with response profiles of head direction
cells as a population remaining continuous across the 360=0�divide. ei thus
generates in the HD layer a Gaussian activity packet centred on location x.

Table 1. Network parameter values used during simulation of the pre-
wired model. All pre-wired simulations, except where explicitly stated,
are run using these parameters. All measures of time are given in
seconds.
Pre-wired Network Parameters

No. Head Direction Cells 500
No. ROT-COMB Cells 500
No. NOROT-COMB cells 500
Simulation Time 4:1s
CCOMB!HD 1000
CHD!COMB 500
ϕ1 700.0
ϕ2 4500.0
σHDCOMB 20:0�

σCOMBHD 20:0�

No. ROT Cells 1
No. NOROT Cells 1
CROT!COMB 1
CNOROT!COMB 1
ϕ3 80.0
ϕ4 80.0
αHD 0.0

βHD 0.2

αCOMB 16.0

βCOMB 0.3

τHD 0:0001s
τCOMB 0:0001s
~wHD 0.2
~wCOMB 0.35
δt 0:00001s
λHD 2.0

σHD 20:0�

Target Velocity V 180�=s
Axonal delay Δt 0:01s
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During this period, HD activations hHDi and firing rates rHDi are updated as in
equations 1 and 2. COMB activations hCOMB

i and firing rates rCOMB
i are also

updated as in equations 3, 4, and 5, with rNOROT ¼ 1 and rROT ¼ 0.
After this initialization period, ei is removed. There then follows a 1s

period of zero head rotation. All activations and firing rates continue to
update, and AHV cells remain set with rNOROT ¼ 1 and rROT ¼ 0.

Next, there is a 2s period of head rotation at V �=s. AHV cell firings are
changed to reflect the fact that head rotation is occurring, with rNOROT ¼ 0 and
rROT ¼ 1. HD and COMB cell activations and firing rates continue to update.

Finally, there is another 1s period of zero head rotation, in which HD and
COMB cell activations and firings continue to update and AHV cell firings
are set to reflect zero head rotation with rNOROT ¼ 1 and rROT ¼ 0.

Self-organizing model description

Given that pre-wired simulations demonstrate the core functionality of the
hypothesized system with idealized connectivity, a next step is to check
whether such a system can self-organize through learning. Can the self-
organized model, in which the synaptic connections have been set-up by
learning, perform accurate path integration?

In the self-organizing model, we do not pre-categorize COMB cells into
ROT-COMB and NOROT-COMB types. Instead, we initially lump all
COMB cells into a single undifferentiated category, denote both types of
AHV cells as ROT cells, and then connect all ROT cells to all COMB cells.
The w3 connections from ROT cells to COMB cells are then set-up during
learning, which will determine the ultimate response selectivity of individual
COMB cells to ROT cells which are active when the head is rotating and
ROT cells which are active when the head is not rotating. Can ROT-COMB
and NOROT-COMB cells be formed without this distinction being imposed
on the model by artificial pre-wiring of the synaptic connections?

The self-organizing variant is very similar to the pre-wired model. The
principal difference is that connectivity is not pre-wired. All connections
(HD-COMB, COMB-HD, ROT-COMB) are initialized with random values.
During simulation, all weight profiles self-organize via Hebbian learning
rules over the course of model training in the light, detailed below. The
simulation protocol is then identical to the pre-wired model.

Crucially, HD to COMB connectivity is diluted. That is, each COMB cell
receives projections from a limited number of HD cells. In the simulations
detailed below, each of the 1000 COMB cells receives from 25 of the 500 HD
cells, giving 5% connectivity. This is in order to avoid the effects of continuous
transformation (CT) learning (Stringer et al. 2006). In brief, the CT effect is
a result of the fact that the HD activity packet moves with spatiotemporal
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continuity during training. Say that an arbitrary pattern of COMB cell firing is
driven up by an HD activity packet at a given position. Connections will be
strengthened, by Hebbian learning, between all active HD cells and all active
COMB cells. If at the next timestep, the next HD activity packet has enough
overlapped with that of the previous timestep, the same or very similar pattern
of COMB cells will be driven up by virtue of the fact that a similar set of HD
cells is firing. However, some additional HD cells will become active, and their
connections onto active COMB cells will be strengthened by Hebbian learning.
Over multiple iterations of this process, it is possible for connections to be
strengthened between a particular subset of COMB cells and all HD cells, thus
eliminating COMB specificity to HD. By reducing the number of HD cells from
which a COMB cell receives connections, the CT effect is avoided.

Also, present in the self-organizing model is feed-forward inhibition
from the visual input to the HD layer during training. This is to ensure
that the effect of excitatory visual input during training does not flood the
network with activation when combined with HD-COMB reciprocal
connectivity.

Unlike the pre-wired model, no a priori distinction is made between ROT-
COMB and NOROT-COMB cells. Instead, the COMB layer receives connec-
tions from a layer of 1000 ROT cells, half of which are active during head
rotation, and half of which are active when the head is stationary.

