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Abstract

The head direction cell system is capable of accurately updating its current representation of head direction in the absence
of visual input. This is known as the path integration of head direction. An important question is how the head direction cell
system learns to perform accurate path integration of head direction. In this paper we propose a model of velocity path
integration of head direction in which the natural time delay of axonal transmission between a linked continuous attractor
network and competitive network acts as a timing mechanism to facilitate the correct speed of path integration. The model
effectively learns a ‘‘look-up’’ table for the correct speed of path integration. In simulation, we show that the model is able
to successfully learn two different speeds of path integration across two different axonal conduction delays, and without
the need to alter any other model parameters. An implication of this model is that, by learning look-up tables for each
speed of path integration, the model should exhibit a degree of robustness to damage. In simulations, we show that the
speed of path integration is not significantly affected by degrading the network through removing a proportion of the cells
that signal rotational velocity.
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Introduction

Head direction cells signal the orientation of the animal’s head

in the horizontal plane [1–3]. In the absence of guiding visual

input, a network of head direction cells will accurately represent

the current head direction of the animal [3–5]. This is the path

integration of head direction, where an animal integrates idiothetic

(self-motion) signals to track the current orientation of its head

within an environment [6,7].

In many neural network models of the head direction cell

system, the head direction cells conceptually form a ring

representing the spatial continuum of head directions within the

one-dimensional head-direction space. The position of the peak of

a single, often Gaussian, packet of neural activity within this ring of

head direction cells reflects the current head direction of the

animal. By integrating a continuous angular head velocity signal it

is possible to shift the position of the packet of neural activity

within the head direction cell ring. The changing position of the

neural activity packet reflects the changing head direction of the

animal. These types of neural network models are thus capable of

achieving the path integration of head direction [8–14].

An important computational question is how the head direction

cell system is able to accurately perform the path integration of

head direction. That is, how the packet of neural activity

representing head direction can be updated to accurately reflect

the true current head direction of the animal.

The neural network models of [10] and [12] can integrate real

rat angular head velocity data to update the neural network

activity packet representing head direction and thus perform the

path integration of head direction. There is minimal error between

the instantaneous network representation of head direction and

the instantaneous true head direction of the rat. These neural

network models, however, are ‘‘hard-wired’’: the vector wi of the

strengths of the synaptic connections wij between a particular set of

presynaptic cells j~1, . . . ,N and a particular postsynaptic cell i is

pre-specified before the neural network simulation commences,

and no learning takes place at any individual synaptic connection

wij that is a component of this synaptic weight vector wi.

It is highly unlikely that the real head direction cell system is

hard-wired. Accurate path integration of head direction requires

precise control over the current position of a neural activity packet

in a neural network representing the continuous head-direction

space. That is, the neural activity packet should remain in its

current position when the head of the animal is not rotating, and

should accurately track the head direction of the animal when the

animal’s head is rotating. However, the behaviour of a packet of

neural activity in a neural network representing a continuous space

is highly sensitive to asymmetries in the driving inputs to that

packet [15,16]. When the driving inputs are symmetric, i.e. of

equal magnitude in all directions, then the activity packet will

remain in its current position in the continuous space. Asymmetric
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inputs to the packet will result in the packet shifting its position

towards the input with greatest magnitude.

Thus, in order to ensure that the packet of neural activity

representing head direction is stationary when the animal’s head is

stationary, and moves accurately to a new position when the

animal’s head is rotating, a set of very precise synaptic weight

matrices is required. Each synaptic weight matrix W specifies the

synaptic connectivity and distribution of synaptic weights between

a particular set of presynaptic cells j~1, . . . ,N and a particular set

of postsynaptic cells i~1, . . . ,M. As axonal growth and neural

migration during brain development are highly stochastic, it is

implausible that the required synaptic weight matrices could be

entirely genetically pre-specified [14,17,18]. It is therefore far

more plausible that the synaptic weight matrices are set up

through learning.

[11] proposed a neural network model of the head direction cell

system that can learn to perform accurate path integration of head

direction. However, this network employed an error correction

learning rule in order to converge upon the correct solution. This

type of learning rule requires the computation of the difference

(ti{ri) between the desired firing rate ti of cell i and that cell’s

current firing rate ri. This difference, or error, is then used to

update the synaptic weight vector wi between presynaptic cells

j~1, . . . ,N and the postsynaptic cell i. In the real brain it is

doubtful how such an error term could be calculated and then

used as a teaching signal to influence the updating of the synaptic

weight vectors in order to converge upon the correct solution

[19,20]. Thus, it is unlikely that the real head direction cell system

employs an error correction learning scheme in order to achieve

accurate path integration of head direction.

In this paper, we present a biologically plausible computational

mechanism through which a neural network model can learn to

accurately perform the path integration of head direction. This

new mechanism incorporates the natural time delay of axonal

transmission [21] in order to provide specific time intervals over

which associations between packets of neural activity can be

learned.

In simulations, we show that a neural network model operating

with the proposed timing mechanism is able to learn to perform

the path integration of head direction at approximately the same

rotational speed as was experienced during training in the

presence of visual input. We show that this mechanism can learn

to perform the path integration of head direction when trained at

different rotational speeds, and when implemented with a

distribution of axonal conduction delays. We also show that the

model can learn to perform path integration when implemented

with axonal conduction delays in either the w2 synapses or the w3

synapses but not both, i.e. there are delays in one set of synapses

only.

We also explore the implications of the model we present in

relation to other neural network models of the path integration of

head direction. We demonstrate the vital role played by the axonal

conduction delays in enabling the neural network to learn to

perform the path integration of head direction. We discuss the role

of generalization in models of the path integration of head

direction: that is, the ability of the model to perform the path

integration of head direction at different speeds by altering the

magnitude of a driving rotational velocity signal. The model we

propose in this paper does not generalize to different speeds of

path integration. This lack of generalization is not, however, a flaw

in our model. Instead, we show through simulation results that our

model exhibits fault tolerance and graceful degradation after the

loss of a significant proportion of cells that signal rotational

velocity. This fault tolerance is a direct result of the fact that our

model cannot generalize to different speeds of path integration.

We also highlight the differences between the model proposed in

this paper and the path integration model of [22].

Our model is of a generic one-dimensional system. We do,

however, note that the general principles of this model could be

extended to path integration in higher dimensions, i.e. path

integration of place in the environment [23], or of spatial view

[24]. We also note that the principle of using neural mechanisms

to produce natural time intervals over which associations between

packets of neural activity can be learned is a general principle. For

instance, neuronal time constants can also provide an effective

natural time interval over which the path integration of head

direction can be learned at approximately the correct speed [22].

The Model

Description and Operation of the Model
Experimental observations of head direction cells. Head

direction cells have been discovered in several areas of the rat

brain. These include the postsubiculum [1,2], the anterodorsal

thalamic nucleus [25], and the lateral mammillary nuclei [26,27].

The head direction cells from these different brain areas exhibit

the same general firing characteristics. Each head direction cell

responds maximally to a single preferred direction of the head.

The directional tuning curve of a single head direction cell is

Gaussian or triangular in nature, and has a width in the

approximate range of 500{1100 [28]. In this paper we set the

tuning width as 900. The firing rate of an individual head direction

cell decreases in a symmetric manner from the centre of the

directional tuning curve, with zero, or near-zero, firing rates

outside the width of the tuning curve [3,28,29]. Within a

population of head direction cells, the preferred head directions

of the individual cells will be uniformly distributed such that the

population will collectively represent head directions from

00{3600.

Many of the anatomical regions containing head direction cells

are interconnected, and it has been suggested that the head

direction signal is, in part, generated by an ascending processing

stream incorporating the following areas: dorsal tegmental nucleus

of Gudden ? lateral mamillary nuclei ? anterdorsal thalamic

nucleus ? postsubiculum [30]. This is supported by evidence from

lesion studies, where bilateral lesions of the anterodorsal thalamic

nucleus have been shown to abolish the head direction signal in

the postsubiculum [31]. It has also been shown that bilateral

lesions of the lateral mammillary nuclei abolish the directional

specificity of head direction cells in the anterodorsal thalamic

nucleus [26]. In this paper we focus upon the computational

mechanism through which our model achieves the path integra-

tion of head direction, and as such we do not attempt to place the

different layers of cells in our model in a direct one-to-one

relationship with the brain areas known to contain head direction

cells. However, we propose that the underlying neural mechanisms

instantiated in our model would be present in some form in the

ascending processing stream described above.

Model details: Rate-coded neurons. In this paper, each

neuron is modelled using ‘rate-coding’ [19,32]. This means that

the model represents only the instantaneous average firing rate ri

of each cell i in the network, and does not represent the exact

times of the individual action potentials emitted by the cells.

Differential rate-coded neural network models are usually

formulated in the following way [33].

Firstly, for each cell i we define a quantity called the cell

activation hi, which reflects the total amount of current that has

recently been injected into the cell by all of the presynaptic cells

Accurate Path Integration of Head Direction
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j~1, . . . ,N . We assume that the rate of change of the cell

activation hi is proportional to a linear combination of the firing

rates rj of the presynaptic cells j~1, . . . ,N. The rate of change of

cell activation may depend on the firing rates of the presynaptic

cells a short time interval Dt in the past due to axonal transmission

delays that occur between different layers of cells. The firing rate rj

of each presynaptic cell j is weighted by the synaptic weight wij

from presynaptic cell j to the postsynaptic cell i. Hence, the

following general form of ‘leaky-integrator’ equation is used to

model the change in activation hi of each cell i

t
dhi (t)

dt
~{hi(t)z

1

N

X
j

wij(t)rj(t{Dt): ð1Þ

The term {hi(t) on the right hand side of equation (1) effects an

exponential decay of the cell activation hi(t) in the absence of any

driving input from the presynaptic cells j~1, . . . ,N, for example

when the presynaptic cells are not firing.

Next, the output firing rate ri of each cell i can be calculated

directly from the cell activation hi, using a variety of different

transfer functions ri(t)~f (hi(t)). For example, the transfer

function f may be either an identity function ri(t)~hi(t), or a

linear function ri(t)~ahi(t), or a threshold linear function [19,33].

In this paper, we use a sigmoid transfer function

ri(t)~
1

1ze{2b(hi(t){a)
ð2Þ

where a and b are the sigmoid threshold and slope respectively.

The advantage of the sigmoid transfer function f is that it bounds

the firing rate ri for each cell i between 0 and 1.
Model details: Neural network architecture. The model

presented in this paper, shown in Figure 1, comprises two

connected networks: a network of head direction cells, and a

network of combination cells. The model is proposed as a minimal

synaptic architecture required in order to learn to update a packet

of head direction cell activity at the same speed as was imposed

during training in the light. Thus, the model is not intended to

directly represent any one specific area of the brain known to

contain head direction cells. Instead, the model is the simplest

needed to demonstrate the underlying computational principles

used in the path integration of head direction across several areas

of the rat brain.

The network of head direction cells (with firing rate rHD
i for

head direction cell i) represents the current head direction of the

agent, and operates as a continuous attractor performing velocity

path integration. Individual head direction cells are simulated

using leaky-integrator firing rate-based models as described above.

Within the layer of head direction cells there is a single Gaussian

packet of firing activity. The centre of the activity packet

represents the current head direction of the simulated agent.

The network of combination cells (with firing rate rCOMB
i for

combination cell i) receives inputs from both the network of head

direction cells and a layer of rotational velocity cells (with separate

sub-populations of cells signalling clockwise and counter-clockwise

rotation). The combination cells are also simulated using leaky-

integrator firing rate-based models as described above. The

combination cells operate as a competitive network and develop

their firing properties during training, with individual combination

cells learning to represent a combination of a particular rotational

velocity with a particular head direction.

