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Abstract
It has been proposed that invariant pattern recognition might be implemented
using a learning rule that utilizes a trace of previous neural activity which,
given the spatio-temporal continuity of the statistics of sensory input, is likely
to be about the same object though with differing transforms in the short
time scale. Recently, it has been demonstrated that a modified Hebbian rule
which incorporates a trace of previous activity but no contribution from the
current activity can offer substantially improved performance. In this paper
we show how this rule can be related to error correction rules, and explore a
number of error correction rules that can be applied to and can produce good
invariant pattern recognition. An explicit relationship to temporal difference
learning is then demonstrated, and from this further learning rules related
to temporal difference learning are developed. This relationship to temporal
difference learning allows us to begin to exploit established analyses of temporal
difference learning to provide a theoretical framework for better understanding
the operation and convergence properties of these learning rules, and more
generally, of rules useful for learning invariant representations. The efficacy of
these different rules for invariant object recognition is compared using VisNet,
a hierarchical competitive network model of the operation of the visual system.

1. Introduction

1.1. Background

There is now much experimental evidence to suggest that over a series of successive cortical
stages the visual system develops neurons that are able to respond with considerable view, size
and position invariance to objects or faces (Desimone 1991, Rolls 1992, Rolls and Tovee 1995,
Tanaka et al 1991, Rolls and Treves 1998, Booth and Rolls 1998). Rolls has proposed (Rolls
1992, 1994, 1995) that such transform-independent selectivity could arise from the following:
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(i) A series of competitive networks, organized in hierarchical layers, and incorporating mutual
inhibition over a short range within each layer as part of the local competition. These networks
allow combinations of features or inputs occurring in a given spatial arrangement to be learned
by neurons, ensuring that higher-order spatial properties of the input stimuli are represented
in the network. (ii) A convergent series of connections from a localized population of cells in
preceding layers to each cell of the following layer, thus allowing the receptive field size of cells
to increase through the visual processing areas or layers. (iii) A modified Hebb-like learning
rule incorporating a temporal trace of each cell’s previous activity, which, it is suggested,
will enable the neurons to learn transform invariances (see also Földiák (1991) and Wallis et al
(1993)). The trace rule is designed to enable neurons to learn from the spatio-temporal statistics
of the natural visual inputs, which in short time periods are likely to be about the same object.
(Earlier work by Sutton and Barto (1981) had explored the use of a trace learning rule for
modelling the temporal properties of classical conditioning. They investigated incorporation
of the trace in the presynaptic neuron or in the post-synaptic neuron, or both. Mitchison (1991)
investigated the use of a different, anti-Hebb, learning rule to remove the effects of temporal
variation in the input.) The proposal was tested by Wallis and Rolls (1997) in a model (VisNet)
of ventral stream cortical visual processing. It was found that the network could produce view-
invariant neurons that responded to some but not other stimuli as long as the Hebbian learning
rules incorporated a trace of recent cell activity, where the trace is a form of temporal average.
Further work with this trace rule is presented in Wallis (1996) and Wallis and Baddeley (1997).

Recently, it has been demonstrated (Rolls and Milward 2000) that a modified Hebbian rule
which incorporates a trace of activity only from the preceding time step can offer substantially
improved performance over the standard trace rules described in Földiák (1991) and Wallis
and Rolls (1997). In this paper we show the relation of the modified Hebbian rule presented
by Rolls and Milward (2000) to a particular form of error correction rule. This leads to an
investigation of a number of more general forms of error correction learning rules, all of
which produce substantially improved performance. We note that one of the rules is closely
related to a rule developed in Peng et al (1998) for invariance learning. Some rules can offer
high performance using an exponential trace of neuronal firing rate from the current time
step, while other rules do not need to use an exponential trace of the neuronal firing rate at
all but only a trace based on the activity of the immediately preceding trial. Next, we are
able to make explicit a relationship to temporal difference learning (Sutton 1988, Sutton and
Barto 1998), and from this we derive further temporal-difference-inspired learning rules. This
relationship to temporal difference learning allows us to begin to exploit established temporal
difference analyses to provide a theoretical framework for better understanding the operation
and convergence properties of learning rules which incorporate a trace of previous activity in
order to perform invariance learning.

The efficacy of these different learning rules is compared using VisNet, a model of the
operation of the ventral visual system in invariant object recognition, which incorporates some
of the architectural features of the primate ventral visual system (Wallis and Rolls 1997, Rolls
2000).

1.2. Methods—VisNet, training and test procedure

In this section we give an overview of the VisNet model; full details are provided by Wallis
and Rolls (1997) and Rolls and Milward (2000). In particular, the simulations performed in
this paper use the latest version of the VisNet model (VisNet2) with the same parameter values
as given in Rolls and Milward (2000). The model consists of a feedforward hierarchical series
of four layers of competitive networks (with 1024 neurons per layer), corresponding in the
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Figure 1. Left: stylized image of the VisNet four-layer network. Convergence through the network
is designed to provide fourth-layer neurons with information from across the entire input retina.
Right: convergence in the visual system—adapted from Rolls (1992). V1: visual cortex area V1;
TEO: posterior inferior temporal cortex; TE: inferior temporal cortex (IT).