Self-organizing model equations

The HD layer activation equation now incorporates feed-forward inhibition from
visual input. This maintains a similar level of network activation across both
training in the light and testing in the dark and is represented by the constant IFF.
The activation level hiHD of head direction cell i is therefore now given by

τHD
dhHDi ðtÞ

dt
¼ � hHDi ðtÞ þ eiðtÞ

� 1
NHD

X
j

~wHDrHDj ðtÞ

þ ϕ2
CCOMB!HD

X
j

w2
ijðtÞrCOMB

j ðt � ΔtÞ

� IFF

(12)

where � IFF represents feedforward inhibition from the visual input.
The firing rate riHD(t) of head direction cell i at time t is a sigmoid

function of the activation level of cell i given by equation 2.
All COMB cells receive from all ROT cells, via w3 weights. The activation

level hiCOMB of COMB cell i is given by
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τCOMB dh
COMB
i ðtÞ
dt

¼ �hCOMB
i ðtÞ

� 1
NCOMB

X
j

~wCOMBrCOMB
j ðtÞ

þ ϕ1
CHD!COMB

X
j

w1
ijðtÞrHDj ðt � ΔtÞ

þ ϕ3
CROT!COMB

X
j

w3
ijðtÞrROTj ðtÞ

(13)

The final term is ϕ3
CROT!COMB

P
j
w3
ijðtÞrROTj ðtÞ, which represents ROT cell influ-

ence on the COMB cell layer, where
P
j
w3
ijðtÞrROTj ðtÞ is the summed firing of

presynaptic ROT cells indexed by j at time t multiplied by the weight w3
ijðtÞ

from presynaptic ROT cell j to postsynaptic COMB cell i at time t. This is

scaled by the factor ϕ3
CROT!COMB where ϕ3 is a constant, and CROT!COMB is the

number of synapses each postsynaptic COMB cell receives from presynaptic
ROT cells.

Similarly, to HD cells, the firing rate riCOMB(t) of COMB cell i at time t is
a sigmoid function of the activation level of cell i given by equation 5

Synaptic weights are updated during training based on Hebbian learning
rules. These rules take the same form regardless of whether connections are
HD-COMB, COMB-HD, or ROT-COMB. The weight between presynaptic
HD cell j and postsynaptic COMB cell i is updated according to a local
associative Hebbian learning rule

dw1
ijðtÞ
dt

¼ krCOMB
i ðtÞrHDj ðt � ΔtÞ (14)

where w1
ij is the synaptic weight from presynaptic HD cell j with firing rate

rHDj onto postsynaptic COMB cell i with firing rate rCOMB
i , and k is the

learning rate constant, which determines the speed of weight change.
Similarly, the weight between presynaptic COMB cell j and postsynaptic

HD cell i is updated by the equation

dw2
ijðtÞ
dt

¼ krHDi ðtÞrCOMB
j ðt � ΔtÞ (15)

Finally, the weight between presynaptic ROT cell j and postsynaptic COMB
cell i is updated by the equation

dw3
ijðtÞ
dt

¼ krCOMB
i ðtÞrROTj ðtÞ (16)
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At each timestep all synaptic weight vectors are also normalized after updat-
ing. This is achieved by ensuring that the square root of the sum of the
squares of afferent weights, for a particular postsynaptic cell i, is limited to 1.
The weight normalization equation for HD to COMB weights is given asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

j

ðw1
ijðtÞÞ2

s
¼ 1 (17)

and for COMB to HD weights ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

ðw2
ijðtÞÞ2

s
¼ 1 (18)

and for ROT to COMB weightsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

ðw3
ijðtÞÞ2

s
¼ 1 (19)

The parameter values used for the self-organizing model are given in Table 2
unless stated otherwise.

Self-organizing model simulation protocol

At the beginning of the simulation, the firing rates and activations of all cells
are set to zero. Connectivity from HD to COMB, from COMB to HD and
from ROT to COMB is set. In these self-organizing simulations, all weights
are initialized with random values. This is achieved using the GNU
C Library’s srand48() and drand48(). Together, these functions generate non-
negative random numbers drawn from a uniform distribution in the interval
½0:0; 1:0�. Following random initialization of weight values, all synaptic
weight vectors are normalized. In the case of diluted HD to COMB con-
nectivity, 25 connections for each COMB cell are randomly selected from the
500 possible presynaptic HD cells using the gsl_ran_choose() function.

Table 2. Effect of varying values of Δt for constant τHD=COMB on an average time interval between
HD activity packet shifts, between COMB shifts, and between HD and COMB shifts. All measures
of time are given in seconds.

Effect of varying Δt for constant τ on system dynamics

τHD=COMB Δt HD-HD Interval COMB-COMB Interval HD-COMB Interval

0.0001 0.0025 0.005 0.005 0.0025
0.0001 0.005 0.01 0.01 0.005
0.0001 0.0075 0.015 0.015 0.0075
0.0001 0.01 0.02 0.0201 0.0099
0.0001 0.025 0.05 0.05 0.025
0.0001 0.05 0.1 0.1 0.05
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Following this initialization, training begins. A single training epoch is
comprized of rotating and stationary periods. During the rotation period, the
network undergoes a period of an HD activity packet being imposed by
external visual input (as described for the pre-wired simulations) and shifted
through the HD ring at the target velocity V �=s. The firing rates of half of the
ROT cells are set to 1, whilst the other half of the ROT cells have firing rates
of 0. Following the rotation period, ROT cells switch states and there follows
a stationary period. During this latter period, the activity packet moves to be
centred on each HD cell in turn for a fixed period of time. The amount of
time spent during the rotation period and the stationary period is kept equal,
such that the amount of time spent rotating is 500 (the number of discrete
HD cell locations) times the amount of time spent stationary at each location.
This is to ensure equal training with the agent rotating and stationary. This
process constitutes a single epoch of training and can be repeated as much as
is required.