The combination cells in our model may be related to head

direction cells in the lateral mammillary nucleus, which exhibit

Figure 1. Network architecture for two-layer self-organizing
neural network model of the head direction system. The
network architecture contains a layer of head direction (HD) cells
representing the current head direction of the agent; a layer of
combination (COMB) cells representing a combination of head direction
and rotational velocity; and a layer of rotational velocity (ROT) cells that
become active when the agent rotates. There are four types of synaptic
connection in the network, which operate as follows. The w1

ij synapses
are Hebb-modifiable recurrent connections between head direction
cells. These connections help to support stable packets of activity
within the continuous attractor network of head direction cells in the
absence of visual input. The combination cells receive inputs from the
head direction cells through the Hebb-modifiable w3

ij synapses, and

inputs from the rotational velocity cells through the Hebb-modifiable
w4

ij synapses. These synaptic inputs encourage combination cells to

respond, by competitive learning, to combinations of a particular head
direction and rotational velocity. Consequently, the combination cells
only become active when the agent is rotating. The head direction cells
receive inputs from the combination cells through the w2

ij synapses. The

w2
ij and w3

ij synapses are trained using time-delayed Hebbian associative

learning rules, which incorporate a temporal delay Dt in the presynaptic
firing rates. These rules introduce asymmetries into the w2

ij and w3
ij

weight profiles, which play an important role in shifting the packet of
head direction cell activity through the head direction cell network at
the correct speed on the basis of idiothetic signals alone.
doi:10.1371/journal.pone.0058330.g001

Accurate Path Integration of Head Direction
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modulation of their firing rate by angular head velocity, i.e. the

firing increases as the angular head velocity increases [27]. In

addition, a small number of angular head velocity cells in the

dorsal tegmental nucleus exhibit modulation of their firing rate by

head direction, with an increase in firing rate when the head of the

rat is within a broad contiguous range of head directions [34,35].

The rotational velocity cells in our model have binarised firing

rates, i.e. 0 or 1, and represent idiothetic signals conveying

whether the animal is rotating its head in a clockwise or a counter-

clockwise direction. The idiothetic signals in the brain are highly

likely to have a strong vestibular component, as lesions of the

vestibular system can abolish the head direction signal [36,37]. It is

also possible that the idiothetic signal contains a motor efference

copy component [38], as tight restraint and passive rotation of an

animal can significantly reduce the responses of head direction

cells [3,39]. In principle, the idiothetic signals in our model could

be either vestibular or motor efference copy.

How the path integration mechanism works in a

simplified network with two neurons. To introduce the

operation of the model consider a simple two-cell system, in which

a single presynaptic cell j with a prescribed firing rate rj(t) is

driving activity in a postsynaptic cell i. Cells 1 and 2 in Figure 2a

represent this two-cell model. Our model assumes that there is a

short axonal delay Dt in signal transmission from the presynaptic

cell j to the postsynaptic cell i. This delay means that the chemical

signals representing firing of the presynaptic cell j take Dt to reach

the postsynaptic cell i. In this case, the rate of change of activation

of the postsynaptic cell at time t will depend on the firing rate of

the presynaptic cell Dt in the past, that is rj(t{Dt). The cell firing

profiles through time, as depicted in Figure 2c, illustrate the effect

that a delay of Dt in the transmission of a signal representing the

firing of presynaptic cell 1 has upon the firing of postsynaptic cell

2. That is, if the centre of mass of the firing profile of cell 1 occurs

at a time t, then the centre of mass of the firing profile of cell 2 will,

due to the transmission delay of Dt, occur at time tzDt. To model

this, an axonal delay Dt is incorporated into the presynaptic firing

rate term rj(t{Dt) in the governing equation for the activation

hi(t) of the postsynaptic cell i as follows

t
dhi(t)

dt
~{hi(t)zwij(t)rj(t{Dt): ð3Þ

We assume that the synaptic weight wij from the presynaptic cell

j to the postsynaptic cell i is modified by a Hebbian-like associative

learning rule, which depends multiplicatively on the arrival of

chemical signals representing the firing of the presynaptic and

postsynaptic cells.

It is also assumed that the chemical signals reflecting the firing

of the postsynaptic cell i arrive instantaneously at the synapse wij .

Thus, the rate of change of the synaptic weight wij at time t will be

dependent on the current value of the postsynaptic cell firing rate

ri(t).

In contrast, the chemical signals reflecting the firing of the

presynaptic cell j will take Dt to propagate along the axon from the

presynaptic cell j to the synapse wij . Therefore, we assume that the

rate of change of the synaptic weight wij will depend on the firing

rate of the presynaptic cell j at a time Dt in the past, that is

rj(t{Dt).

Consequently, the synaptic weight wij is updated according to

the product of the terms ri(t) and rj(t{Dt) as follows

dwij(t)

dt
~kri(t)rj(t{Dt) ð4Þ

where k is a constant learning rate, and r(t) is a sigmoid function

of the activation h(t) given above in equation (2).

Equations (3) and (4) arise together naturally by assuming the

existence of an axonal delay Dt in the transmission of chemical

signals that reflect the firing of the presynaptic cell j. These

equations allow the presynaptic and postsynaptic cells to learn a

temporally delayed association. That is, if, during learning, the

postsynaptic cell was active Dt after the presynaptic cell was active,

i.e. so that the product ri(t)rj(t{Dt) is large, then the presynaptic

cell learns to stimulate the postsynaptic cell at a time Dt in the

future. (Given that the signals still take Dt to travel from the

presynaptic cell to the postsynaptic cell after learning, due to the

Dt time delay in the governing equation for the postsynaptic cell

activation hi.) In this way, the correct time intervals between cell

activities can be learned and replayed by cells in the model. This is

essential for the model to able to replay the temporal sequence of

cell activity at the speed that was experienced during learning.

Conversely, if the presynaptic cell is active after the postsynaptic

cell, then there will be no potentiation of the synaptic connection.

Furthermore, if the weight vector of the postsynaptic cell is

normalized as described for the full model below, then this will

tend to reduce the connection strength. We note that the synaptic

learning rule governing weight adaptation is a standard Hebbian

rule normally written without the (t{Dt) shown in the preceding

equation, which merely draws attention to the fact that the

presynaptic firing rate takes time Dt to travel to the postsynaptic

cell.

The operation of the full network model. Next, we

consider the simple two-cell model integrated into the full two-

layer path integration neural network architecture shown in

Figure 2(b). The left layer of neurons may be considered to

correspond to a ring of head direction cells, while the right

neuronal layer corresponds to a ring of combination cells

representing specific combinations of head direction and angular

velocity. There are feedforward synaptic connections from the

head direction cells to the combination cells, and feedback

connections from the combination cells to the head direction cells.

In the full model, during learning in the light, the activity of the

head direction cells is driven strongly by visual input. That is, a

packet of activity, corresponding to visual input representing the

current head direction of the animal, is imposed on the network of

head direction cells. The location of this packet of visually

stimulated activity within the network of head direction cells is

shifted to match the rotation of the animal. In contrast, the firing

of the combination cells is driven purely by feedforward inputs

from the head direction cells (as well as rotation cells considered

later), with competitive lateral inhibition between the combination

cells mediated by inhibitory interneurons.

Temporally-delayed associative learning is achieved over fixed

time delays Dt for both the feedforward and feedback connections

between the network of head direction cells and the network of

combination cells.

During training in the light, the network will learn an

association in the feedforward connections over a period Dt from

the subset of head direction cells active at time t to the subset of

combination cells that are activated at time tzDt by the

feedforward inputs from the head direction cells. The layer of

combination cells operates as a competitive learning network, with

different random subsets of combination cells learning to respond

to different clusters of head direction cells. The learning in the

Accurate Path Integration of Head Direction
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feedforward connections to the combination cell layer is thus a

form of unsupervised competitive learning [19,32].

Similarly, during training in the light, the network will learn an

association in the feedback connections over a period Dt from the

subset of combination cells that are activated at time tzDt to the

subset of head direction cells that are driven by the external visual

input at time tz2Dt. Because the firing of the head direction cells

is imposed by strong visual input during training, the learning in

the feedback connections to the head direction cell layer is a form

of supervised pattern association learning [19,32].

If the agent is moving with angular velocity
dh

dt
, then over the

time 2Dt it takes for the signal from the head direction cells to be

propagated to the combination cells and back to a new set of head

direction cells, the agent will have rotated 2Dt
dh

dt
. Therefore, the

overall effect of learning in the feedforward and feedback

connections is as follows. The network learns that an activity

pattern in the head direction cell network at time t1 representing a

particular head direction h1 should stimulate (via the network of

combination cells) a new pattern of activity in the head direction

cell network at time t2~t1z2Dt, representing a later head

direction h2~h1z2Dt
dh

dt
. This kind of associative learning over

fixed time intervals enables the model to learn the correct velocity

for updating the packet of neural activity in the head direction cell

network, and thus allows path integration to occur at the correct

speed.

In Figure 2, cells 1, 2 and 3 represent a particular three-cell

synaptic pathway after training has occurred: cell 1 ? cell 2 ? cell

3. This three-cell pathway illustrates the effect, depicted in

Figure 2c, that signal transmission delays of Dt between cells 1

and 2, and cells 2 and 3, have in terms of enabling a precise

association to be learned between a cell (cell 1) representing the

head direction of the animal at time t, and a cell (cell 3)

representing the head direction of the animal at time tz2Dt. That

is, after training, the full network performs path integration by

propagating time-delayed signals from the head direction cell layer

to the combination cell layer, and then back again to the head

direction cell layer. Previous neural network models of the path

integration of head direction [8–11,13] require an asymmetric

driving input to the ring of head direction cells in order to shift the

packet of head direction cell activity through the head direction

cell network and thus update the internal representation of current

head direction. The new model proposed in this paper also

functions by self-organizing an asymmetric driving input to the

ring of head direction cells, but the novel functionality of this new

model is that, due to the transmission delays Dt, this asymmetric

Figure 2. Architecture and operation of a simple two-cell model and its relationship to a larger many-cell model. a) In the simple two-
cell model, a presynaptic cell 1 is connected to a postsynaptic cell 2. The propagation of signals from the presynaptic cell 1 to the postsynaptic cell 2
is subject to a transmission delay of duration Dt. b) The simple two-cell model integrated into the full two-layer path integration neural network with
reciprocal synaptic connections between the two layers. The left layer of neurons may be considered to correspond to a ring of head direction cells,
while the right layer corresponds to a ring of combination cells that represent specific combinations of head direction and angular velocity.
Propagation of signals from the head direction cell layer to the combination cell layer, e.g. from cell 1 to cell 2, is subject to a transmission delay of
duration Dt. Propagation of signals from the combination cell layer to the head direction cell layer, e.g. from cell 2 to cell 3, is also subject to a
transmission delay of duration Dt. c) The time course of the firing profiles of cells 1, 2 and 3 during path integration after training has taken place.
Consider a three-cell synaptic pathway, cell 1 ? cell 2 ? cell 3. The transmission delay of Dt in the propagation of signals from cell 1 to cell 2 ensures
that if the centre of mass of the firing profile of cell 1 occurs at time t, then the centre of mass of the firing profile of cell 2 will occur at time tzDt.
Similarly, the transmission delay Dt in the propagation of signals from cell 2 to cell 3 ensures that the centre of mass of the firing profile of cell 3 will
occur at time tz2Dt.
doi:10.1371/journal.pone.0058330.g002

Accurate Path Integration of Head Direction
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driving input to the head direction cell ring is now temporally

precise. That is, the transmission delays Dt allow the learning of an

association between head directions occurring at different points in

time, and this asymmetry allows for the accurate replay of the

correct sequence of head directions in the absence of visual input,

i.e. the path integration of head direction.

Implementation of the Model for Simulations
The activation hHD

i (t) of head direction cell i in the model at

time t is governed by

t
dhHD

i (t)

dt
~{hHD

i (t)zei(t)

{
1

NHD

X
j

~wwHDrHD
j (t)

z
w1

CHD?HD

X
j

w1
ij(t)r

HD
j (t)

z
w2

CCOMB?HD

X
j

w2
ij(t)r

COMB
j (t{Dt)

{IEXTERN ð5Þ

where the activation hHD
i (t) is driven by the following terms.