primate visual system to V2, V4, the posterior inferior temporal cortex, and the anterior inferior
temporal cortex, as shown in figure 1. The first layer of the model receives its inputs from
an input layer which provides a representation comparable to that found in V1. The forward
connections to individual cells are derived from a topologically corresponding region of the
preceding layer, using a Gaussian distribution of connection probabilities. Within each layer
competition is graded rather than winner-take-all, and is implemented in two stages. First,
to implement lateral inhibition the activation of neurons within a layer is convolved with a
local spatial filter which operates over several pixels. Next, contrast enhancement is applied
by means of a sigmoid activation function where the sigmoid threshold is adjusted to control
the sparseness of the activities or firing rates to values that are approximately 0.01 for the first
two layers, and 0.1 for layers 3 and 4 (for details see Rolls and Milward (2000)). (We note
that the outputs of the neurons are scalar variables that could be called neuronal activities or
neuronal responses, and which would be directly related to the firing rate of the neuron in an
integrate-and-fire model. When we refer to firing rates in this paper, we are referring to the
values of these scalar variables.) The sparseness of the firing within a layer is defined by Rolls
and Treves (1998) as

a =
( ∑

i yi/n
)2

∑
i y

2
i /n

where n is the number of neurons in the layer.
The mechanism for transform-invariant object recognition proposed by Földiák (1991) and

Rolls (1992) relies on the spatio-temporal statistics of natural visual input. In particular, in the
real world different views of the same object are likely to occur in temporal proximity to each
other. Then, if synaptic learning rules are utilized that encourage neurons to respond invariantly
to temporally proximal input patterns, such neurons should learn to respond invariantly to
different views of individual stimuli. The original trace learning rule used in the simulations
of Wallis and Rolls (1997) took the form

�wj = αȳτ xτj (1)

where the trace ȳτ is updated according to

ȳτ = (1 − η)yτ + ηȳτ−1 (2)
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and we have the following definitions:

xj : j th input to the neuron.

ȳτ : Trace value of the output of the neuron at time step τ .

wj : Synaptic weight between j th input and the neuron.

y : Output from the neuron.

α : Learning rate. Annealed between unity and zero.

η : Trace value. The optimal value varies with presentation sequence length.

The parameter η ∈ [0, 1] controls the relative contributions to the trace ȳτ from the
instantaneous firing rate yτ and the trace at the previous time step ȳτ−1, where for η = 0 we
have ȳτ = yτ and equation (1) becomes the standard Hebb rule

�wj = αyτxτj . (3)

Rolls and Milward (2000) demonstrated that VisNet’s performance could be greatly
enhanced with a modified Hebbian learning rule that incorporated a trace of activity from the
preceding time steps, with no contribution from the activity being produced by the stimulus at
the current time step. This rule took the form

�wj = αȳτ−1xτj . (4)

In our simulations η is set to 0.8. Also, to avoid interference between different stimuli, the
trace ȳτ is reset to zero each time the stimulus is changed, although this does not generically
affect the operation of VisNet (Rolls and Milward 2000). This issue is considered further in
the discussion.

The stimuli used for training and testing in VisNet simulations in this paper are a set of
seven faces previously used in Wallis and Rolls (1997) and Rolls and Milward (2000). To train
the network, a stimulus was presented in a sequence of nine locations in a square grid across the
retina, starting at a random position within its sequence. At each location, VisNet calculated
the activation of the neurons, then their firing rates using a sigmoid activation function, and
then updated the synaptic weights. After all the training locations for a given stimulus had been
visited, another stimulus was selected at random and the procedure was repeated. Training in
this way for all the stimuli in a set comprised one training epoch, and the numbers of training
epochs for layers 1–4 were 50, 100, 100 and 75 respectively, as used by Rolls and Milward
(2000).

The performance of the network was assessed with two information-theoretic measures,
as described by Rolls and Milward (2000). The measures assess the extent to which either a
single cell, or a population of cells, responds to the same stimulus invariantly with respect to
its location, yet responds differently to different stimuli. The measures effectively show what
one learns about which stimulus was presented from a single presentation of the stimulus at
any randomly chosen location. Results for top (fourth) layer cells are shown in this paper.
High information measures thus show that cells fire similarly to the different transforms of a
given stimulus (object), and differently to the other stimuli. The single-cell stimulus-specific
information, I (s, R), is the amount of information the set of responses, R, has about a specific
stimulus, s (see Rolls et al (1997) and Rolls and Milward (2000)). I (s, R) is given by

I (s, R) =
∑
r∈R

P (r|s) log2
P(r|s)
P (r)

(5)

where r is an individual response from the set of responses R of the neuron. For each cell the
performance measure used was the maximum amount of information a cell conveyed about
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Figure 2. Numerical results with the standard trace rule (1), learning rule (4), the Hebb rule (3) and
random weights, trained on seven faces in nine locations: single-cell information measure (left),
multiple-cell information measure (right).

any one stimulus. This (rather than the mutual information, I (S, R) where S is the whole set
of stimuli s) is appropriate for a competitive network in which the cells tend to become tuned
to one stimulus. (I (s, R) has more recently been called the stimulus-specific surprise, see
DeWeese and Meister (1999). Its average across stimuli is the mutual information I (S, R).)