After training, the 4-second testing period begins. External visual input
and feed-forward inhibition are both removed. In the first second of testing,
the HD packet remains where it ended up after training, and those ROT cells
active during stationary training are active. This holds the HD activity packet
at the current location. During the next 2 s, ROT cells switch states (i.e.,
those signals rotation become active, whilst stationary ROT cells are quies-
cent), and the motion of the HD activity packet is observed. In the
final second of testing, ROT cells switch states once more, and the HD
activity packet is held at its final location.

General operating principles

A diagram of the pre-wired and self-organizing models’ operation is given in
Figure 2. When the agent’s head is not rotating, NOROT-COMB cells (which
are generated either by pre-wiring or via self-organization), responding to
a combination of zero angular head velocity and the current head direction,
will become active. These cells project directly back to the HD cell from
which they receive. This non-offset reciprocal connectivity across two layers
will allow the HD activity packet to be sustained in its current location.
Crucially, this connectivity will not remain active during head rotation, as the
angular head velocity cells will no longer signal a lack of head rotation, and
thus NOROT-COMB cells will become quiescent.

When the agent rotates its head at arbitrary non-zero velocity V �=s,
ROT-COMB cells will become active. These cells respond to a combination of
current head direction and angular head velocityV �=s. They project back onto the
HD layer with an offset based on the target velocity and the conduction delay Δt.
This offset connectivity means that a given HD cell will project, via the
ROT-COMB cells, most strongly to the HD cell which ought to be active 2Δt
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Figure 2. Operation of the pre-wired and self-organizing models/HD activity is both sustained
and shifted by reciprocal connectivity with a layer of combination (COMB) cells. This connectivity
contains a conduction delay Δt. COMB cells respond to a particular combination of HD and
angular head velocity (AHV). During no head rotation (a), HD activity is stabilized through
reciprocal connectivity with COMB cells representing the combination of current head direction
and no angular head velocity (AHV = 0). When the head is rotating (b), activity is shifted through
the HD layer via connectivity with different COMB cells representing the conjunction of current
head direction with angular head velocity V (AHV = V, where V is some non-zero value).
Connectivity from these COMB cells back onto the HD layer projects with an offset from the
original HD activity of 2ΔtV; causing HD cell activity to accurately track true head direction given
current angular head velocity V.
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later, given the total conduction delay 2Δt and the target velocity V �=s. It should
be noted that the effective total conduction delay, in this case, will be 2Δt, as the
HD layer projects back onto itself via two sets of connections (HD to COMB and
COMB to HD). This will act to shift the activity through the HD layer to the
correct location, allowing the system to accurately track true head direction given
current angular head velocity. Effectively, this HD to ROT-COMB to HD con-
nectivity allows the system to know where a final HD activity packet ought to be,
given a particular starting location, following head rotation at a specific angular
head velocity over a known time interval.

Data analysis

In order to calculate the speed of motion of the HD layer activity packet, the
centre of mass of HD layer firing rates (i.e., the location of HD activity packet,
also known as the population or Pvector) is computed at each forward Euler
timestep. This was calculated as a circular mean, using an established popula-
tion vector scheme (Georgopoulos et al. 1986; Song and Wang 2005) as follows

θpopðtÞ ¼ arctan

P
i
ri sinðθiÞP

i
ri cosðθiÞ

0
@

1
A (20)

where θi is the preferred direction of HD cell i with firing rate ri.
To give a value for the population vector direction in the range [0� 360�],

the following corrected formula is used instead, with this functionality being
captured by the MATLAB function atan2
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X
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For the pre-wired model, the COMB cells are split into ROT-COMB and
NOROT-COMB populations, with each population each having its own dis-
tribution of cell preferred firing directions in the interval [0� 360�]. The
above Pvector calculation is therefore applied separately to ROT-COMB and
NOROT-COMB cells. However, for ease of visualization, Pvectors are collated
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and thus will show NOROT-COMB Pvectors during stationary phases, and
ROT-COMB Pvectors during rotation. Pvectors are also used to calculate path
integration speed, which was calculated by noting the total distance travelled
during the rotation phase of simulation and dividing by rotation time.

Results

Pre-wired model is capable of extremely accurate path integration

Figure 3 summarizes HD layer packet speed during simulated path integra-
tion with a variety of target velocities in the range [0� 360�=s]. Parameter
values are given in Table 1. We see clearly that the path integration velocity
attainable by the model is extremely close to the target velocity. Indeed, this
value is in the region of 99:5% for all target velocities in the range tested.

Effect of time constant

A key factor in the accuracy of path integration speed (see Page et al., 2015),
is the neuronal time constant τHD (and in this model τCOMB). For this reason,
an investigation was made into the effects of time constant across values of
τHD and τCOMB in the range [0:0001s,0:1s]. The results of this investigation
are given in Figure 4. In all cases, target velocity was V ¼ 180�=s, conduction
delay was fixed at Δt ¼ 0:01, and τHD ¼ τCOMB. As expected, we see that
increasing rise time via increasing the value of both τHD and τCOMB reduces
packet speed during path integration.

Figure 3. Simulation results of the pre-wired network model. Path integration speed is shown as
a percentage of the target for a range of target velocities, with parameters as given in Table 1.
Model performance is excellent (observed speed > 99% of target) at all target velocities tested.
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Effect of conduction delay

Another key factor in path integration speed is the conduction delay Δt. A variety
of different conduction delays were used in this model. Figure 5 shows the
summary results from simulations run with the parameters given in Table 1 and
Δt varying in the range [0:001s,0:05s]. In all simulations τHD ¼ τCOMB ¼ 0:001s
and V ¼ 180�=s. We see that shorter conduction delays are associated with
reduced packet speed, whilst longer conduction delays show packet speeds closer
to the target. This is because a constant error introduced by neuronal rise time will
be proportionally more severe in the context of a smaller conduction delay rather
than a larger one (Page et al. 2015).