The term {hHD
i (t) is a decay term such that, in the absence of

further presynaptic input, the activation level of the postsynaptic

head direction cell will decay to zero according to the time

constant t.

Figure 3. The recurrent synaptic weights w1 within the network of Head Direction (HD) cells after training with the Hebbian
associative learning rule (11) and weight normalization (13). These results are from a simulation with an axonal conduction delay of 100 ms,
and a rotational velocity during training of 1800=sec (all other parameters are as given in Table 1). Each of the four plots shows the learned synaptic
weights to a different postsynaptic HD cell from the other 500 presynaptic HD cells in the network. In the plots, the 500 presynaptic HD cells are
arranged according to where they fire maximally in the head-direction space of the agent when visual input is available. For each plot, a dashed
vertical line indicates the presynaptic HD cell with which the postsynaptic HD cell has maximal w1 synaptic weight. In all plots, the synaptic weight
profile is symmetric about the presynaptic HD cell with maximal synaptic strength, and this symmetry helps to support a stable packet of HD cell
activity during testing in the absence of visual input.
doi:10.1371/journal.pone.0058330.g003
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The term
P

j ~wwHDrHD
j (t) represents inhibitory feedback within

the head direction cell network, where the summation is

performed over all presynaptic head direction cells j, ~wwHD is a

global constant describing the effect of inhibitory interneurons

within the network of head direction cells, and NHD is the total

number of head direction cells in the model.

The term
P

j w1
ij(t)r

HD
j (t) represents excitatory feedback within

the layer of head direction cells, where the summation is over those

presynaptic head direction cells that have excitatory synapses onto

the postsynaptic head direction cell i. The term rHD
j (t) is the

presynaptic firing rate of head direction cell j, and w1
ij is the

excitatory (positive) synaptic weight from presynaptic head

direction cell j to postsynaptic head direction cell i. The scaling

factor
w1

CHD?HD
controls the overall strength of the recurrent

inputs to the network of head direction cells, where w1 is a

constant, and CHD?HD is the number of synapses onto each

postsynaptic head direction cell from the presynaptic head

direction cells.

In the absence of visual input, the key term driving the head

direction cell activations is a sum of inputs from the presynaptic

combination cells
P

j w2
ij(t)r

COMB
j (t{Dt), where the summation is

performed only over the subset of combination cells that have

excitatory synapses onto the postsynaptic head direction cell i. The

firing rate rCOMB
j (t{Dt) is subject to a delay of Dt in transmission

from presynaptic combination cell j to postsynaptic head direction

cell i, and w2
ij(t) is the strength of the synapse between presynaptic

combination cell j and postsynaptic head direction cell i. The

scaling factor
w2

CCOMB?HD
controls the overall strength of the

combination cell inputs, where w2 is a constant, and CCOMB?HD is

the number of synapses onto each postsynaptic head direction cell

from the presynaptic combination cells.

The term IEXTERN is a constant that represents external

feedforward inhibition to the head direction cell network: this is

necessary during the learning phase to ensure that, during the

presence of visual input, only a small subset of head direction cells

(those representing head directions nearby in the head-direction

space) are active at any one point in time, i.e. the standard

deviation of the activity packet remains small. In the absence of

external visual input, during the testing phase, the term IEXTERN is

set to zero.

The visual input to the postsynaptic head direction cell i is

represented by the term ei(t). This visual input carries information

about the current head direction of the agent, and when visual

cues are available, the term ei(t) dominates other excitatory inputs

to postsynaptic head direction cell i and forces this head direction

cell to respond best to a particular head direction of the agent.

Each head direction cell is assigned a unique preferred head

direction in the range 00{3600, and the current visual input to

postsynaptic head direction cell i is set to the following Gaussian

response profile

eHD
i ~le

{(sHD
i

)2=2(sHD)2 ð6Þ

where sHD
i is the difference between the actual head direction x of

the agent and the preferred head direction xi for head direction

cell i, l is a scaling factor expressing the strength of the non-

modifiable visual input synapses onto the postsynaptic head

direction cells, and sHD is the standard deviation. For each

postsynaptic head direction cell i, the difference sHD
i is given by

sHD
i ~MIN(jxi{xj,360{jxi{xj): ð7Þ

The combination cells self-organize their firing responses

through competitive learning [32,40]. The layer of combination

cells thus operates as a competitive network. The activation

hCOMB
i (t) of postsynaptic combination cell i at time t is governed

by

t
dhCOMB

i (t)

dt
~{hCOMB

i (t)

{
1

NCOMB

X
j

~wwCOMBrCOMB
j (t)

Table 1. Simulation parameter values.

Network Parameters

No. HD Cells 500

No. COMB Cells 1000

No. ROT Cells 500

No. w1 synapses onto each HD Cell 500

No. w2 synapses onto each HD Cell 1000

No. w3 synapses onto each COMB Cell 25

No. w4 synapses onto each COMB Cell 500

~wwHD 250

~wwCOMB 50

IEXTERN 90

sHD 200

Learning Rates k1 , k2,k3,k4 0.1

t 1.0 ms

l 100.0

q1 3:75|103

q2 2:5|103

q3 1:25|103

q4 4|102

HD Sigmoid Transfer Function Parameters

a 0.0

b 0.1

COMB Sigmoid Transfer Function Parameters

a 10.0

b 0.3

Training Parameters

No. Training Epochs 50

Speed of Rotation (Experiments 1 & 3) 1800/s

Speed of Rotation (Experiments 2 & 4) 3600/s

HD = Head Direction. COMB = Combination. ROT = Rotational Velocity.
Values are constant across all experiments except where noted.
doi:10.1371/journal.pone.0058330.t001
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z
w3

CHD?COMB

X
j

w3
ij(t)r

HD
j (t{Dt)

z
w4

CROT?COMB

X
j

w4
ij(t)r

ROT
j (t) ð8Þ

with the terms defined as follows.

The term
P

j ~wwCOMBrCOMB
j (t) represents inhibitory feedback

within the combination cell network, where the summation is

performed over all presynaptic combination cells j, ~wwCOMB is the

global lateral inhibition constant describing the effect of inhibitory

interneurons within the combination cell network, and NCOMB is

the total number of combination cells in the model.

The term
P

j w3
ij(t)r

HD
j (t{Dt) is the input from the head

direction cells, where the summation is performed only over the

subset of presynaptic head direction cells that have excitatory

synapses onto the postsynaptic combination cell i. The firing rate

rHD
j (t{Dt) is delayed by Dt in transmission from the presynaptic

head direction cell j to the postsynaptic combination cell i, and

w3
ij(t) is the strength of the synapse between presynaptic head

direction cell j and postsynaptic combination cell i. The scaling

factor
w3

CHD?COMB
controls the overall strength of the inputs from

the head direction cells, where w3 is a constant, and CHD?COMB is

the number of synapses onto each postsynaptic combination cell

from the presynaptic head direction cells.

The term
P

j w4
ij(t)r

ROT
j (t) is the input from the rotational

velocity cells, where the summation is performed over the subset of

presynaptic rotational velocity cells j that have excitatory synapses

onto the postsynaptic combination cell i. The firing rate of

presynaptic rotational velocity cell j is given by rROT
j (t), and w4

ij(t)

is the corresponding strength of the synapse from this cell. The

scaling factor
w4

CROT?COMB
controls the overall strength of the

inputs from the rotational velocity cells, where w4 is a constant,

and CROT?COMB is the number of synapses onto each postsyn-

aptic combination cell from the presynaptic rotational velocity

cells. Activity within the combination cell network is driven by the

head direction cell network if, and only if, the rotational velocity

cells are also active. If the rotational velocity cells cease firing, i.e.

the agent is stationary, then the activity in the combination cell

network decays to zero according to the term {hCOMB
i (t) and the

time constant t.

The firing rates rHD
i (t) and rCOMB

i (t) of postsynaptic head

direction cell i and postsynaptic combination cell i respectively are

determined from the activations hHD
i (t) and hCOMB

i (t) of these cells

and the sigmoid activation function given in equation (2). For a

postsynaptic combination cell i, the threshold a is set to a high

value to ensure that, after self-organization through competitive

learning, each individual postsynaptic combination cell i will

function like a logical AND gate. That is to say that temporally

conjunctive inputs from the presynaptic head direction cells and

the presynaptic rotational velocity cells are required in order for

the postsynaptic combination cells to fire. Because the postsynaptic

head direction cells are already selective for a particular head

direction, there is no requirement to set the threshold a to a high

value in the sigmoid activation function for the head direction

cells.

The synaptic weights w3
ij(t) from the presynaptic head direction

cells to the postsynaptic combination cells are subject to a delay Dt

in the transmission of the signal from presynaptic head direction

cell j to postsynaptic combination cell i, and are updated by a local

associative Hebb rule as follows

dw3
ij(t)

dt
~k3rCOMB

i (t)rHD
j (t{Dt) ð9Þ

where k3 is the learning rate, rCOMB
i (t) is the instantaneous firing

rate of postsynaptic combination cell i, and rHD
j (t{Dt) is the time-

delayed firing rate of presynaptic head direction cell j.

Similarly, the synaptic weights w2
ij(t) from the presynaptic

combination cells to the postsynaptic head direction cells are

subject to a delay Dt in the transmission of the signal from

presynaptic combination cell j to postsynaptic head direction cell i,

and are updated as follows

dw2
ij(t)

dt
~k2rHD

i (t)rCOMB
j (t{Dt) ð10Þ

where k2 is the learning rate, rHD
i (t) is the instantaneous firing rate

of postsynaptic head direction cell i, and rCOMB
j (t{Dt) is the time-

delayed firing rate of the presynaptic combination cell j.

The excitatory recurrent synaptic weights w1
ij(t) within the layer

of head direction cells incorporate instantaneous signal transmis-

sion between presynaptic head direction cell j and postsynaptic

head direction cell i, and are therefore not subject to a time delay

Dt in signal transmission. The weights are updated as follows

dw1
ij(t)

dt
~k1rHD

i (t)rHD
j (t) ð11Þ

where k1 is the learning rate, rHD
i (t) is the instantaneous firing rate

of the postsynaptic cell i, and rHD
j (t) is the instantaneous firing rate

of the presynaptic cell j.

The synaptic weights w4
ij(t) from the presynaptic rotational

velocity cells to the postsynaptic combination cells incorporate

instantaneous signal transmission between presynaptic rotational

velocity cell j and postsynaptic combination cell i. The weights are

updated as follows

dw4
ij(t)

dt
~k4rCOMB

i (t)rROT
j (t) ð12Þ

where k4 is the learning rate, rCOMB
i (t) is the instantaneous firing

rate of postsynaptic combination cell i, and rROT
j (t) is the

instantaneous firing rate of presynaptic rotational velocity cell j.

All synaptic weights w1
ij(t), w2

ij(t), w3
ij(t), and w4

ij(t) are

renormalized by rescaling after updating to ensure that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

(wn
ij(t))

2

s
~1 ð13Þ

where the sum is over all presynaptic cells j. Such a renormaliza-

tion process may be achieved in biological systems through

synaptic weight decay [19,41]. The renormalization helps to

ensure that the learning rules are convergent in the sense that the

synaptic weights settle down over time to steady values, i.e. the

weights do not grow unbounded.

During training in the presence of visual input, the agent rotates

on the spot and the synaptic connections are established as follows.
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Visual input drives the network of head direction cells according to

Gaussian head direction related tuning profiles. The combination

cell network is driven by inputs from the head direction cells and

the rotational velocity cells. The synaptic weights w1
ij , w2

ij , w3
ij , and

w4
ij are updated according to the simple and local learning rules

discussed above. During training, the synapses onto the postsyn-

aptic combination cells self-organize using competitive learning to

enable the combination cells to learn to represent combinations of

particular head directions and rotational velocities. That is, the

combination cells learn to reflect the current head direction of the

agent, but are most active when the agent is rotating. At the same

time, the model is able to learn to perform velocity path

integration of head direction by associating presynaptic head

direction cell activity Dt in the past with current postsynaptic

combination cell activity, and associating presynaptic combination

cell activity Dt in the past with current postsynaptic head direction

cell activity. Thus, considering the synaptic pathway between a

head direction cell (HD1), a combination cell (COMB), and a

second head direction cell (HD2), so that we have HD1 ? COMB

? HD2, the firing of HD1 at time t will produce firing in COMB

at time tzDt, which in turn will produce firing in HD2 at time

tz2Dt. The network therefore learns to associate a head direction

h1 occurring at time t with a head direction h2 occurring at time

tz2Dt. In this manner, the model learns to update the packet of

head direction cell activity using inputs from the combination cell

network.