If all the output cells of VisNet learned to respond to the same stimulus, then the information
about the set of stimuli S would be very poor, and would not reach its maximal value of log2
of the number of stimuli (in bits). The second measure that is used here is the information
provided by a set of cells about the stimulus set, using the procedures described by Rolls et al
(1997) and Rolls and Milward (2000). The multiple-cell information is the mutual information
between the whole set of stimuli S and of responses R calculated using a decoding procedure
in which the stimulus s ′ that gave rise to the particular firing rate response vector on each trial
is estimated. (The decoding step is needed because the high dimensionality of the response
space would lead to an inaccurate estimate of the information if the responses were used
directly, as described by Rolls et al (1997) and Rolls and Treves (1998).) A probability table
is then constructed of the real stimuli s and the decoded stimuli s ′. From this probability table,
the mutual information between the set of actual stimuli S and the decoded estimates S ′ is
calculated as

I (S, S ′) =
∑
s,s ′

P(s, s ′) log2
P(s, s ′)
P (s)P (s ′)

. (6)

This was calculated for the subset of cells which had as single cells the most information about
which stimulus was shown. In particular, we calculated the multiple-cell information from the
first five cells for each stimulus that had maximal single-cell information about that stimulus:
that is, from a population of 35 cells given that there were seven stimuli.

Baseline results of VisNet runs trained on seven faces at each of nine locations are given in
figure 2. On the left are the single-cell information measures for all top-layer neurons ranked in
order of their invariance, while on the right are multiple-cell information measures which rise
steadily as the number of cells in the sample is increased. Given that the maximum single-cell
information measure is 2.8 (i.e. log27) as there are seven face stimuli, we can see that no cells
reach this level of performance with a Hebb rule or in the untrained condition with random
weights, that a small number of cells achieve optimal performance with the standard trace
rule (1), and that many cells reach optimal performance with the rule described by Rolls and
Milward (2000), equation (4). The fact that many single cells reached optimal performance
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with rule (4) indicates that the rule is better for training. The rule is better in the sense that
single cells are more likely to show invariant representations after the training. In addition, the
multiple-cell measures show that in practice the rules which produce many well performing
single cells also tend to lead to populations of cells which together provide high levels of
information about all the stimuli, although with the limited number of stimuli used here, the
multiple-cell information measure can saturate (see Rolls and Treves (1998)).

2. Modified Hebbian trace rules, error correction and temporal difference learning

2.1. The modified Hebbian trace rule and error correction

Rule (4) corrects the weights using a post-synaptic trace obtained from the previous firing
(produced by other transforms of the same stimulus), with no contribution to the trace from
the current post-synaptic firing (produced by the current transform of the stimulus). Indeed,
insofar as the current firing yτ is not the same as ȳτ−1, this difference can be thought of as an
error. This leads to a conceptualization of using the difference between the current firing and
the preceding trace as an error correction term, as developed next. Although trace learning has
been related to error correction learning by Sutton and Barto (1981), this was in the context
of studies of the temporal aspects of classical conditioning; the current conceptualization is
developed in relation to invariant recognition learning.

First, we re-express rule (4) in an alternative form as follows. Suppose we are at time step
τ and have just calculated a neuronal firing rate yτ and the corresponding trace ȳτ from the
trace update equation (2). If we assume η ∈ (0, 1), then rearranging equation (2) gives

ȳτ−1 = 1

η
(ȳτ − (1 − η)yτ ) (7)

and substituting equation (7) into (4) gives

�wj = α
1

η
(ȳτ − (1 − η)yτ )xτj

= α
1 − η

η

(
1

1 − η
ȳτ − yτ

)
xτj

= α̂(β̂ȳτ − yτ )xτj (8)

where α̂ = α
1−η

η
and β̂ = 1

1−η
. The modified Hebbian trace learning rule (4) is thus equivalent

to equation (8) which is in the general form of an error correction rule (Hertz et al 1991). That
is, rule (8) involves the subtraction of the current firing rate yτ from a target value, in this case
β̂ȳτ .

To understand the behaviour of the modified Hebbian rule (4) we need to consider the
effect of scaling β̂ in equation (8). To do this, we replace β̂ with β = kβ̂ where k > 0 is
some scaling coefficient, giving a new target βȳτ . This scaling controls the primary factor
governing the performance of the learning rule, namely the resultant yτ term in the brackets
in equation (8) (which is produced by subtracting the −yτ term from the yτ component of
the target βȳτ ). As β is scaled up (i.e. set k > 1), the part of yτ left after subtracting the
−yτ term from the target will be positive, and the term α̂βȳτ xτj will come to dominate the
term −α̂yτ xτj . Consequently, rule (8) will tend towards the behaviour of the standard trace
rule (1), because the post-synaptic term includes as a component the current firing rate yτ . In
contrast, as β is scaled down (i.e. set k < 1), the resultant component of yτ after subtracting
the −yτ term from the target is negative. Then rule (8) will function like an error correction
method, continually comparing the current firing rate yτ with the target βȳτ , and adapting the
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Figure 3. Numerical results with error correction learning rule (8) with two options: (i)
β̂ = 1

1−η
= 5.0 and (ii) β̂ replaced by 0.5 × β̂ = 2.5. These two rules are trained on seven

faces in nine locations: single-cell information measure (left), multiple-cell information measure
(right).

weights to set the current firing rate equal to a function of the cell’s recent activity given by
the target. In figure 3 we show numerical results for learning rule (8) with two options. In
option (i), k is set to 1 so that β is equal to β̂ (and is 5 because η is 0.8 and β̂ = 1

1−η
). This

produces conditions equivalent to the modified Hebbian rule (4). The performance shown in
figure 3 is identical to that shown for rule (4) in figure 2. In option (ii), we set k to move the
operation of equation (8) into an error-correction-like region. (This was achieved simply by
setting k to 0.5 with no attempt to optimize the value of k. With k = 0.5 there is genuine error
correction since the resultant yτ term in brackets in equation (8) becomes negative. For this
value of k, there is a resultant component of −0.5yτ after subtracting the −yτ term from the
target 2.5ȳτ .) It can be seen in figure 3 that option (ii) offers significantly better performance
with the single-cell information measure than option (i), thus demonstrating the effectiveness
of the error correction paradigm described above.