The results so far demonstrate model functionality when all HD to COMBw1

and COMB toHDw2 connections involve the same axonal conduction delay Δt.
However, it is highly unlikely that connectivity within the HD system or indeed
the brain as a whole, is associated with delays of a single uniform value.
Simulations in which all w1 and w2 synapses have their own value of Δt,
drawn randomly from a uniform distribution in the range [0:0001s,0:1s], were
therefore carried out. In these simulations, the effect of time constant was found
to be similar to that with a single value of Δt, and these results are pictured for
a target velocity of V ¼ 180�=s in Figure 6. One crucial difference, evident in
this Figure, is that path integration was consistently faster with a range of
conduction delay values than with a single value. Although the speed when
τHD ¼ τCOMB ¼ 0:0001s was similar (179:43�=s in these simulations, compared
with 179:73�=s in simulations with a single Δt value), comparison of Figures 4
and 6 reveals that large time constants are less detrimental to path integration

Figure 4. Effect of neuronal time constant on path integration accuracy. Speeds during path
integration are shown for a range of values of τHD ¼ τCOMB with a target velocity V ¼ 180�=s. As
τHD and τCOMB increase, so too does the effect of rise time, and thus path integration speed is reduced.
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accuracy in a model with a distribution of Δt values. This suggests that varying
values of conduction delay are a partial solution to the issue of reduced path
integration accuracy with larger neuronal time constants, possibly helping to
ameliorate the effect of rise time.

Figure 5. Effect of conduction delay on path integration accuracy. Speeds during path integration
are shown for a range of values of conduction delay Δt with a target velocity of V ¼ 180�=s and
a fixed neuronal time constant of τHD ¼ τCOMB ¼ 0:001s. A constant error introduced by rise time will
be proportionally more severe in the context of shorter conduction delays. Thus, the slowing effect
on path integration of rise time is increased for small Δt and decreased for large Δt.

Figure 6. Effect of neuronal time constant on a model with a distribution of conduction delay
values in the range [0:0001s, 0:1s]. The model utilizing a distribution of conduction delays
maintains significantly better path integration accuracy across the range of τ values when
compared to a model with a single value of Δt. Identically to Figure 4, we see that increased
rise time via increasing τHD ¼ τCOMB reduces path integration accuracy.
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Periodic behaviour

In simulations with a single value of Δt, examining the motion of HD and
COMB activity packets during path integration more closely reveals that both
HD and COMB layer packet motion is not smooth, but consists of periodic
movements. This is likely an effect of having two linked layers separated by
a single value of conduction delay: an HD activity packet will shift itself, via
the COMB layer, after 2Δt. This intuition is confirmed by Figure 7, which
shows packet location from 1 s to 1.4 s of simulation with both a single fixed
value of Δt ¼ 0:005s (left) and a distribution of Δt values in the range
[0:001s,0:01s]. With a single value, packet motion is not continuous, but
instead shows a periodic pattern of shifting. In contrast, a distribution of
conduction delays leads to both HD (blue) and COMB (red) activity packets
moving continuously without periodic jumps.

Manipulating Δt and τHD=COMB provides more insight into the specific
nature of this periodic phenomenon, and verifies that the pre-wired model is
operating as hypothesized. Tables 2 and 3 show, respectively, the effects of
varying Δt for constant τHD=COMB and varying τHD=COMB for constant Δt.
Periodic behaviour matches the operating principles of the model: HD shifts
are separated from one another by 2Δt, which is also the separation between
COMB shifts. HD shifts are separated from COMB shifts by Δt. This con-
firms that the model operates as hypothesized.

Figure 7. Periodic motion with a single Δt value. Position (PVector) of both HD (blue) and COMB
(red) activity packets from seconds 1 to 1.4 of the simulation. Periodic motion is observed for
a single value of Δt ¼ 0:005s (left) but is not observed when using a distribution of Δt values in
the range [0:001s,0:01s] (right).
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Varying Δt affects periodic HD and COMB layer packet shifts in
a systematic manner. This was checked by re-running simulations with
varying Δt values in the range [0:001s,0:05s], this time with τ reduced to
a negligibly small value τHD ¼ τCOMB ¼ 0:0001s in order to see more clearly
the effect of changing conduction delay without interference from neuronal
rise time (Table 2). As would be expected given model operating principles,
the inter-shift interval is always 2Δt for HD-HD and COMB-COMB intervals
and is always Δt for HD-COMB intervals.

Periodic behaviour was affected by rise time (Table 3), controlled by
τHD=COMB. Whilst periodic motion was still observed, the regular relationship
between its timing and conduction delay broke down as rise time increased.
This is due to increasing rise time causing neurons to start firing later relative
to when they are first stimulated, with the intervals between HD-HD,
COMB-COMB, and HD-COMB, shifts becoming larger than expected for
a given value of Δt. This clearly demonstrates rise time’s specific effect on
path integration speed.

Self-organization

The self-organizing variant of the model was simulated with a target velocity of
180�=s and all parameters as in Table 4. Figure 8 shows HD layer firing rates and
position during testing. As we can see, the self-organizing network has made
a good job of replicating the results of a pre-wired network, with approximately
two stationary phases and a rotation phase, with the switch between the two
phases governed by the activity of ROT cells. This demonstrates clearly that
model functionality can be self-organized, with a single network being able to
smoothly transition between holding and shifting an activity packet.