Training and Testing Protocol
In this paper, we do not try to explain how head direction cell

firing properties develop in the presence of visual input: we only

seek to explain how the head direction cell system learns to

accurately perform the path integration of head direction in the

dark. Therefore, during the initial learning phase in the light, we

simply impose head direction cell-like firing properties on the head

direction cells via hard-wired visual inputs ei(t). During training,

the agent is simulated with visual input available and the visual

input changes as the agent rotates through 3600, reflecting the

changing head direction of the agent. The rotational velocity of

the agent is simulated by means of updating the external visual

input ei(t) to the network of head direction cells, such that the

angular position of the external visual input rotates through 3600

in constant increments. In order to keep the computational

expense of the simulations low, we only train and test the model on

one rotational speed at a time in both clockwise and counter-

clockwise directions. We believe that, in principle, the model

should be able to cope with learning multiple rotational speeds in

both directions of rotation in the same set of synaptic weight

matrices.

One clockwise rotation of the agent through consecutive

positions 00{3600, followed by one counter-clockwise rotation

of the agent through consecutive positions 3600{00, constitutes an

epoch of training. During the clockwise rotation, half of the

rotational velocity cells are set to have a firing rate of 1, with the

remaining half of the rotational velocity cells set to a firing rate of

0. The rotational velocity cells with non-zero firing rates thus

signal clockwise rotation. During the counter-clockwise rotation,

the rotational velocity cells that signal clockwise rotation are set to

have a firing rate of 0, and the remaining half of the rotational

velocity cells are set to have a firing rate of 1. The rotational

velocity cells with non-zero firing rates thus signal counter-

clockwise rotation. In total, 50 training epochs are performed.

At the start of the training phase, the synaptic weights w1
ij , w2

ij ,

w3
ij , w4

ij are initialized to random positive values. As the training

phase progresses, the changing activation levels and firing rates of

the head direction cells and combination cells are simulated

according to equations (5), (8), and (2). The synaptic weights w3
ij

and w2
ij are updated according to equations (9) and (10)

respectively, and the synaptic weights w1
ij and w4

ij are updated

according to equations (11) and (12). All synaptic weights undergo

renormalization according to equation (13). In this way, the model

learns, through self-organization, to perform accurate path

integration of head direction.

Upon completion of the training phase, the simulation

continues with the testing phase. The activation levels and firing

rates of all cells in the model are set to zero. The agent is then

orientated to an initial head direction and simulated with visual

input available, but no rotational velocity cells active, for a period

of 1 second. The visual input is then removed by setting all ei

terms to zero, and the agent then remains at the initial head

direction for a period of a further 1 second. The purpose of this

first part of the testing phase is to allow a stable packet of activity,

representing the initial head direction, to develop in the head

direction cell continuous attractor network.

After this, the activations and firing rates of all cells in the model

are recorded. The agent remains at the initial head direction for a

further period of 1 second. The firing rates of the rotational

velocity cells that signal clockwise rotation are then set to 1 for a

period of 1 second. The firing rates of the rotational velocity cells

that signal counter-clockwise rotation remain set to 0 during this

time period. The clockwise rotational velocity cells are turned on

to verify that the model has learned to perform the path

integration of head direction in a clockwise direction of rotation.

That is, that the model can used idiothetic signals, i.e. rotational

velocity signals, in the absence of visual input in order to update

the internal representation of head direction.

The firing rates of all the rotational velocity cells are then set to

0 and remain in this state for a period of 1 second. This is in order

to establish that the head direction cell continuous attractor

network is functioning correctly, i.e. can maintain a stable and

persistent packet of activity at any head direction within the

continuum of head directions.

The firing rates of the rotational velocity cells that signal

counter-clockwise rotation are then set to 1 for a period of 1

second. The firing rates of the rotational velocity cells that signal

clockwise rotation remain set to 0 during this period. This part of

the testing phase verifies that the model can perform the path

integration of head direction in a counter-clockwise direction of

rotation.

The firing rates of all the rotational velocity cells are then set to

0 for a final period of 1 second. This final period of the testing

phase again verifies that the head direction cell continuous

attractor network can maintain a stable and persistent packet of

activity at any head direction, i.e. the continuous attractor network

possesses a continuum of stable states. Theoretically, because the

model should learn to perform the path integration of head

direction at the same speed in both the clockwise and counter-

clockwise directions of rotation, the position of the head direction

cell continuous attractor activity packet at the end of the testing

phase should be the same as the position of the head direction cell

continuous attractor activity packet at the start of the testing phase.

Throughout the testing phase no learning is permitted, i.e.

equations (9), (10), (11), (12), and (13) are not simulated and the

synaptic weights w1
ij , w2

ij , w3
ij , and w4

ij are not updated.

For the duration of both the training and the testing phases, all

differential equations that are currently being simulated are
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approximated by Forward Euler finite difference schemes with a

timestep of 0.0001 seconds.

Results

Demonstration of Core Model Performance
In this experiment, the model was simulated with the agent

rotating at a velocity of 1800/s during training in the presence of

visual input. The axonal conduction delays Dt were set to 100ms.

All other parameters for the model are given in Table 1. The

model was then tested in the absence of visual input to determine

if, through learning, the model could update a packet of head

direction cell activity at the same speed as the rotational velocity

during training. The results from the testing phase are shown in

Figures 3, 4, 5, 6, 7 and Table 2.

Figure 3 shows the recurrent w1 synaptic weights within the

head direction cell network after training with the Hebbian

associative learning rule (11) and weight normalization (13). Each

of the plots shows the learned synaptic weights to a different

postsynaptic head direction cell from the 500 presynaptic head

direction cells, with the presynaptic head direction cells arranged

in the plots according to where they fire maximally in the head-

direction space of the agent when visual input is available. In each

plot, a dashed vertical line marks the presynaptic head direction

cell with which the postsynaptic head direction cell has maximal

w1 synaptic weight. For all plots, the synaptic weight profile across

the presynaptic head direction cells is clearly symmetric about the

individual presynaptic head direction cell with maximal w1

synaptic strength. This symmetry ensures that a stable packet of

head direction cell activity can be maintained in the head direction

cell network when the agent is stationary in the absence of visual

input.

Figure 4 displays the synaptic weights w3 from the head

direction cell network to the combination cell network after

competitive learning with the time-delayed Hebbian associative

learning rule (9) and weight normalization (13). The individual

plots show the learned synaptic weights to a different postsynaptic

combination cell from the 500 presynaptic head direction cells,

with the presynaptic head direction cells arranged in the plots

according to where they fire maximally in the head-direction space

of the agent in the presence of visual input. A dashed vertical line

indicates the presynaptic head direction cell with which the

postsynaptic combination cell has maximal w3 synaptic strength.

For the w3 synapses, each postsynaptic combination cell received

synapses from only 5% of the presynaptic head direction cells. This

diluted connectivity was implemented to preserve competitive

learning in the combination cell network and ensure that

individual combination cells learn to respond to a combination

of a particular head direction and rotational velocity. If full w3

connectivity is implemented then Continuous Transformation

(CT) learning occurs [42]. Under a CT learning paradigm,

individual postsynaptic combination cells learn to respond to all

possible head directions due to the continuity of the head-direction

space and the overlapping nature of the head direction cell

receptive fields. Previous research by the authors has shown a

diluted w3 connectivity of 5% is sufficient to avoid any CT

learning effect in the w3 synapses [13]. With the exception of this

diluted connectivity, each of the synaptic weight profiles is centred

on a region of similarly-tuned head direction cells and is

approximately symmetric about the presynaptic head direction

cell with maximal w3 weight. The symmetric profile demonstrates

that individual postsynaptic combination cells have learned to be

preferentially stimulated by a subset of presynaptic head direction

cells representing a preferred head direction. Because the model

parameters w3, w4, and the threshold a of the combination cell

sigmoid transfer function are tuned to ensure that a strong

rotational velocity cell input through the w4 synapses is also

necessary to fire individual combination cells, these cells can be

said to learn to respond to combinations of particular head

directions and clockwise or counter-clockwise rotational velocity.

In Figure 5, the plots display the synaptic weights w2 from the

combination cell network to the head direction network after

learning with the time-delayed Hebbian associative learning rule

(10) and weight normalization (13). In each plot, the learned

synaptic weights are shown from a different presynaptic combi-

nation cell to the 500 postsynaptic head direction cells. As in

Figures 3 and 4, the postsynaptic head direction cells are arranged

according to where they fire maximally in the head-direction space

of the agent in the presence of visual input. The dashed vertical

lines indicate the postsynaptic head direction cell with which the

presynaptic combination cell has maximal w3 weight as shown in

Figure 4. In all four plots, the w2 synaptic weight profile is

asymmetric about the postsynaptic head direction cell with

maximal w3 weight. This asymmetry shows that the presynaptic

combination cell has learned to preferentially stimulate a

postsynaptic head direction cell representing a different head

direction to the head direction cell from which the combination

cell receives maximal w3 stimulation. Thus, the asymmetry reflects

the fact that, during training in the presence of visual input, the

current head direction of the agent will have changed in the time it

takes for a signal to travel from the head direction cell network

along the w3 synapses to the combination cell network, and back

to the head direction cell network through the w2 synapses. The

w2 and w3 axonal conduction delays therefore act as a timing

mechanism that enable individual combination cells, through

learning, to update the packet of activity in the head direction cell

network and reflect the changing head direction of the agent. The

w2 and w3 synapses are thus both necessary and sufficient to allow

the packet of head direction cell activity to update at the same

speed as the agent is rotating.

The plots in Figure 6 display the w4 synaptic weights from the

layer of rotational velocity cells to the combination cell network

after learning with the Hebbian associative learning rule (12) and

weight normalization (13). Each of the plots shows the learned

synaptic weights to a different postsynaptic combination cell from

the 500 presynaptic rotational velocity cells. Because the firing

profile of the presynaptic rotational velocity cells is binary, with

each cell signalling that the agent is either rotating in a given

direction or is not, the w4 synaptic weight profiles can be described

as a step function of the presynaptic rotational velocity cell firing

rate. As can be seen in the plots, each postsynaptic combination

cell receives positive synaptic weights from the subset of exactly

250 presynaptic rotational velocity cells that signal either clockwise

or counterclockwise rotation (but not both subsets). Thus, the

postsynaptic combination cells have learned to be maximally

stimulated by a particular head direction and a particular

rotational velocity and, in conjunction with the axonal conduction

delays, learn to stimulate a different postsynaptic head direction

cell to the presynaptic head direction cell from which they receive

maximal w3 stimulation; but only when the presynaptic rotational

velocity cells are co-firing with the head direction cells.

The firing rates of the head direction, combination, and

rotational velocity cells are shown in the plots in Figure 7. The top

left plot displays the firing rates of the head direction cells during

training of the model. Throughout training, the activity in the

head direction cells is driven by the presence of external visual
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input. During the time interval 0.0–2.25 seconds, the agent rotated

in a clockwise direction. During the time interval 2.25–4.5

seconds, the agent rotated in a counter-clockwise direction. The

top right plot displays the firing rates of the head direction cells

during testing in the absence of visual input. During the time

interval 0.0–1.0 seconds, there was no firing in the rotational

velocity cells (bottom left plot) and consquently no firing in the

combination cells (bottom right plot); thus there was a stable

packet of head direction cell activity supported by the w1 recurrent

synapses. During the time interval 1.0–2.0 seconds, the 250

rotational velocity cells representing clockwise rotation became

active (bottom left), which in turn stimulated an activity packet in

the network of combination cells through the w4 synapses in

conjunction with the head direction cell input through the w3

synapses (bottom right). Due to the axonal conduction delays Dt

and the asymmetry in the weight profiles of the w2 synapses

(compared to the w3 synapses), the activity packet in the

combination cell network stimulated head direction cells repre-

senting head directions further along in the clockwise direction of

rotation. Thus the head direction cell activity packet moved

through the head-direction space of the agent, and the model

performed velocity path integration of head direction. During the

time interval 2.0–3.0 seconds, the rotational velocity cells, and thus

the combination cells, were quiescent in their firing and a stable

packet of activity remained in the head direction cell network.