The above analysis shows that the trace-modified Hebbian rule (4) sits in a continuum of
learning rules ranging from reasonably performing trace-modified Hebbian rules at one end, to
a superior error correction regime at the other. The primary factor governing the performance
of a rule within this continuum is the sign and relative magnitude of the resultant component
of yτ in equation (8) with β̂ replaced by β. When β is scaled up there is a positive resultant
component of yτ , and then rule (8) is Hebbian-like and associates the current cell firing rate yτ

with the current cell inputs xτj . When β is scaled down there is a negative resultant component
of yτ , and then rule (8) is a form of error correction. However, for rule (4) the resultant
component of yτ in equation (8) with β = β̂ is zero, and this stops the current cell firing yτ

from being part of what is associated with the current cell inputs xτj . In other words, the purely
Hebbian, non-trace-related, component of the learning is removed. The Hebbian component
normally would have the deleterious effect of encouraging neurons to learn position-dependent
responses (because there is no trace to link different locations, see Wallis and Rolls (1997)), and
thus with β = β̂, the deleterious component is not present. Although above we have referred
to rule (4) as a modified Hebbian rule, in fact it is only associative in the sense of associating
previous cell firing with the current cell inputs. When considering the role of the current firing
rate yτ in learning rule performance, we note that rule (4) in fact lies on the boundary of the two
regimes, outperforming the standard trace rule (1) with a positive resultant component of yτ ,
but performing less well than error correction rules with a negative resultant component of
yτ . In the next section we continue to explore the error correction paradigm, examining five
alternative examples of this sort of learning rule.
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2.2. Five forms of error correction learning rule

Error correction learning rules are derived from gradient descent minimization (Hertz et al
1991), and continually compare the current neuronal output to a target value t and adjust the
synaptic weights according to the following equation at a particular time step τ :

�wj = α(t − yτ )xτj . (9)

In this usual form of gradient descent by error correction, the target t is fixed. However, in
keeping with our aim of encouraging neurons to respond similarly to images that occur close
together in time it seems reasonable to set the target at a particular time step, t τ , to be some
function of cell activity occurring close in time, because encouraging neurons to respond to
temporal classes will tend to make them respond to the different variants of a given stimulus
(Földiák 1991, Rolls 1992, Wallis and Rolls 1997). For this reason, in this paper we explore a
range of error correction rules where the targets t τ are based on the trace of neuronal activity
calculated according to equation (2). We note that although the target is not a fixed value as
in standard error correction learning, nevertheless the learning rules described here perform
gradient descent on each time step, as elaborated in the discussion. Although the target may
be varying early on in learning, as learning proceeds the target is expected to become more
and more constant, as neurons settle to respond invariantly to particular stimuli. The first set
of five error correction rules we shall discuss are as follows:

�wj = α(βȳτ−1 − yτ )xτj , (10)

�wj = α(βyτ−1 − yτ )xτj , (11)

�wj = α(βȳτ − yτ )xτj , (12)

�wj = α(βȳτ+1 − yτ )xτj , (13)

�wj = α(βyτ+1 − yτ )xτj (14)

where updates (10)–(12) are performed at time step τ , and updates (13) and (14) are performed
at time step τ + 1. (The reason for adopting this convention is that the basic form of the error
correction rule (9) is kept, with the five different rules simply replacing the term t .) It may
be readily seen that equations (11) and (14) are special cases of equations (10) and (13)
respectively, with η = 0.

These rules are all similar except for their targets t τ , which are all functions of a temporally
nearby value of cell activity. In particular, rule (12) is directly related to rule (8), but is more gen-
eral in that the parameter β̂ = 1

1−η
is replaced by an unconstrained parameterβ. In addition, we

also note that rule (10) is closely related to a rule developed in Peng et al (1998) for view invari-
ance learning. The above five error correction rules are biologically plausible in that the targets
t τ are all local cell variables (Rolls and Treves 1998). In particular, rule (12) uses the trace ȳτ

from the current time level τ , and rules (11) and (14) do not need exponential trace values ȳ,
instead relying only on the instantaneous firing rates at the current and immediately preceding
time steps. However, all five error correction rules involve decrementing of synaptic weights
according to an error which is calculated by subtracting the current activity from a target.

Numerical results with the error correction rules trained on seven faces in nine locations
are presented in figure 4. For all the results shown in this paper the synaptic weights were
clipped to be positive during the simulation, because it is important to test that decrementing
synaptic weights purely within the positive interval w ∈ [0,∞) will provide significantly
enhanced performance. That is, it is important to show that error correction rules do not
necessarily require possibly biologically implausible modifiable negative weights. For each of
the rules (10)–(14), the parameterβ has been individually optimized to the following respective
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Figure 4. Numerical results with the five error correction rules (10)–(14), (with positive clipping
of synaptic weights) trained on seven faces in nine locations. On the left are single-cell information
measures, and on the right are multiple-cell information measures.

values: 4.9, 2.2, 2.2, 3.8, 2.2. On the left and right are results with the single- and multiple-cell
information measures, respectively. Comparing figure 4 with figure 2 shows that all five error
correction rules offer considerably improved performance over both the standard trace rule (1)
and rule (4). From the left-hand side of figure 4 it can be seen that rule (10) performs best,
and this is probably due to two reasons. Firstly, rule (10) incorporates an exponential trace
ȳτ−1 in its target t τ , and we would expect this to help neurons to learn more quickly to respond
invariantly to a class of inputs that occur close together in time. Hence, setting η = 0 as in
rule (11) results in reduced performance. Secondly, unlike rules (12) and (13), rule (10) does
not contain any component of yτ in its target. If we examine rules (12) and (13), we see that
their respective targets βȳτ , βȳτ+1 contain significant components of yτ . Indeed, comparing
rules (12) and (13) shows that the target of rule (12) contains the largest contribution from
yτ , and this rule performs least well out of the two. Results with these five error correction
rules without positive clipping of weights showed that there were only minor differences in
performance.