The speed achieved during head rotation is 164:4�=s, which represents
91% of the target velocity. This is an improvement on previous self-organi
zing path integration models relying on within-layer recurrent collateral
connections (Walters and Stringer 2010; Walters et al. 2013). This improve-
ment in speed comes from the omission of within-layer recurrent collateral

Table 3. Effect of varying values of τHD=COMB for constant Δt on an average time interval between
HD activity packet shifts, between COMB shifts, and between HD and COMB shifts. All measures
of time are given in seconds.

Effect of varying τ for constant Δt on system dynamics

τHD=COMB Δt HD-HD Interval COMB-COMB Interval HD-COMB Interval

0.0001 0.05 0.1 0.1 0.05
0.001 0.05 0.0999 0.0999 0.05002
0.0025 0.05 0.0999 0.0999 0.05028
0.005 0.05 0.1047 0.1047 0.05053
0.0075 0.05 0.1088 0.1091 0.053
0.01 0.05 0.1136 0.1146 0.0549
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connectivity. However, the self-organizing model falls short of the ideal result
achieved in the pre-wired model.

This difference must be related to differences in the weight structure that self-
organizes. Inaccuracy will be introduced into themodel if the wrong region of HD
space is stimulated. This couldwell arise frompoorCOMB specificity to eitherHD
or ROT or from poor specificity in the projections from COMB back onto HD.

To answer the question of specificity to head rotation, a ROT index statistic was
constructed. For each COMB cell, the proportion of the total afferent ROT to
COMB weights for that cell was calculated for the first 250 ROT cells (i.e., those
ROT cells firing when the head is not rotating) and the second 250 ROT cells (i.e.,
those ROT cells firing when the head is rotating). This proportion is therefore in
the range ½0; 1�. The ROT index is then calculated as the proportion for head
rotation minus the proportion for no head rotation. Thus, each COMB cell has
a ROT index ranging from þ 1 (all weight fromROTcells firing to head rotations)
to � 1 (all weight fromROTcells firingwhen the head is stationary). AROT index
of 0 would indicate no specificity to head rotation.

Table 4. Network parameter values used during self-organizing simu-
lations. All self-organizing simulations, except where explicitly stated,
are run using these parameters. All measures of time are given in
seconds.
Self-organizing network parameters

No. Head Direction Cells 500
No. COMB Cells 1000
No. ROT cells 1000
Rotation Time (per training epoch) 12:0s
Stationary Time (per HD cell) 0:024s
No. Training Epochs 50
CCOMB!HD 1000
CHD!COMB 25
ϕ1 2400.0
ϕ2 10000.0
CROT!COMB 1000
ϕ3 5000.0
αHD 0.0

βHD 0.2

αCOMB 113.0

βCOMB 0.3

τHD 0:0001s
τCOMB 0:0001s
~wHD 1.0
~wCOMB 1000.0
δt 0:00001s
λHD 450.0

σHD 20:0�

IFF 420:0
Target Velocity V 180�=s
Learning rate k 0:1
Axonal delay Δt 0:01s
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Figure 9 shows a histogram of ROT index values for the trained COMB cell
layer. In total, 768 of the 1000 COMB cells (76:8%) had an absolute ROT index
greater than 0.8. Of these cells, equal proportions were specific to head rotation
(37:5%) or no head rotation (37:5%). However, the majority of the remaining
23:2% of COMB cells had a ROT index in the range � 0:6 to 0:2, indicating
that COMB layer specificity to head rotation, whilst quite good, was not perfect.

To answer the question of COMB specificity to HD, Figure 10 shows
a histogram of the number of COMB firing peaks, defined as contiguous
periods of elevated COMB cell firing, as the model rotated through the full
360� space of head directions during the test phase. Whilst many COMB
cells either do not fire at all during the test phase or fire only once, we see
a significant proportion of COMB cells show firing peaks twice or more
during this same period. Given that the test phase consists of one complete
rotation through the HD layer, COMB cells would be expected to fire just
once during this period if specific to one HD.

Figure 8. Simulation results from the self-organizing model. HD layer firing, with high firing
indicated by black (top) and packet location (bottom) during the testing phase of simulation.
Model performance is approximately correct, with a 2s period of packet motion during path
integration, bookended by two 1 s periods of no packet motion whilst HD does not change.
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Figure 9. Specificity of ROT to COMB synaptic weights. In this histogram, a ROT index of þ 1
indicates that all afferent connection weight for that cell comes from ROT cells signalling head
rotation, whilst a ROT index of � 1 indicates that all afferent connection weight for that cell
comes from ROT cells signalling a stationary head. ROT index values in between this range
indicate mixed ROT cell specificity for a given COMB cell. This figure demonstrates that whilst the
majority of COMB cells are specific to either head rotation or no head rotation, there is
a noticeable proportion which are not.
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Figure 10. Specificity of COMB cell response. Histogram detailing the number of firing rate
peaks (contiguous periods of elevated firing) for each cell in the COMB layer during testing as the
model rotates through the full 360� space of head directions. A notable proportion of cells has
less specific responses to HD in that they display two or more firing peaks.
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Conclusions

The major contribution of this paper is to offer a theoretical explanation for
why there do not appear to be within-layer recurrent excitatory connections
within distinct layers of neurons in the rat head direction system. Previous
modelling studies have included such connections within the HD layer, to
stabilize an activity packet in the absence of visual input (Walters and
Stringer 2010; Walters et al. 2013). However, this always slows down path
integration by around 20–30% and leads to an error in the representation of
HD. The function of such a symmetric recurrent connectivity is merely to
keep an activity packet rooted to the spot, as opposed to shifting the activity
packet. The major problem that occurs is that the stabilizing recurrent
connections cannot be switched off when the network needs to shift the
packet at the correct speed during path integration of head rotation. The
recurrent connections continue to exert their stabilizing influence, thus
retarding the motion of the activity packet and introducing significant path
integration error.