During the time interval 3.0–4.0 seconds, the 250 rotational

velocity cells representing counter-clockwise rotation became

active (bottom left) and thus stimulated an activity packet in the

combination cell network (bottom right). In an identical mecha-

nism to that for clockwise rotation, the model thus performed

velocity path integration of head direction, but this time in the

counter-clockwise direction of rotation. During the time interval

Figure 4. The synaptic weights w3 from the Head Direction (HD) cell network to the Combination (COMB) cell network after
competitive learning with the time-delayed Hebbian associative learning rule (9) and weight normalization (13). These results are
from a simulation with an axonal conduction delay of 100 ms, and a rotational velocity during training of 1800=sec (all other parameters are as given
in Table 1). Each of the four plots shows the learned synaptic weights to a different postsynaptic COMB cell from the 500 presynaptic HD cells. The
presynaptic HD cells are arranged in the plots according to where they fire maximally in the head-direction space of the agent when visual input is
available. For each plot, a dashed vertical line indicates the presynaptic HD cell with which the postsynaptic COMB cell has maximal w3 synaptic
weight. Except for the effects of diluted synaptic connectivity, each of the weight profiles is centred on a region of similarly-tuned HD cells, with a
profile that is approximately symmetric about the presynaptic HD cell with maximal synaptic strength. Thus, the learned w3 synaptic weights show
that individual COMB cells learn to receive maximal stimulation from particular head direction cells. Given that the model parameters w3, w4 , and the
threshold a of the COMB cell sigmoid transfer function are tuned to ensure that a strong rotational velocity cell input through the w4 synapses is also
needed in order to fire the COMB cells, these cells in fact learn to respond to combinations of a particular head direction and clockwise or counter-
clockwise rotational velocity.
doi:10.1371/journal.pone.0058330.g004
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4.0–5.0 seconds, the rotational velocity and combination cells

ceased firing and again there was a stable packet of activity in the

head direction cell network.

In order to determine whether the model could perform velocity

path integration of head direction at the same speed during testing

compared to training, the speed of update of the head direction

cell activity packet was recorded. The measurement was taken

according to

speed~
p2{p1

t2{t1

����
���� ð14Þ

where p1 and p2 represent the start and end positions (in degrees)

of the packet of head direction cell activity respectively; and t1 and

t2 represent the time (in seconds) at which the start and end packet

positions were obtained. The packet positions were calculated as

follows

p~

P
i rihiP

i ri

ð15Þ

where ri is the firing rate of postsynaptic head direction cell i, and

hi is the preferred head direction for postsynaptic head direction

cell i in the presence of visual input.

Measurements of speed were taken for 0.5 seconds during both

the clockwise (1.25–1.75 seconds) and counter-clockwise (3.25–

3.75 seconds) periods of rotation in the testing phase. (We started

recording 0.25 seconds after the rotational velocity cells were

turned on because it takes time for signals to travel through the w2

synapses to update the head direction cells.)

Figure 5. The synaptic weights w2 from the Combination (COMB) cell network to the Head Direction (HD) cell network after learning
with the time-delayed Hebbian associative learning rule (10) and weight normalization (13). These results are from a simulation with an
axonal conduction delay of 100 ms, and a rotational velocity during training of 1800=sec (all other parameters are as given in Table 1). Each of the four
plots shows the learned synaptic weights from a different presynaptic COMB cell to the 500 postsynaptic HD cells. The postsynaptic HD cells are
arranged in the plots according to where they fire maximally in the head-direction space of the agent when visual input is available. For each plot, a
dashed vertical line indicates the postsynaptic HD cell with which the presynaptic COMB cell has maximal w3 synaptic weight as shown in Figure 4. In
each plot, the w2 synaptic weight profile is asymmetric about the postsynaptic HD cell with maximal w3 synaptic weight, indicating that the
presynaptic COMB cell preferentially stimulates an HD cell representing a different head direction to the HD cell from which the COMB cell receives
maximal w3 synaptic weight. This reflects the fact that the packet of HD cell activity will have moved through the head-direction space of the agent in
the time it takes for a signal to travel from the HD cells through the w3 synapses to the COMB cells, and back again to the HD cells through the w2

synapses. Thus, the axonal conduction delays in the w2 and w3 synapses act, through learning, as a timing mechanism that enables the update of the
packet of head-direction cell activity at the same speed as the agent is rotating.
doi:10.1371/journal.pone.0058330.g005
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Five simulations were conducted with the same model

parameters in each case except for different random synaptic

connectivity, and different random synaptic weight initialization.

Table 2 summarizes the statistics calculated on the results. The

mean speed of rotation across the five simulations was 144:10/s

(S.D. = 18:90/s) for the period of clockwise rotation, and 132:30/s

(S.D. = 19:00/s) for the period of counter-clockwise rotation. This

is compared to a true speed of 1800/s during training in the

presence of visual input. The standard deviations for both the

clockwise rotation and the counter-clockwise rotation indicate that

the measured speeds of rotation for the simulations showed a low

enough dispersion around the means to conclude that the model is

robust to different initial random synaptic weights and random

synaptic connectivity. To further compare the recorded speed

during testing to the speed enforced during training, a calculation

was carried out of the mean speed during testing as a percentage of

the speed during training. During the period of clockwise rotation,

the model updated the packet of head direction at a mean speed

that was 80:1% of the speed used during training. For the period of

counter-clockwise rotation, the model updated the activity packet

at a mean speed that was 73:5% of the speed during training. It

can be seen that the speeds recorded during testing are similar to

those experienced by the model during training. The network has

learned to achieve this automatically without careful hand-tuning

of a parameter specifically governing the speed, as was used by

[13]. However, while the speed at testing is a reasonable

approximation to the speed during training, it is also interesting

to note that the speeds during testing are regularly below those

imposed during training. In future work we will investigate what

architectural features contribute to this (*20%) underestimation

of the speed during path integration.

Model Performance with Different Conduction Delays
and Rotational Velocities

This experiment was conducted to investigate the effect of

simulating the model with values of either 100ms or 50ms for the

axonal conduction delays in the w2
ij and w3

ij synapses, and training

the model at rotational velocities of either 1800/s or 3600/s. All of

the other model parameters were as given in Table 1.

Figure 8 displays the firing rates of the head direction,

combination, and rotational velocity cells recorded from a model

implemented with axonal conduction delays of 100ms, and trained

at a rotational velocity of 3600/s. The conventions are the same as

Figure 6. The synaptic weights w4 from the layer of Rotational Velocity (ROT) cells to the Combination (COMB) cell network after
learning with the Hebbian associative learning rule (12) and weight normalization (13). These results are from a simulation with an axonal
conduction delay of 100 ms, and a rotational velocity during training of 1800=sec (all other parameters are as given in Table 1). Each of the four plots
shows the learned synaptic weights to a different postsynaptic COMB cell from the 500 presynaptic ROT cells. As the firing profile of the presynaptic
ROT cells is binary, the w4 synaptic weight profiles in the plots above can be described as a step function of the presynaptic ROT cell firing rate.
doi:10.1371/journal.pone.0058330.g006
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for Figure 7, and the interpretation is also the same. When the

same model is trained at twice the rotational velocity, the same

mechanism of a time-delayed w2 synaptic input to the postsynaptic

head direction cells from the presynaptic combination cells

stimulates head direction cells representing head directions further

along the current direction of rotation, and thus updates the

packet of head direction cell activity i.e. the model has learned to

perform velocity path integration of head direction (top right plot).

As the bottom left and bottom right plots display, the current

model also operates in the same way as the model reported in the

previous section by requiring that the head direction cell input

through the w3 synapses be temporally conjunctive with the

rotational velocity cell input through the w4 synapses, in order to

stimulate an activity packet in the combination cell network. When

there is no rotational velocity cell input, the firing in the

combination cell network decays to zero, and a stable packet of

activity is maintained in the head direction cell network (top right

plot).

Measurements of the speed of update of the packet were taken

according to equations (14) and (15). Measurements were taken

across a 0.5 second interval during periods of both clockwise and

counter-clockwise rotation. Five simulations were conducted, with

identical model parameters except for different random synaptic

connectivity, and different random synaptic weight initialization.

The results from these simulations are summarized in Table 2.

The mean speed of rotation during the period of clockwise

rotation was 290:00/s (S.D. = 2:50/s), and for the period of

counter-clockwise rotation was 291:60/s (S.D. = 4:40/s). This is

compared to a true speed during training of 3600/s. It can be

concluded that the model is robust to changes in different random

Figure 7. Firing rates of Head Direction (HD), Combination (COMB) and Rotational Velocity (ROT) cells during training and testing.
These results are from a simulation with an axonal conduction delay of 100 ms, and a rotational velocity during training of 1800=sec (all other
parameters are as given in Table 1). a) Top Left: Firing rates in the network of 500 HD cells during the 4.5 seconds of training, with the HD cells driven
by visual input (0.0–2.25 seconds: agent rotating clockwise; 2.25–4.5 seconds: agent rotating counter-clockwise). Top Right: Firing rates in the
network of 500 HD cells during the 5 seconds of testing in the absence of visual input. During the intervals 1.0–2.0 seconds, and 3.0–4.0 seconds, the
packet of HD cell activity moves through the head-direction space of the agent driven by presynaptic COMB cell firing. During other periods, the
packet of HD cell activity remains stationary and persistent due to quiescence in the presynaptic COMB cell firing. Bottom Left: Firing rates in the
layer of 500 ROT cells during the 5 seconds of testing in the absence of visual input (1.0–2.0 seconds: ROT cells representing clockwise rotation are
active; 3.0–4.0 seconds: ROT cells representing counter-clockwise rotation are active). Bottom Right: Firing rates in the network of 1000 COMB cells
during the 5 seconds of testing in the absence of visual input. In the interval 1.0–2.0 seconds, the COMB cells become active due to the firing of the
250 ROT cells representing clockwise rotation of the agent. In the interval 3.0–4.0 seconds, the COMB cells become active due to the firing of the 250
ROT cells representing counter-clockwise rotation of the agent. In all plots, regions of high firing are represented by darker shading. It can be seen
that the firing rates are rather binarized. That is, individual cells are either quiescent, or are maximally active with a firing rate of 1.0. b) The firing rates
of the HD cells recorded at two different points in time. The top plot shows the firing rates of the HD cells at 0.5 seconds, while the HD cell network is
maintaining a stable and persistent packet of activity in one location. The bottom plot shows the firing rates of the HD cells at 1.5 seconds, while the
packet of neural activity is being shifted through the HD cell network due to the driving influence of the active ROT cells and the presynaptic COMB
cells, i.e. during path integration. In both plots, the HD cell network firing profile is approximately Gaussian, reflecting the Gaussian profile of the
individual HD cell response profiles.
doi:10.1371/journal.pone.0058330.g007
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synaptic weights and different random synaptic connectivity. The

mean speed of the activity packet during testing as a percentage of

the rotational velocity during training was also calculated. During

the period of clockwise rotation, the mean speed was 80:5% of the

rotational velocity during training. For the period of counter-

clockwise rotation, the mean speed was 81:0% of the rotational

velocity during training. Similar to the model reported in the

previous section, it can be seen that the speeds recorded during

testing are a reasonable approximation to those experienced by the

model during training, although there is a (*20%) underestima-

tion. Moreover, the same model with the same parameter set is

able to learn two completely different speeds of rotational velocity

during training, and reproduce (within a small margin of error)

those speeds during testing.