In the above simulations one might have expected the optimal β value to be equal to 1
for each of the five error correction rules; this would imply that the error correction rules
were attempting to adapt the weights such that yτ = t τ at convergence. However, in practice
performance is poor for β = 1, with the best results obtained with values of β greater than 1.
This is due to effects related to the transition between two stimuli, as shown by the following.
If the trace is reset between stimuli (the procedure used in this paper), then the magnitude of
the trace for the first few presentations of the next stimulus is too low. Setting β greater than 1
compensates for this and therefore produces better performance. (The issue of trace reset
between stimuli should not be thought of as a major issue in VisNet, in that an exponentially
decaying trace minimizes interfering effects from previous stimuli (Wallis and Rolls 1997,
Wallis and Baddeley 1997), and in that a trace might be reset biologically between stimuli due
to a large saccade to a different stimulus (Wallis and Rolls 1997).)

2.3. Relationship to temporal difference learning, and five forms of
temporal-difference-inspired learning rules

So far we have discussed the relationship of rule (4) to error correction, and we now consider
how the error correction rules shown in equations (10)–(14) are related to temporal difference
learning (Sutton 1988, Sutton and Barto 1998).
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Sutton (1988) described temporal difference methods in the context of prediction learning.
These methods are a class of incremental learning techniques that can learn to predict final
outcomes through comparison of successive predictions from the preceding time steps. This
is in contrast to traditional supervised learning, which involves the comparison of predictions
only with the final outcome. Consider a series of multi-step prediction problems in which
for each problem there is a sequence of observation vectors, x1, x2, . . . ,xm, at successive
time steps, followed by a final scalar outcome z. For each sequence of observations temporal
difference methods form a sequence of predictions y1, y2, . . . , ym, each of which is a prediction
of z. These predictions are based on the observation vectors xτ and a vector of modifiable
weights w; i.e. the prediction at time step τ is given by yτ (xτ ,w), and for a linear dependency
the prediction is given by yτ = wT xτ . The problem of prediction is to calculate the weight
vector w such that the predictions yτ are good estimates of the outcome z.

The supervised learning approach to the prediction problem is to form pairs of observation
vectors xτ and outcome z for all time steps, and compute an update to the weights according
to the gradient descent equation

�w = α(z − yτ )∇wy
τ (15)

where α is a learning rate parameter. However, this learning procedure requires all calculation
to be done at the end of the sequence, once z is known. To remedy this, it is possible to replace
method (15) with a temporal difference algorithm that is mathematically equivalent but allows
the computational workload to be spread out over the entire sequence of observations. Temporal
difference methods are a particular approach to updating the weights based on the values of
successive predictions, yτ , yτ+1. Sutton (1988) showed that the following temporal difference
algorithm is equivalent to method (15):

�w = α(yτ+1 − yτ )

τ∑
k=1

∇wy
k (16)

where ym+1 ≡ z. However, unlike method (15) this can be computed incrementally at each
successive time step since each update depends only on yτ+1, yτ and the sum of ∇wy

k over
previous time steps k. The next step taken in Sutton (1988) is to generalize equation (16) to
the following final form of temporal difference algorithm, known as ‘TD(λ)’:

�w = α(yτ+1 − yτ )

τ∑
k=1

λτ−k∇wy
k (17)

where λ ∈ [0, 1] is an adjustable parameter that controls the weighting on the vectors ∇wy
k .

Equation (17) represents a much broader class of learning rules than the more usual gradient-
descent-based rule (16), which is in fact the special case TD(1).

A further special case of equation (17) is for λ = 0, i.e. TD(0), as follows:

�w = α(yτ+1 − yτ )∇wy
τ . (18)

But for problems where yτ is a linear function of xτ and w, we have ∇wy
τ = xτ , and so

equation (18) becomes

�w = α(yτ+1 − yτ )xτ . (19)

If we assume that the prediction process is being performed by a neuron with a vector of inputs
xτ , synaptic weight vector w and output yτ = wT xτ , then we see that the TD(0) algorithm (19)
is identical to the error correction rule (14) with β = 1. In understanding this comparison with
temporal difference learning, it may be useful to note that the firing at the end of a sequence
of the transformed exemplars of a stimulus is effectively the temporal difference target z. This
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establishes a link to temporal difference learning. Further, we note that from learning epoch
to learning epoch, the target z for a given neuron will gradually settle down to be more and
more fixed as learning proceeds.