A more sophisticated learning rule, perhaps with an explicit axonal trans-
mission delay, could self-organize asymmetrical recurrent connections tuned
to a certain speed of head rotation. However, the core problem persists and
can be stated more generally: any recurrent excitatory connections calibrated
to a particular speed of head rotation will degrade path integration accuracy.
Recurrent weight profiles can learn to respect at most one head velocity, and
path integration will accquire inaccuracy during rotation at any other
velocity.

This problem could be solved if there were multiple different sets of
within-layer recurrent connections, each optimized for different angular
head velocities, and each active only during appropriate kinds of head
rotation. This is not possible within a biologically plausible network archi-
tecture. However, the novel contribution of this paper is to achieve some-
thing equivalent in a multi-layer form. Our model includes an additional
layer of combination cells, which learn to respond to particular combinations
of head direction and angular head velocity. Different subsets of combination
cells become activated depending on the current angular head velocity of the
simulated rat. Those cells responding to zero angular head velocity project
back to the same HD layer location from which they receive input, whilst
those cells responding to non-zero velocity project back to the HD layer with
an offset.

By introducing an additional layer of COMB cells, with different sub-
sets of COMB cells tuned to different angular head velocities, this effec-
tively creates different subsets of bi-directional connections between the
HD and COMB cell layers that may learn to implement path integration
at corresponding velocities. In this manner, path integration input to the
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HD layer is always ”pure”, as the HD layer inputs signalling a single
angular head velocity at any given time. For example, one subset of
COMB cells and the corresponding subset of bi-directional connections
between the HD and COMB cell layers may be tuned to no head rotation,
and will be responsible for stabilizing the activity packet in the HD ring
during periods of no head rotation in the dark. However, these COMB
cells will respond specifically to zero angular head velocity, and will be
inactive during any actual head rotation. Thus, the subset of stabilizing bi-
directional connections will not interfere with path integration during
head rotations.

This is why the simulations of path integration presented in this paper are
much more accurate than our earlier models that relied on recurrent excita-
tory connections within the HD ring to stabilize the activity packet when the
agent is stationary in the dark.

Discussion

This paper presents operational details and simulation results from pre-wired
and self-organizing versions of a head direction cell path integration model
which does not contain within-layer symmetric excitatory recurrent collateral
weights. This work supports the assertion that a multi-layer system with bi-
directional connections between layers exists principally for reasons of path
integration speed (Page et al. 2015). The model in this paper consists of
a ring of HD cells, reciprocally connected to a ring of COMB cells, with the
latter also receiving input from ROT cells. All HD to COMB and COMB to
HD connections contain an axonal conduction delay Δt. COMB cells which
receive input from ROT cells signalling no head rotation project back to the
HD cell from which they maximally receive. These cells are responsible for
sustaining a stationary HD layer activity packet when the head is not moving.
COMB cells which receive input from ROT cells signalling head rotation at
a target velocity project back onto the HD layer with an offset determined by
the target velocity and the conduction delay. In this manner, direct HD to
HD connections are no longer present, and instead, all HD cells influence
one another via the COMB cell layer regardless of head motion.

Simulation results show that this model, when pre-wired with ideal con-
nectivity, is capable of extremely accurate (99%) path integration, and this
result is found to extend to a more biologically plausible situation in which
conduction delays are randomly varied within a set range. Parameter
exploration reveals that the operation of this model is much more accurate
than previous self-organizing path integration models incorporating within-
layer excitatory recurrent collateral connectivity (Walters and Stringer 2010;
Walters et al. 2013). However, the effect of increasing rise time is, as with
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previous models, detrimental to path integration speed. This is because rise
time causes neurons to fire slightly after when they ought to fire.

Interestingly, a periodic effect is seen in the model, whereby a fixed
conduction delay value across all synapses causes activity in the model to
shift in a stepwise manner, with the time for each step defined by conduction
delay. Although it is shown that a distribution of conduction delay values,
assumed to be more biologically plausible, eliminates this periodicity, the
model does predict that a sufficiently narrow distribution of delays (i.e., one
with low variance) in vivo would cause such periodicity.

It is also demonstrated that this kind of connectivity is capable of self-
organizing, although path integration accuracy is slightly reduced in this
case. What might be the reason for sub-optimal performance in the self-
organizing model? It is likely to do with a lack of specificity in the COMB cell
layer. The projections from a given COMB cell onto the HD layer will only
be correct if that COMB cell is active in response to a single HD. COMB cells
that are active for more than one specific HD can, for at least one of these
HDs, introduce error into path integration. This leads to the prediction of
a specific source of error within the HD system. However, it should be noted
that, theoretically, COMB cell activity at multiple HDs would not necessarily
be predicted to introduce error into the HD system: it would only be when
COMB cell projections are close and strong enough to the current HD layer
activity packet that they would affect packet motion.