The left plot of Figure 9 displays the firing rates of the head

direction cells recorded during the testing phase of a model

implemented with axonal conduction delays of 50ms, and trained

at a rotational velocity of 1800/s. The conventions are the same as

for the top right plots in Figures 7 and 8. The results demonstrate

that with a different axonal conduction delay, the model is still able

to maintain a stable packet of head direction cell activity when the

rotational velocity cells (and thus, the combination cells) are not

firing. Furthermore, when the subset of 250 rotational velocity

cells representing either clockwise or counter-clockwise rotation

are firing, then an activity packet in the combination cell network

is stimulated and drives the head direction cell activity packet in

the correct direction. The model has thus learned to perform

velocity path integration of head direction.

Five simulations with identical model parameters except for

different random synaptic connectivity, and different synaptic

weight initialization, were conducted and measurements of the

speed of update of the head direction cell activity packet were

taken according to equations (14) and (15). Table 2 summarizes

the results. The mean speed during the period of clockwise

rotation was 131:70/s (S.D. = 7:20/s), and was 111:30/s

(S.D. = 5:90/s) during the period of counter-clockwise rotation.

This is compared to a true speed during training of 1800/s. The

mean speed of rotation as a percentage of the rotational velocity

during training was calculated to be 73:1% for the period of

clockwise rotation, and 61:8% during the period of counter-

clockwise rotation. The speeds recorded during testing are

approximately those imposed on the model during training.

However, a comparison of these simulations and the simulations

conducted at the same rotational velocity but with an axonal

conduction delay of 100ms reveals no overlap in the mean values

or standard errors, which suggests a significant difference between

the results. A two-tailed Wilcoxon Rank-Sum test

(WS~21; p~0:01) revealed a statistically significant difference

Table 2. Speed of movement of the head direction cell activity packet during testing in the absence of visual input.

100 ms Delay; 1800/s Rotational Velocity

Clockwise Counter-Clockwise

Mean Speed 144:10/s 132:30/s

Standard

Deviation

18:90/s 19:00/s

Percentage 80:1% 73:5%

100 ms Delay; 3600/s Rotational Velocity

Clockwise Counter-Clockwise

Mean Speed 290:00/s 291:60/s

Standard

Deviation

2:50/s 4:40/s

Percentage 80:5% 81:0%

50 ms Delay; 1800/s Rotational Velocity

Clockwise Counter-Clockwise

Mean Speed 131:70/s 111:30/s

Standard

Deviation

7:20/s 5:90/s

Percentage 73:1% 61:8%

50 ms Delay; 3600/s Rotational Velocity

Clockwise Counter-Clockwise

Mean Speed 231:80/s 231:50/s

Standard

Deviation

7:90/s 7:70/s

Percentage 64:4% 64:3%

For all of the four experiments the results are taken from five simulation runs, each with different random synaptic connectivity and different random synaptic weight
initialization. The table inlines the mean speed of the activity packet across the five simulations during testing as calculated according to equations (14) and (15), the
standard deviation, and the mean speed of the packet as a percentage of the speed of rotation of the agent during training in the presence of visual input. In each case,
results are inlineed for both clockwise and counter-clockwise rotation of the activity packet during testing.
doi:10.1371/journal.pone.0058330.t002
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between the two sets of results and led us to reject the null

hypothesis that the results from the two experiments were drawn

from identical populations. Thus, the duration of the axonal delay

appears to be an important parameter affecting the accuracy of

path integration in the network.

The right plot of Figure 9 shows the firing rates of the head

direction cells recorded during the testing phase of a model

implemented with axonal conduction delays of 50ms, and trained

at a rotational velocity of 3600/s. It is clear from this figure that the

model has learned to perform velocity path integration of head

direction.

Measurements of the speed of update of the head direction cell

activity packet were taken according to equations (14) and (15),

across five simulations with identical model parameters except for

different random synaptic connectivity, and different random

synaptic weight initialization. The results are summarized in

Table 2.

The mean speed of rotation, calculated across five simulations

with identical model parameters but with different random

synaptic connectivity and different random synaptic weight

initialization, was 231:80/s (S.D. = 7:90/s) during the clockwise

rotation, and 231:50/s (S.D. = 7:70/s) during the counter-clockwise

rotation. This is compared to a true speed during training of 3600/
s. For the period of clockwise rotation the mean speed was

calculated to be 64:4% of the speed imposed during training, and

for counter-clockwise rotation it was 64:3%. Thus, the model

rotated at just under two-thirds (*64%) of the trained speed.

Comparing these simulations to the simulations conducted at the

same rotational velocity, but with an axonal conduction delay of

100 ms, reveals no overlap in the mean values, which suggests a

significant difference between the results. A two-tailed Wilcoxon

Rank-Sum test (WS~23; p~0:01) revealed a statistically signif-

icant difference between the two sets of results and led us to reject

the null hypothesis that the results from the two experiments were

drawn from identical populations.

A Distribution of Axonal Conduction Delays
The model described so far learns to perform path integration

by learning associations between changes in head direction over

fixed axonal transmission delays Dt on individual axons. All that is

required is that the same time delay Dt occurs in both the

activation equations (5) and (8), and the learning rules (9) and (10).

Because the association is learned across individual axons, in

theory, it should be possible for the model to operate successfully

with different transmission delays Dt on different axons. This

hypothesis is tested next by running the model with a uniform

distribution of different axonal delays, within the interval

1ms,100ms½ �, across different axons. The model was trained with

a rotational velocity of 3600/s.

Figure 10 displays the firing rates of the head direction cells

recorded during testing in the dark. It is clear from the plot that a

model implemented with a uniform distribution of axonal

conduction delays in the interval 1ms,100ms½ �, and trained with

a rotational velocity of 360o/s, can learn to perform path

integration of head direction.

The speed of update of the head direction cell activity is

displayed in Table 3. For the clockwise rotation, the mean speed of

the head direction cell activity packet update is 215:00/s

(S.D. = 6:50/s). For the counter-clockwise rotation, the mean

speed of packet update is 213:10/s (S.D. = 9:10/s). When the agent

rotates in the clockwise direction during testing, it achieves a mean

rotational speed that is 59:7% of the speed imposed during

training. For the counter-clockwise rotation, the mean speed is

59:2% of the speed imposed during training.

The model can thus learn to perform path integration of head

direction at approximately the speed imposed during training

when the model is implemented with a uniform distribution of

axonal conduction delays. This is an important result because it

demonstrates that the model has biological validity: it is much

more likely that there is a distribution of axonal conduction delays

in the brain, rather than a single value of the conduction delay that

is implemented across all synapses. The result is also important

because it shows that the model can function correctly across a

wide range of axonal conduction delays, from 1ms to 100ms.

Conduction Delays in One Direction
In the simulations presented so far in this paper, the models

have been implemented with axonal conduction delays in both the

w2 synapses from the presynaptic combination cells to the

postsynaptic head direction cells, and in the w3 synapses from

the presynaptic head direction cells to the postsynaptic combina-

tion cells. The model should still function correctly if implemented

with axonal conduction delays in only one set of the w2 or w3

synapses. This experiment explores the results of implementing

this model architecture.

Axonal Conduction Delays in the w2 Synapses Only. In

this version of the model, there are axonal conduction delays in the

w2 synapses only. Synaptic transmission through the w3 synapses is

now instantaneous with the firing of the presynaptic head direction

cells. The model was simulated with an imposed rotational velocity

of 360o/s, and an axonal conduction delay of 100ms. The network

parameters are given in Table 1.

The left-hand plot of Figure 11 displays the firing rates of the

head direction cells recorded during testing in the absence of visual

input. It is evident that a model implemented with axonal

conduction delays in the set of w2 synapses only can learn to

perform path integration of head direction when trained with a

rotational velocity of 360o/s.

When rotating in a clockwise direction, the mean speed of

update of the head direction cell activity packet is 227:5o/s

(S.D. = 5:0o/s). The results are given in Table 4. When rotating in

a counter-clockwise direction, the mean speed of update of the

head direction cell activity packet is 227:9o/s (S.D. = 3:6o/s). The

mean speed during clockwise rotation is 63:2% of the speed

imposed during training in the light. For the counter-clockwise

rotation, the mean speed is 63:3% of the speed imposed during

training.

Axonal Conduction Delays in the w3 Synapses
Only. This version of the model only has axonal conduction

delays in the set of w3 synapses. The model was simulated with the

network parameters given in Table 1, and trained at a rotational

velocity of 360o/s. The axonal conduction delay was set to 100ms.

The right-hand plot of Figure 11 displays the firing rates of the

head direction cells recorded during testing in the dark. The plot

clearly shows that a model implemented with axonal conduction

delays only in the w3 synapses between the presynaptic head

direction cells and the postsynaptic combination cells can still learn

to perform path integration of head direction.

When rotating clockwise in the absence of visual input, the

mean speed of the head direction cell activity packet is 237:2o/s

(S.D. = 4:8o/s). For the counter-clockwise rotation, the mean

speed is 247:7o/s (S.D. = 28:2o/s). The head direction cell activity

packet updates in a clockwise direction at a speed that is 65:9% of

the speed that is imposed during training. When rotating counter-

clockwise, the head direction cell activity packet updates at a speed

that is 68:8% of the speed imposed during training. These results

are given in Table 4.
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Figure 8. Firing rates of Head Direction (HD), Combination (COMB), and Rotational Velocity (ROT) cells during training and testing.
These results are from a simulation with an axonal conduction delay of 100 ms, and a rotational velocity during training of 3600=sec (all other
parameters are as given in Table 1). Conventions are as for Figure 7.
doi:10.1371/journal.pone.0058330.g008

Figure 9. Firing rates of Head Direction (HD) cells during testing. These results are from simulations with an axonal conduction delay of
50 ms, and rotational velocities during training of 1800=sec (Left plot), and 3600=sec (Right plot). Conventions are as for the top-right plots in Figures 7
and 8.
doi:10.1371/journal.pone.0058330.g009
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The results of this experiment demonstrate that the model can

still function correctly when implemented with axonal conduction

delays in only one set of the w2 or w3 synapses, but not both sets.

There is, however, a slight reduction in model performance in

comparison to the model simulated with axonal conduction delays

in both sets of synapses. The model is able to learn the correct

behaviour with a single set of axonal conduction delays because

those delays still provide a natural time interval over which

associations between different head directions can be learned by

the model. Thus, upon replay in the absence of visual input, path

integration of head direction is performed.

Conduction Delays are Vital for Path Integration
This experiment was conducted to demonstrate that a non-zero

value Dt for the axonal conduction delays is required if the model

is to successfully learn path integration of head direction. Dt was

set to 0ms, and the model was simulated with a rotational velocity

of 3600/s imposed during training.

Figure 12 displays the firing rates of the head direction cells

recorded during testing in the absence of visual input. It is clear

that the model fails to learn to perform path integration of head

direction when the axonal conduction delays Dt are set to 0ms.

This is because the activity profile in the postsynaptic combination

cell i will not be delayed through time from the activity profile of

the presynaptic head direction cell j. Because the axonal

conduction delays are set to 0ms in the current model, signal

transmission is instantaneous with the presynaptic cell firing. This

means that, in the current experiment, the current head direction

h1 will, after signal transmission to the combination cell layer and

back again to the head direction cell layer, become associated with

itself. That is, a head direction cell representing head direction h1

does not become associated with a head direction cell representing

head direction h2 occurring at some later time in the future.

Consequently, the model will not learn to perform path integration

of head direction.

The results of the current experiment also highlight the

difference between the current model and an earlier model of

velocity path integration of head direction reported by [13]. This

previous model does not incorporate any form of natural time

interval over which associations between head directions at

different times can be learned. In order to achieve accurate path

integration, the model of [13] instead requires the manual tuning

of a scaling factor controlling the strength of synaptic input to the

head direction cell continuous attractor network. Because there

are no axonal conduction delays in the previous model of [13], the

results of this current experiment serve to show that the axonal

conduction delays must be set to a non-zero value (e.g. 50ms) if

path integration is to be achieved in the current model without the

explicit manual tuning of a scaling factor. Thus, the axonal

conduction delays are vitally important to the functioning of the

current model.