We now explore in more detail the relation between the error correction rules described
above and temporal difference learning. For each sequence of observations with a single
outcome the temporal difference method (19), when viewed as an error correction rule, is
attempting to adapt the weights such that yτ+1 = yτ for all successive pairs of time steps—the
same general idea underlying the error correction rules (10)–(14). Furthermore, in Sutton
and Barto (1998), where temporal difference methods are applied to reinforcement learning,
the TD(λ) approach is again further generalized by replacing the target yτ+1 by any weighted
average of predictions y from arbitrary future time steps (e.g., t τ = 1

2y
τ+3 + 1

2y
τ+7), including

an exponentially weighted average extending forward in time. So a more general form of the
temporal difference algorithm has the form

�w = α(tτ − yτ )xτ , (20)

where here the target t τ is an arbitrary weighted average of the predictions y over future time
steps. Of course, with standard temporal difference methods the target t τ is always an average
over future time steps k = τ + 1, τ + 2, etc. But in the five error correction rules this is only
true for the last exemplar (14). This is because with the problem of prediction, for example,
the ultimate target of the predictions y1, . . . , ym is a final outcome ym+1 ≡ z. However, this
restriction does not apply to our particular application of neurons trained to respond to temporal
classes of inputs within VisNet. Here we only wish to set the firing rates y1, . . . , ym to the same
value, not some final given value z. However, the more general error correction rules clearly
have a close relationship to standard temporal difference algorithms. For example, it can be
seen that equation (11) with β = 1 is in some sense a temporal mirror image of equation (19),
particularly if the updates �wj are added to the weights wj only at the end of a sequence.
That is, rule (11) will attempt to set y1, . . . , ym to an initial value y0 ≡ z. This relationship to
temporal difference algorithms allows us to begin to exploit established temporal difference
analyses to investigate the convergence properties of the error correction methods, and this is
discussed in section 2.5.

Although our main aim in relating error correction rules to temporal difference learning
is to begin to exploit established temporal difference analyses, we note in the following that
the most general form of temporal difference learning, TD(λ), in fact suggests an interesting
generalization to the existing error correction learning rules for which we currently have λ = 0.
Assuming yτ = wT xτ and ∇wy

τ = xτ , the general equation (17) for TD(λ) becomes

�w = α(yτ+1 − yτ )

τ∑
k=1

λτ−kxk (21)

where the term
∑τ

k=1 λ
τ−kxk is a weighted sum of the vectors xk . This suggests generalizing

the original five error correction rules (10)–(14) by replacing the term xτj by a weighted sum
x̂τj = ∑τ

k=1 λ
τ−kxkj with λ ∈ [0, 1]. In Sutton (1988) x̂τj is calculated according to

x̂τj = xτj + λx̂τ−1
j (22)

with x̂0
j ≡ 0. This gives the following five temporal-difference-inspired error correction rules:

�wj = α(βȳτ−1 − yτ )x̂τj , (23)

�wj = α(βyτ−1 − yτ )x̂τj , (24)

�wj = α(βȳτ − yτ )x̂τj , (25)
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Figure 5. Numerical results with the five temporal-difference-inspired error correction rules (23)–
(27), and x̂τj calculated according to equation (22) (with positive clipping of synaptic weights)
trained on seven faces in nine locations. On the left are single-cell information measures, and on
the right are multiple-cell information measures.

�wj = α(βȳτ+1 − yτ )x̂τj , (26)

�wj = α(βyτ+1 − yτ )x̂τj (27)

where it may be readily seen that equations (24) and (27) are special cases of (23) and (26)
respectively, with η = 0. As with the trace ȳτ , the term x̂τj is reset to zero when a new stimulus
is presented. These five rules can be related to the more general TD(λ) algorithm, but continue
to be biologically plausible using only local cell variables. Setting λ = 0 in rules (23)–(27),
gives us back the original error correction rules (10)–(14), which may now be related to TD(0).

Numerical results with error correction rules (23)–(27), and x̂τj calculated according
to equation (22) with λ = 1, with positive clipping of weights, trained on seven faces in
nine locations are presented in figure 5. For each of the rules (23)–(27), the parameter β
has been individually optimized to the following respective values: 1.7, 1.8, 1.5, 1.6, 1.8.
On the left and right are results with the single- and multiple-cell information measures,
respectively. Comparing these five temporal-difference-inspired rules, it can be seen that
the best performance is obtained with rule (27) where many more cells reach the maximum
level of performance possible with respect to the single-cell information measure. In fact,
this rule offered the best such results in this paper. This may well be due to the fact that
this rule may be directly compared to the standard TD(1) learning rule, which itself may be
related to classical supervised learning for which there are well known optimality results.
This is fully discussed in section 2.5. We note here that the use of x̂ implies a presynaptic
temporal trace, which is biologically plausible (though λ as high as 1 might be considered less
plausible because it implies no decay of the presynaptic trace). We have shown in this paper
that invariant learning in neural networks can be produced with values of λ as extreme as 0
and 1, within which the biologically plausible values will lie. In additional simulations we
confirmed similar invariant learning with intermediate values of λ. A surprising result shown
in figure 5 is the relatively poor performance of rule (24) for the multiple-cell information
measure, which asymptotes to a sub-optimal value. It is not clear why this rule has behaved in
this way. Overall, the temporal-difference-related learning rules with a presynaptic trace (23)–
(27) produce good performance which is comparable to that produced with error correction
rules.

Sutton (1988) discusses the possibility of using different weightings for the vectors
∇wy

k = xk . Therefore, an alternative approach would be to replace x̂τj in equations (23)–(27)
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Figure 6. The architecture of the one-layer network. The shift-invariant problem consisted of
learning to produce the same output firing for each of the shifted versions of the seven training
patterns. Each test pattern was generated by setting at random 20 of the first 200 input firing rates
to 1. Each of the nine shifted versions of each training pattern were produced by shifting the
training pattern by 100 units across the 1000 input neurons. There were 100 output neurons.

with the traced average, x̄τj , calculated according to equation (2). Although not presented here,
the results we obtained with such rules also showed good performance.