The accuracy of path integration is an interesting question, not least
because it is not clear exactly how accurate path integration is in the brain.
One caveat in working out path integration error in the brain is that it tends
to vary experimentally. Crucially, experimental measures of path integration
error are linked to changes in allocentric preferred firing direction of a given
HD cell. In the light, such changes would result from an altered relationship
between HD activity and the external world resulting in remapped allothetic
input (see, for example (Knight et al. 2014; Page et al. 2014)). It is therefore
worth remembering that inaccuracy in HD packet motion can only be
directly measured by shifts in preferred firing direction in the absence of
allothetic information to which the HD system can orient.

In addition to potential sources of inaccuracy within the HD system
(outlined here and in (Page et al. 2015)), there is a possibility of error
being introduced prior to the HD system itself. It has been shown that rats
tend to structure their exploratory movements in a highly specific manner.
They start at a home base and perform a number of movements before
returning home in a more direct fashion. During their outward journey,
they typically segment their movements into paths of low curvature at higher
speed, and paths of high curvature at a lower speed (i.e., the faster the rat
travels, the straighter the path they take). This inverse correlation of speed
and curvature likely enhances the gain of angular accelerations and makes
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them more detectable to the vestibular system (Wallace et al. 2006). For
example, slower changes in heading whilst moving across a long curved path
might be harder to detect than splitting the same path into a series of more
abrupt changes with straighter paths. It has been shown in humans that the
disruption of this inverse relationship is associated with errors in path
integration (Wallace et al. 2006).

It could well be that movement segmentation falls apart due to errors in
path integration, rather than causing them. However, it has been shown that
when rats are forced to segment their path in a manner that disrupts inverse
correlations of speed and path curvature, they are less accurate at returning
to home than when they are free to structure their own movements (Wallace
et al. 2010). It is likely that intrinsic HD system error can accumulate and
cause a breakdown in the movement segmentation described above. This loss
of movement segmentation compounds the error by reducing the accuracy of
vestibular input. This would generate “upstream” errors in AHV input to the
HD system.

Path integration accuracy is not yet fully understood from a computational
perspective. It is non-trivial that errors in computational path integration
systems tend to be undershooting (Walters et al. 2013; Page et al. 2015), yet
experimental studies indicated preferred firing direction shifts in both direc-
tions (Goodridge et al. 1998); indicating that path integration errors are
randomly distributed. Future studies of path integration ought to replicate
this noisy element and move away from systematical undershooting of the
desired speed. The understanding of path integration error resulting from
a noisy biological process ought to be furthered, and for this reason, future
work should focus on replicating experiments as closely as possible in silico.
A target model framework to investigate path integration inaccuracy should
incorporate a fully spiking network which simulates ecologically accurate
movements at multiple velocities.

The simulations presented in this paper have been performed using
a simplified rate-coded neural network model, in which the activity of indivi-
dual neurons at any moment in time is represented as a mean firing rate.
However, real neurons in the brain communicate with each other using
discrete electrical pulses called action potentials or ‘spikes’. In future work,
we plan to run simulations of the head direction system using a spiking neural
network model that can more accurately mimic the temporal dynamics of
neurons and synapses (Eguchi et al. 2018; Isbister et al. 2018). In particular,
this will enable us to implement realistic neuronal and synaptic time constants
governing, for example, the exponential decays of both cell voltages and
synaptic conductances. These two-time constants will actually have different
values in the brain. However, in the more simplified rate-coded simulations
presented above, these two biological time constants are effectively combined
into a single neuronal time constant thus reducing the temporal accuracy of
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the dynamics. In earlier work with spiking neural networks, we have imple-
mented neuronal time constants of 20 ms and synaptic time constants of 1 ms.
While in the rate coded simulations presented here, we explored network
performance across a range of values for the neuronal time constants from
0.1 to 100 ms. So with the rate-coded simulations, the conclusions are more
qualitative than quantitative. Nevertheless, despite the reduced dynamical
accuracy of rate-coded models, the simulation results presented in this paper
have demonstrated how removing the recurrent connections between head
direction cells enables the model to produce arbitrarily accurate path integra-
tion, which now depends on the duration of the time constants. Shorter
neuronal time constants produce faster neuronal rise (response) times, which
in turn lead to more accurate path integration. In particular, the path integra-
tion error can be made arbitrarily small by reducing the neuronal time
constants to very small values. We tested this observation by running simula-
tions with a neuronal time constant reduced to an extremely low value of
0.1 ms. This finding represents an advance on previous continuous attractor
models of the head direction system that relied on the recurrent connections
between head direction cells to stabilize the activity packet in the absence of
visual input (Walters and Stringer 2010; Walters et al. 2013). These earlier
models suffered from much larger path integration inaccuracies caused by the
recurrent connectivity, which could not be eliminated by adjusting model
parameters such as the neuronal time constants. In particular, and most
importantly, the simulation results presented in this paper are consistent
with and provide an explanation for why the head direction system in the
rat brain does not appear to incorporate recurrent connections between head
direction cells. The reason that recurrent connections between head direction
cells are absent in the rat brain is to help optimize the accuracy of path
integration using the mechanisms described above in the Conclusions section.