Generalization and Robustness of the Model
Many previous neural network models that can perform velocity

path integration of head direction exhibit the property of

generalization [10–13]. That is, a linear increase in the magnitude

of the signal within the model that represents the angular velocity

of the head leads to a linear increase in the speed at which a packet

of head direction cell activity within the model moves through the

head-direction space.

The model we present in this paper operates in a different

manner, which offers robustness instead of such generalization.

After the model learns to perform the path integration of head

direction at a particular rotational velocity, increasing or

decreasing the firing rates of the rotational velocity cells will not

produce a corresponding increase or decrease in the velocity of the

head direction cell activity packet through the head-direction

space. This is because the model learns a specific association

between head direction h1 at a time t1 and a later head direction

h2 at a time t2~t1z2Dt. In effect, for each learned head

rotational velocity, the model learns a ‘‘look-up’’ table: given a

particular head direction, the learned synaptic weight matrices

dictate what the new head direction should be at a time t1z2Dt in

the future. Increasing or decreasing the firing rates of the

rotational velocity cells does not have any significant effect upon

the change in the head direction from t1 to t2.

Figure 10. The firing rates of the head direction (HD) cells
recorded during the testing phase. The rates are recorded from a
model implemented with a uniform distribution of axonal conduction
delays for w2 and w3 synapses within the interval from 1ms to 100ms.
The model was trained with a rotational velocity of 360o/s. Conventions
are as for the top-right plots in Figures 7 and 8. It is clear from the plot
that the model can learn to perform path integration of head direction
when simulated with a range of axonal conduction delays.
doi:10.1371/journal.pone.0058330.g010

Table 3. Speed of movement of the head direction cell
activity packet during testing in the absence of visual input
with a distribution of axonal conduction delays.

Speed of Packet Update: A Distribution of Delays

Clockwise Counter-Clockwise

Mean Speed 215:00/s 213:10/s

Standard Deviation 6:50/s 9:10/s

Percentage 59:7% 59:2%

The results are taken from five simulation runs of a model implemented with a
distribution of axonal conduction delays. Each of the five models was
implemented with different random synaptic connectivity and different random
synaptic weight initialization. The table inlines the mean speed of the activity
packet across the five simulations during testing as calculated according to
equations (14) and (15), the standard deviation, and the mean speed of the
packet as a percentage of the speed of rotation of the agent during training in
the presence of visual input. In each case, results are inlineed for both clockwise
and counter-clockwise rotation of the activity packet during testing.
doi:10.1371/journal.pone.0058330.t003
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Rather than generalization, our model exhibits robustness, or

fault tolerance, to the loss of a number of the rotational velocity

cells. This is an important property of biological neural networks.

In this experiment, we took a fully-trained model (axonal

conduction delay of 100ms, rotational velocity of 1800/s) and,

through random sampling without replacement from a uniform

probability distribution, we deleted 25% (125) of the rotational

velocity cells. We then simulated the testing phase of the model in

order to determine the effect that the loss of a proportion of the

rotational velocity cells has upon the speed of path integration. We

conducted five simulations, each with identical model parameters

except that the random selection of rotational velocity cells to be

deleted was different for each simulation.

Figure 13 displays the firing rates of the head direction cells

recorded during the testing phase of the degraded network. It is

clear that the network can still perform the path integration of

head direction even after ‘‘losing’’ 25% of the rotational velocity

cells that were present during the initial training of the model. The

network thus exhibits robustness to cell loss.

Table 5 displays the speed of update of the head direction cell

activity packet. During the period of clockwise rotation, the mean

speed of the head direction cell activity packet is 143:10/s

(S.D. = 0:60/s). During the period of counter-clockwise rotation,

the mean speed of the activity packet is 134:40/s (S.D. = 0:30/s).

The mean clockwise rotational speed is 79:5% of the speed

imposed during training, and the mean counter-clockwise speed is

74:6% of the speed imposed during training. Moreover, the

original simulation, before degradation of the rotational velocity

cells, rotated at an average speed of 144:10/s in the clockwise

direction and 132:30/s in the counter-clockwise direction. A

comparison of the speeds of rotation of the model in its original

and degraded states reveals that deleting 25% of the rotational

velocity cells results in a change of only *2% in the speed of path

integration in both the clockwise and counter-clockwise directions.

Further simulations were conducted in order to determine the

extent to which the model exhibits fault tolerance to the loss of a

number of rotational velocity cells. Figure 14 displays the results of

a series of simulations in which the percentage of rotational

velocity cells deleted was increased in increments of 10%. For each

percentage of rotational velocity cells abolished, five simulations

were conducted each with identical model parameters but with

different random synaptic weight initializations. The average

speed of rotation was then calculated over both directions of

rotation across all simulations. The unbroken black line in

Figure 14 represents the average rotational speed of the current

model presented in this paper with different percentages of the

rotational velocity cells abolished. It can be seen that the model is

robust to deletion of up to 40% of the rotational velocity cells.

That is, the average rotational speed, as a percentage of the speed

imposed during training in the light, does not vary by a large

amount until 50% of the rotational velocity cells are deleted, at

which point the model can no longer perform path integration.

We predict that neural network models of the path integration

of head direction that exhibit generalization to different speeds of

path integration will not also exhibit robustness to loss of rotation

cells. We hypothesize that a model that displays a linear

relationship between the firing rates of the angular head velocity

inputs and the speed of path integration will experience a decrease

in the speed of path integration of *25% as a result of ‘‘losing’’

25% of its rotational velocity cells. Such a decrease in the speed of

the head direction cell activity packet would effectively mean that

this type of degraded model will no longer be able to accurately

perform the path integration of head direction in the absence of

visual input.

Comparison between the Current Model and the Model
of Walters and Stringer (2010)

There are a number of differences between the current model

and the model proposed by [22]. Firstly, the two models exhibit

different behaviour as a result of deleting a percentage of the

rotational velocity cells. As reported in the previous section, the

model presented in this paper exhibits path integration that is

robust to the loss of up to 40% of the rotational velocity cells. We

conducted a similar set of simulations, in which an increasing

percentage of the rotational velocity cells are deleted, using our

previous model [22] for the purposes of comparison between the

two models. The dashed line in Figure 14 displays the average

Figure 11. Firing rates of the head direction cells from models with axonal conduction delays in one set of the w2 or w3 synapses
only. The left-hand plot displays the head direction cell firing rates recorded during the testing, in the absence of visual input, of a model simulated
with axonal conduction delays in the w2 synapses only. It is clear that the model can still learn to perform path integration of head direction. The
right-hand plot displays the firing rates of head direction cells recorded during the testing, in the absence of visual input, of a model simulated with
axonal conduction delays in the w3 synapses only. It is also clear that the model can still learn to perform path integration of head direction.
doi:10.1371/journal.pone.0058330.g011
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speed of rotation achieved by the model of [22] as an increasing

percentage of the rotational velocity cells are abolished. It can

clearly be seen that the path integration accuracy decreases as the

percentage of rotational velocity cells that have been deleted

increases. In contrast to the current model reported in this paper,

the previous model is able to perform path integration of head

direction to a modest degree of accuracy even with 90% of the

rotational velocity cells abolished.

A second key difference between the current model and the

previous model of [22] lies in the form of the hebbian learning

rules that update the w2 and w3 synapses. In the current model,

the learning rules that update the w2 and w3 synapses, equations

(10) and (9) respectively, incorporate presynaptic firing rates that

occurred at a time t{Dt in the past. These learning rules

effectively ‘look backward’ through time to the presynaptic firing

rate that occurred t{Dt in the past. The interval of time over

which the two learning rules look backward is set to be equal to the

length of the conduction delay Dt that is present in the

transmission of signals between the head direction cells and the

combination cells (w3 synapses), and is also present in the

transmission of signals between the combination cells and the

head direction cells (w2 synapses).

The key point here is that a learning rule incorporating a time

delay Dt in the presynaptic term will force the postsynaptic cell to

learn to respond to the particular presynaptic cells that were active

at t{Dt in the past and were thus responsible for firing the

postsynaptic cell at the current time t, given that there is a Dt
axonal transmission delay from the presynaptic to postsynaptic

cells. Thus, the combination of a Dt delay in the presynaptic term

in the learning rule, coupled with a Dt axonal transmission delay,

permits a postsynaptic cell to learn to respond to the particular

subset of presynaptic cells that are responsible for driving it. This

consistency allows asymptotic convergence of the learning process

and the synaptic weights.

However, the earlier model of [22] did not incorporate an

explicit time delay Dt into the learning rules, even though there

was still an effective delay in the response of the postsynaptic cell to

presynaptic inputs due to a long neuronal time constant. This

meant that when the postsynaptic cell fired due to presynaptic

activity that had occurred some small time interval in the past

(dependent on the postsynaptic cell time constant), the learning

rule strengthened the afferent synaptic weights from the currently

active presynaptic cells rather than the cells that were actually

responsible for driving the postsynaptic cell at the current time. It

is easy to see how this inconsistency could retard the convergence

of the learning process.

In view of the above differences between the two models, we

predicted that the current model presented in this paper would

converge faster during training than the model of [22]. Indeed, by

comparing simulations with the current model with the earlier

model of [22], we did indeed find that the convergence of the

synaptic weights was significantly faster in the current model.

Convergence results for the current model presented in this

paper are displayed by the unbroken lines in the left and right plots

of Figure 15. The left plot displays the root mean square (RMS)

change across successive blocks of five epochs for the w3 synaptic

weight matrix. As the learning converges, the RMS change in a

synaptic weight matrix across successive bocks of five epochs will

decrease. This is clearly the case for the w3 synaptic weight matrix

of the current model as shown in the left plot of Figure 15. The

right plot of Figure 15 also demonstrates that there is convergence

of the w2 synaptic weight matrix for the current model.

The dashed line in the left plot of Figure 15 represents the

change in the w3 synaptic matrix in the model of [22] during

training. The RMS decreases as the number of training epochs

experienced increases, and thus there is convergence in the values

of the w3 synaptic weight matrix through time. However, the

synaptic weight matrix w3 in the model of [22] does not converge

as quickly as the current model reported in this paper. Similarly,

the dashed line in the right plot of Figure 15 displays the change in

the w2 synaptic weight matrix in the model of [22]. Again, it is

clear that the w2 synaptic weight matrix also shows convergence

but does not converge as quickly as the w2 synaptic weight matrix

in the model reported in this paper.

Table 4. The speed of movement of the head direction cell
activity packet during testing with axonal conduction delays
in either the w2 or w3 synapses but not both.

Results: w2 Delays Only

Clockwise Counter-Clockwise

Mean Speed 227:5o/s 227:9o/s

Standard Deviation 5:0o/s 3:6o/s

Percentage 63:2% 63:3%

Results: w3 Delays Only

Clockwise Counter-Clockwise

Mean Speed 237:2o/s 247:7o/s

Standard Deviation 4:8o/s 28:2o/s

Percentage 65:9% 68:8%

The results inlineed are the average of five simulations conducted with identical
model parameters, but with different random synaptic weight initializations
and different random synaptic connectivities. When the model is implemented
with axonal conduction delays either only in the w2 synapses, or only in the w3

synapses, then the model can still learn to perform path integration of head
direction at approximately the same speed as was experienced during training.
doi:10.1371/journal.pone.0058330.t004

Figure 12. Path integration performance with no axonal
conduction delays. Firing rates of the head direction (HD) cells
recorded during the testing phase of a model simulated with an axonal
conduction delay of 0ms, and trained with rotational velocity of 3600/s.
Conventions are as for the top-right plots in Figures 7 and 8. It is
evident that the model fails to learn to perform path integration of
head direction.
doi:10.1371/journal.pone.0058330.g012
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We thus conclude that the incorporation of the presynaptic

firing at a time t{Dt in the past in the learning rules (9) and (10) of

the current model, which operates in tandem with the axonal

conduction delays Dt, promotes significantly faster convergence of

the w3 and w2 synaptic weight matrices than in the model of [22].