2.4. Speed of convergence

It may be expected that the different learning rules described in this paper produce different
convergence histories, with both the optimal performance achieved and the rate at which that
optimal performance is achieved differing between the different learning rules. In the runs
with VisNet, a relatively low learning rate which tended to produce good performance with the
different rules was used, and the network was allowed to learn for a standard number of epochs
for each layer. To explore in more detail the performance of the different rules, and especially
their speed of convergence, investigations were performed with a smaller, one-layer, network
to enable the performance to be investigated without the large simulation overhead of VisNet.
(The simulations with VisNet allow the operation of these rules to be studied in this much fuller
model of several stages of operation of the visual system, but these are much larger and more
computationally intensive simulations. For the present section, it was of interest to restrict
the scale of the simulations to one-layer nets, to allow intensive exploration of the particular
issue of the speed of convergence of the different learning rules described and in some cases
introduced in this paper.)

The one-layer net consisted of 100 output neurons with firing rates yi each receiving
1000 inputs with firing rates xj . The seven input stimuli each consisted of binary firing rate
patterns of 20 active neurons, chosen randomly from the first 200 neurons in the input array.
Translation invariance was studied by choosing one of the seven input stimuli, and presenting
it successively during learning in nine locations, each location translated across a distance
corresponding to 100 input units (see figure 6). At each location, the activation h of a neuron
was computed by the inner product of the input firing vector and the synaptic weight vector
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Figure 7. Convergence histories showing the performance
of a simplified one-layer object recognition network with
the following four learning rules: standard trace rule (1),
learning rule (4), error correction rule (10), and temporal-
difference-inspired rule (23).

as follows:

h =
∑

wjxj . (28)

Then the output firing was produced by a linear threshold activation function that ensured
that the sparseness of the output firing of the population of 100 neurons had a sparseness
(see above) of 0.1 (Rolls and Treves 1998). Then learning took place according to the
learning rule being tested. After the stimulus had been presented this way in all nine
locations, the trace was then reset, and another stimulus was chosen, and presented successively
during learning in nine locations. The training algorithm was thus very similar to that
used by VisNet, and the aim of the learning was to produce output neurons that could be
activated by any of the translated versions of one of the stimuli, and by none of the other
stimuli.

In these experiments with a one-layer competitive network we implemented a correlation
measure, which shows the similarity of the output firing pattern of the 100 neurons to all
the translated versions of a given stimulus, relative to the output patterns produced by all
the other stimuli in all locations. In particular, we measured the average cosine of the angle
between the output firing rate pattern vector to the translated versions of a particular stimulus,
and subtracted from this the average cosine of the angle between the output pattern and all
output patterns to other stimuli. Given that the cosine of the angle between aligned vectors
is 1, and between orthogonal vectors is zero, the overall translation invariance performance
measure will have a maximal value of 1, and a minimal value clipped at zero. Results with
this performance measure are presented in figure 7, which shows the convergence histories
of the performance measure for the one-layer network with the following four learning rules:
standard trace rule (1), learning rule (4), error correction rule (10) and temporal-difference-
inspired rule (23). It can be seen that the error correction rule (10) converges much more rapidly
than the other rules, and by the end of 50 epochs has achieved almost perfect performance.
However, the results shown are for a comparatively low value of the learning rate parameter
used in the above equations of 0.01 which was found to produce smooth convergence with
all the learning rules. If the learning rate is increased to too high a value, then oscillatory
performance may result. The conclusion of the investigations with the one-layer net is thus
that the learning rules do differ with respect to the efficiency with which convergence occurs.
The error correction rule operates relatively quickly and effectively, the temporal difference
and the asymmetric trace rule (4) both operate intermediately, and the standard trace rule (1)
operates more slowly.
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2.5. Convergence analyses

In section 2.3 it was shown that the error correction rules discussed in section 2.2 can be related
to temporal difference methods. This now allows us to begin to apply existing convergence
analyses from temporal difference theory (Sutton 1988, Sutton and Barto 1998) and supervised
learning (Widrow and Stearns 1985). In this paper we focus on two results from Sutton (1988)
relating to perhaps two of the most simple rules, which are examples of TD(1) and TD(0)
respectively. These analyses shed light on the basic operation of these two types of learning
rule, helping to explain their relative efficacies. However, the results we discuss below apply
to the rather idealized situation of sequences of input vectors, x1, x2, . . . ,xm presented to
an isolated neuron with firing rates yτ = wT xτ for τ = 1, . . . , m, and ym+1 kept fixed to
some constant value z. This is the basic temporal difference setup for the prediction problem
described in Sutton (1988) and section 2.3. Of course, these assumptions are not fully met in
VisNet, where the individual firing rates of neurons are affected by other neurons through lateral
inhibition. In addition, in VisNet ym+1 will depend on the synaptic weights and the input vector
xm+1, which in turn will depend on the presentation order. However, the aim of the following
analyses is to help reveal how error correction rules cause individual neurons to learn to respond
similarly to classes of inputs that occur close together in time. The underlying processes behind
this are in fact complemented by these additional model details: lateral inhibition simply helps
to select which neurons respond to a particular stimulus, and the re-ordering of views should
act to reduce the possibility of particular views dominating the learning process just by virtue
of their place in the sequence. These two effects then blend with the fundamental operation of
error correction rules which adapt synaptic weights to encourage neurons to respond similarly
to inputs that occur close together in time. It is this aspect of the error correction learning rules
that the following analyses help to illuminate.