Based on the known physiology of the HD cell system, the pre-wired and
self-organizing models in this paper should be considered in terms of DTN
and LMN, and thus we must attempt to match the connectivity of these
regions. Roughly speaking, the HD region could be mapped onto the LMN,
whilst the COMB cell region could be mapped onto the DTN. Unlike the
connectivity in each of our models, which is uniformly excitatory, DTN to
LMN connections appears to be inhibitory. In order to have strict biological
accuracy, the models should, therefore, be extended to cover inhibitory
connectivity from COMB cells back onto the HD layer. One potential issue
with this change, particularly for self-organization, is how to update weights
of inhibitory connections. One solution to this issue is the concept of anti-
Hebbian learning, whereby weights are increased based on anticorrelation
between pre- and post-synaptic firing rather than correlation (Koch et al.
2013; Vogels et al. 2013). However, as stated above, in the model presented in
this paper the connections from the COMB layer to the HD layer were
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excitatory. In future work, we plan to investigate how the model may operate
when these connections are inhibitory. That is, can inhibitory connections
from the COMB layer to the HD layer self-organize using anti-Hebbian
learning to allow the network to learn to perform accurate path integration?

The assertion in this model that it is the recurrent connectivity between
DTN and LMN which constitutes the core HD system attractor could be
tested by specifically disrupting reciprocal connectivity between these layers
without damaging their internal connectivity. This would be analogous to
severing the HD to COMB and COMB to HD connections within this model
and represents a good test of this model’s plausibility. The other assertion in
this model that HD signal generation is critically dependent on AHV input,
has already been approached. (Valerio and Taube 2016) have shown that
a stable HD signal is no longer present in the ADN of mice without AHV
input, eliminated at the level of the semicircular canals. Instead, HD cells fire
in bursts (i.e., with a pattern of spiking similar to HD cells, but not tied to
a specific allocentric direction). This seems at odds with the current model,
which suggests a loss of AHV input will silence the HD system. However, it is
perfectly plausible that other, less primary, sources of idiothetic (e.g., optic
flow or motor efference copy – see (Zugaro et al. 2001; Stackman et al. 2003))
and allothetic information (e.g., olfaction or audition – see (Goodridge et al.
1998)) contribute to HD firing, yet result in spatial instability of HD cell
firing without AHV input. For example, if visual landmarks are not stably
learnt with respect to idiothetic information then they will not have a strong
or consistent influence on HD layer activity (Page et al. 2014). Therefore, it is
likely that bursty firing arises from a combination of allocentric information
sources which cannot be stably learnt, in conflict with idiothetic cues which
themselves are not enough to stably influence HD packet motion.

The models presented here have attempted to simplify operation enough
to gain insight without being lost in complexity. In particular, the firing of
ROT cells is greatly simplified when compared to AHV cells in the brain.
AHV cells have a roughly linear firing rate response across a range of head
velocities and vary with their response to head rotation of different direc-
tions. Here, ROT cells fire in a binarized manner, either firing at maximum
for the preferred velocity of head rotation or at zero otherwise. A natural
extension of this work would, therefore, be to have ROT cells more accu-
rately reflecting AHV cell firing. Given a more biologically accurate ROT cell
layer with a less caricatured response to head rotational velocity, it would be
interesting to see whether this network could still function. It would also be
of interest to see what influence a population encoding in the ROT cell layer
would have on the representations formed in the COMB cell layer.

It is notable that the COMB cells in this paper are also simplified relative
to biology, in that they respond to a single HD and a single speed of rotation.
In the brain, cells responding to combinations of HD and angular head
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velocity show elevated firing across a range of head directions, and this is
modulated in a complex manner by head rotation (Bassett and Taube 2001).
It would be of interest then, to see if realistic COMB cell representations
follow from realistic ROT cell representations. The current models deal only
with two rotation speeds, with one being zero, and with the non-zero speed
being in a single direction. It is possible that a richer ROT/COMB cell
representation covering different speeds would allow the system to function
across a range of angular head velocities, and it would be interesting to see
how the system copes with this increased challenge, as well as what sort of
weight profiles would be required.

In a previous theoretical study (Page et al. 2015), we carried out a detailed
simulation analysis of how symmetric recurrent connections, as set-up by
a biologically plausible Hebbian associative learning rule, within an HD layer
will lead to path integration error. These symmetric recurrent connections
always slow the movement of the activity packet within the HD layer when
the simulated agent rotates in the dark, thereby producing an underestimate
of the angular change in head direction. More generally, the underlying
problem is that in order to avoid path integration error during head rotation,
the recurrent connections would need to be suitably shaped, e.g., with an
appropriate offset around the HD ring. It is not possible to achieve this for
a broad range of different rotation speeds simultaneously using the same set
of recurrent connections, unless perhaps by applying some biologically
implausible modulatory mechanism to these connections based on rotation
speed. This theoretical observation would appear to offer an explanation for
why there do not appear to be excitatory recurrent connections within
individual layers of the head direction system in the rat brain. However,
the model simulations in that previous study were performed using
a simplified one-layer neural network. In the current paper, we have
extended this work to a two-layer network and shown how the connections
may self-organize using biologically plausible ‘local’ learning rules.

To conclude, here we present a two-layer model capable of sustaining
a stationary activity packet, and shifting an activity packet using an inter-
nal head rotation signal with a high degree of accuracy. This path integra-
tion accuracy was achieved by eliminating the recurrent excitatory
connections within the HD layer, which are present in many HD system
models. Continuing sources of path integration inaccuracy are hypothe-
sized: 1) neuronal rise time; 2) incorrect COMB layer influence on HD
firing, due either to nonspecific HD influence on COMB, COMB influence
on HD, or both; 3) ”upstream” errors in AHV input. This work represents
a useful contribution to our theoretical understanding of the rat HD cell
system, and in particular, provides a platform from which to investigate
the self-organization of path integration and potential sources of error in
more detail.
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