Discussion

The model we describe in this paper presents a computational

method by which a packet of head direction cell activity can be

accurately updated given an external signal representing the

velocity of self-motion. The results are essentially achieved by

using axonal transmission times to provide delays, and learning

associations between the input velocity signal combined with the

earlier head direction represented in the head direction cell

network, and the new head direction.

Our model operates by learning what is effectively a ‘look-up’

table for the path integration of head direction at a particular

rotational velocity. This ‘‘look-up’’ table functionality ensures that

the model exhibits robustness to loss of a proportion of the

rotational velocity cells. We know of no other neural network

model of the path integration of head direction that displays such

fault tolerance. An implication of our model is that the rat must

learn to perform path integration at every angular head velocity it

experiences: there will thus be a ‘‘look-up’’ table for every speed of

path integration and there is no generalization to new, previously

unlearned, speeds of path integration.

In this paper, we did not simulate the model being trained on

more than one speed of path integration at a time, as we wished to

focus upon the computational properties of the model when

trained at a single rotational velocity. In principle, the model

should accommodate more than one speed of path integration: this

just requires learning and maintaining more than one look-up

table mediated by the competitive layer of combination cells. In

turn, learning multiple speeds of path integration requires that the

rotational velocity cells can signal more than one rotational

velocity. One way of achieving this would be to have many

rotational velocity cells, each signalling a unique rotational

velocity.

However, the firing properties of real angular head velocity cells

in the brain have rather different firing properties than the

rotation cells implemented in our model simulations described

above. In fact, cells have been reported in the rat brain,

particularly in the dorsal tegmental nucleus, with firing rates that

are a monotonically increasing function of the angular head

velocity of the rat [34,35]. [34] have also reported that the angular

head velocity cells can be either symmetric in that they respond

similarly to clockwise and counter-clockwise rotation, or asym-

metric in that they respond to either clockwise or counter-

clockwise rotation but not both. These angular head velocity cells

have been found to have different slopes and are linear over

different ranges of angular head velocity [34].

Given these more complex firing properties of angular head

velocity cells in the brain, how might the network learn to perform

multiple different speeds of path integration? One solution might

be that the firing rate vector over the entire population of angular

head velocity cells would point in different directions for different

angular head velocities. A subsequent competitive network could

thus learn to form separate representations for different angular

head velocities, where the different angular head velocities are

represented by different combination cells [19,32]. Each unique

direction of the population firing rate vector would then effectively

select a different look-up table within the network and thus enable

accurate path integration of head direction at different speeds.

In the simulations reported in this paper, the combination cells

learn to respond to combinations of a particular head direction

and rotational velocity. To date, however, there is no evidence for

the existence of cells in the rat brain that respond with such high

specificity to a particular head direction and a particular rotational

velocity. Instead, there are cells that do respond to head directions

and angular head velocities, but over a range of velocities (with a

monotonic increase in firing rate as angular head velocity

increases), and often with a broader preference for head direction

than the head direction cells found in the postsubiculum,

anterodorsal thalamic nucleus and lateral mammillary nuclei

[27,34,35]. Moreover, these angular-head-velocity by head-direc-

tion cells are not the majority cell type in the brain areas in which

Figure 13. Path integration performance with a reduced
number of rotational velocity cells. Firing rates of the head
direction (HD) cells recorded during the testing phase of a model
simulated with 25%(125) of the rotational velocity cells deleted after
training. The original model was trained with axonal conduction delays
of 100ms, at a rotational velocity of 1800/s. It is clear that the model can
still perform the path integration of head direction even in a degraded
state, and thus the model exhibits robustness to damage.
doi:10.1371/journal.pone.0058330.g013

Table 5. Speed of movement of the head direction cell
activity packet during testing in the absence of visual input
with removal of rotational velocity cells.

Speed of Packet Update with Degraded Model

Clockwise Counter-Clockwise

Mean Speed 143:10/s 134:40/s

Standard Deviation 0:60/s 0:30/s

Percentage 79:5% 74:6%

The results are taken from five simulation runs of a model implemented with
25%(125) of the rotational velocity cells randomly deleted after training had
taken place. For each of the five simulations, the exact rotational velocity cells
that were deleted were different, i.e. the random selection process was reset
with a different seed for each simulation. The table inlines the mean speed of
the activity packet across the five simulations during testing as calculated
according to equations (14) and (15), the standard deviation, and the mean
speed of the packet as a percentage of the speed of rotation of the agent
during training in the presence of visual input. In each case, results are inlineed
for both clockwise and counter-clockwise rotation of the activity packet during
testing.
doi:10.1371/journal.pone.0058330.t005
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they are found – particularly in the dorsal tegmental nucleus –

with [34] reporting that only 5 out of 44 angular head velocity cells

(11%) showed modulation of their firing rates by head direction.

This is in contrast to our current model, where the combination

cells outnumber any other cell type by a ratio of 2:1. The

difference between the response profiles of the combination cells in

our model and the known response profiles of the head direction

by angular head velocity cells in the rat brain is an outstanding

issue that we will investigate further in future research. We

hypothesize that replacing the simplified rotation cells in the

current model with more realistic angular head velocity cells may

produce combination cells with more biologically realistic firing

profiles.

We emphasize that, with the exception of the model by [22], we

know of no previous model that can solve the problem of angular

path integration of head direction using self-organizing learning

with purely associative Hebbian learning rules. [11] used an error

correction learning rule and a special purpose network architec-

ture (with separate head direction subnetworks required for each

direction of idiothetic signal) to produce a convergent learning

scheme in a one-dimensional head direction cell system. This error

correction approach is less biologically plausible than the

associative learning model described in this paper.

All of our Experiments did not reproduce the exact speed

during testing that they were trained upon. This could be due to a

variety of factors. For example, the w2 and w3 synaptic

connections incorporate axonal conduction delays that allow these

connections to learn specific associations over temporally succes-

sive head directions. However, the role of the w1 synapses is to

stabilise the activity packet within the head direction cell network.

Hence the w1 connections do not take part in shifting the packet of

head direction cell activity, and may in fact retard the movement

of the activity packet during path integration. This would lead to

the actual speed of replay underestimating the correct value. A

possible solution may be to simulate a model that does not contain

w1 recurrent synapses. [12] demonstrated a model that was able to

perform velocity path integration of head direction without

requiring recurrent synaptic weights, although they did not allow

the synaptic weight profiles to self-organize; instead imposing the

required asymmetries upon the network. It would be interesting to

see whether it is possible to develop a model that can self-organize

to perform path integration without recurrent w1 synapses, and

whether this model would be able to cope with smaller conduction

delays without any reduction in the accuracy of update of the head

direction cell activity packet. In this case, in the absence of

recurrent connections within the head direction cell network, an

activity packet could be stabilised in the absence of visual input by

the feedforward and feedback connections between the head

direction cells and the combination cells.

Another factor that may contribute to the undershoot in the

replayed speed of path integration could be that due to

computational cost our simulated models were relatively small,

with only 2000 neurons in total (in order to keep the simulation

run-time reasonable). The significant computational cost of the

simulations was due to the need to train the layer of combination

cells as a competitive network that self-organized its afferent

synaptic connections over many training epochs, and that this had

to be simulated using a continuous time differential model with a

small numerical integration timestep of 0.1 ms. These model

features made extensive exploration of the parameter space of the

model infeasible for larger network sizes than what was explored in

this paper. The relatively small network architecture simulated in

the paper may be more susceptible to noise due to, for example,

the limited number of combination cells providing an uneven

representation of the continuous space of head directions. This

problem would be exacerbated in a small network by the diluted

connectivity of the afferent w3 connections onto the combination

cells, whereby each postsynaptic combination cell receives w3

connections from only a random 5% of the head direction cells.

We thus hypothesize that a larger model may show even less

difference between the recorded speeds during testing and the

actual speed during training, when compared to the results

presented here. However, we are not sure why this kind of random

noise would lead to a systematic undershoot of the true speed,

rather than an overshoot. An alternative cause of the systematic

underestimate of the true speed might be a less accurate model of

the neuronal dynamics. For example, the present model is rate-

coded. That is, the current model does not explicitly represent the

exact timings of the individual action potentials or ‘‘spikes’’

emitted by cells. Instead, the model represents only an average

firing rate for each neuron. More time-accurate dynamics would

be introduced by implementing an integrate and fire model, in

which the exact times of the spikes emitted by neurons are

represented. For example, attractor neural networks built from

‘‘integrate and fire’’ neurons can perform very fast memory recall

[19]. It might be that the implementation of more accurate

integrate and fire neurons could reduce the path integration error

in the model presented here. It would be straightforward to

develop an integrate and fire version of the model presented here

using corresponding associative learning rules that might utilise the

timings of the spikes from the pre- and post-synaptic neurons

[43,44]. This would need to be investigated through future

simulation work. Nevertheless, the rate-coded model presented in

this paper shows how a network using associative learning rules

could learn to perform path integration at nearly the correct speed

albeit with a mild underestimate. This work therefore provides a

Figure 14. The robustness of the path integration of head
direction to loss of a percentage of the rotational velocity cells.
Results are shown for the current model and for a previous model by
the authors [22]. Both models perform very well, i.e. are robust, with up
to 40% of the rotational velocity cells abolished. The model reported in
this paper is able to perform path integration at a relatively constant
level of accuracy as the percentage of rotational velocity cells that are
abolished increases from 0% to 40%. When the percentage of abolished
rotational velocity cells is greater than or equal to 50% then the model
reported in this paper can no longer perform the path integration of
head direction. The previous model of [22] can perform the path
integration of head direction to some modest degree of accuracy with
90% of the rotational velocity cells abolished.
doi:10.1371/journal.pone.0058330.g014

Accurate Path Integration of Head Direction

PLOS ONE | www.plosone.org 22 March 2013 | Volume 8 | Issue 3 | e58330



basis for future investigation of path integration in more

biologically realistic integrate and fire networks.

The models we simulated used fixed delays of either 50 ms or

100 ms for the axonal transmission delay. With typical conduction

velocities of unmyelinated fibres of 0.1 m/s [21], this would

correspond to axonal lengths of 5 mm and 10 mm respectively.

We did simulate the network with smaller conduction delays of

10 ms, but found that the network was unable to perform path

integration after training. We believe that this was due to the

relatively small size of the network architecture used in the current

simulations. We therefore used the larger conduction delays

reported in this paper. We expect that a larger network should

cope well with smaller axonal conduction delays.

The model described in this paper, using axonal transmission

delays, offers a significant improvement in the accuracy of path

integration over a previous model proposed by [22] that instead

relies on long neuronal time constants of the order of 100 ms. This

is most noticeable from the observation that the current model

learns to perform path integration in the order of *75%{80% of

the speed imposed during training in the light, whereas the model

of [22] learns to perform path integration in the order of

*50%{60% of the speed imposed during training. Although in

Figure 14 in the current paper the two models exhibit the same

accuracy of path integration with up to *20% of the ROT cells

abolished, in many previous simulations the model of [22] showed

a reduced accuracy of the learned path integration compared to

the current model presented in this paper. In the current model

described above we set the neuronal time constants t to a value of

1:0ms in order to isolate the effects of axonal delays in these

simulations and thus avoid confounding these two different timing

mechanisms. In this paper we have highlighted the main

differences between the current model and the previous model

of [22].

We note that the principle of using axonal transmission delays to

produce temporally precise neural processing is also argued to

subserve other neural functionality. In particular, axonal trans-

mission delays of varying lengths are argued to be vitally important

to the process of sound localization in the auditory processing

pathways of the owl [45–47].

Finally, we suggest that path integration implemented in the

way described here could be performed in other brain systems,

including hippocampal place cells [48], entorhinal cortex grid cells

[49,50], and the hippocampal spatial view system of neurons that

respond when a primate looks at a particular location in space,

and which are updated by idiothetic eye movements made in the

dark [51–54].
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