Firstly, we consider the TD(1) rule derived from setting λ = 1 and β = 1 in equation (27):

�wj = α(yτ+1 − yτ )

τ∑
k=1

xkj . (29)

In Sutton (1988) it is shown that if all synaptic weight updates are carried out at the end of a
sequence, then rule (29) is in fact equivalent to

�wj = α(z − yτ )xτj (30)

which is classical supervised learning where yτ is compared directly with ym+1 ≡ z. Widrow
and Stearns (1985) provide an account of the theory of this rule. In particular, when continually
presented with new data series, rule (30) converges to the true expected value E{z|x} for each
input vector x. In contrast, under repeated presentations of a finite data set, rule (30) minimizes
the root mean square error between the predictions y and the actual outcomes z in the training
set.

Next we consider the TD(0) rule derived from setting λ = 0 and β = 1 in equation (27),
which is equivalent to equation (14) with β = 1, and may be written as

�wj = α(yτ+1 − yτ )xτj . (31)

In Sutton (1988) it is shown that when continually presented with new data series, rule (31)
performs similarly to rule (30), converging to the true expected value E{z|x} for each input
vector x. However, under repeated presentations of a finite data set, rule (31) converges to what
can be considered the optimal estimates for coping with future experience—those consistent
with the maximum likelihood estimate of an assumed underlying Markov process. So, under
repeated presentations of a finite set of input sequences, the TD(1) and TD(0) rules, (29)
and (31) respectively, perform different types of optimization, and it is this difference that may
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be responsible for the apparent disparity in the performance of these two rules within VisNet,
as discussed below.

From our earlier simulations it appears that the form of optimization described above
associated with TD(1) rather than TD(0) leads to better performance within VisNet. Comparing
figures 4 and 5 shows that the TD(1)-like rule (27) with λ = 1.0 andβ = 1.8 gives considerably
superior results to the TD(0)-like rule (14) with β = 2.2. In fact, the former of these two rules
provided the best single-cell information results presented in this paper. We hypothesize that
these results are related to the fact that only a finite set of image sequences is presented to
VisNet, and so the type of optimization performed by TD(1) for repeated presentations of a
finite data set is more appropriate for this problem than the form of optimization performed
by TD(0).

In this section we have exploited some analyses from temporal difference methods and
supervised learning to provide convergence results for two error correction rules (29) and (31)
that are examples of TD(1) and TD(0), respectively. These initial results have begun to provide
a theoretical framework to better understand the operation of the learning rules discussed in
this paper, and may now open the way for the transfer of further convergence results from the
temporal difference literature.

3. Discussion

In this paper we have established a link between trace learning rules and both error correction
and temporal difference learning, and have discussed the relationships above. In terms of
biological plausibility, we note the following. First, all the learning rules described in this
paper are local learning rules, and in this sense are biologically plausible (see Rolls and Treves
(1998)). (The rules are local in that the terms used to modify the synaptic weights are potentially
available in the pre- and post-synaptic elements.)

Second, we note that all the rules do require some evidence of the activity on one or more
previous stimulus presentations to be available when the synaptic weights are updated. Some
of the rules (for example, learning rule (12)) use the trace ȳτ from the current time level, while
rules (11) and (14) do not need to use an exponential trace of the neuronal firing rate, but only
the instantaneous firing rates y at two successive time steps. It is known that synaptic plasticity
does involve a combination of separate processes each with potentially differing time courses
(Koch 1999), and these different processes could contribute to trace rule learning. Another
mechanism suggested for implementing a trace of previous neuronal activity is the continuing
firing for often 300 ms produced by a short (16 ms) presentation of a visual stimulus (Rolls
and Tovee 1994) which is suggested to be implemented by local cortical recurrent attractor
networks (Rolls and Treves 1998).

Third, we note that in utilizing the trace in the targets t τ , the error correction (or temporal-
difference-inspired) rules perform a comparison of the instantaneous firingyτ with a temporally
nearby value of the activity, and this comparison involves a subtraction. The subtraction
provides an error, which is then used to increase or decrease the synaptic weights. This is
a somewhat different operation from long-term depression as well as long-term potentiation,
which are associative changes which depend on the pre- and post-synaptic activity. However,
it is interesting to note that an error correction rule which appears to involve a subtraction of
current firing from a target might be implemented by a combination of an associative process
operating with the trace, and an anti-Hebbian process operating to remove the effects of the
current firing. For example, the synaptic updates�wj = α(tτ −yτ )xτj can be decomposed into
two separate associative processes, αtτ xτj and −αyτxτj , that may occur independently. (The
target, t τ , could in this case be just the trace of previous neural activity from the preceding
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trials, excluding any contribution from the current firing.) Another way to implement an error
correction rule using associative synaptic modification would be to force the post-synaptic
neuron to respond to the error term. Although this has been postulated to be an effect which
could be implemented by the climbing fibre system in the cerebellum (Ito 1984, 1989, Rolls
and Treves 1998), there is no similar system known for the neocortex, and it is not clear how
this particular implementation of error correction might operate in the neocortex.

In section 2.2 we describe five learning rules as error correction rules. We now
discuss an interesting difference of these error correction rules from error correction rules
as conventionally applied. It is usual to derive the general form of error correction learning
rule from gradient descent minimization in the following way (Hertz et al 1991). Consider the
idealized situation of a single neuron with a number of inputs xj and output y = ∑

j wjxj ,
where wj are the synaptic weights. We assume there are a number of input patterns and that
for the kth input pattern, xk = [xk1 , x

k
2 , . . .]

T , the output yk has a target value tk . Hence an
error measure or cost function can be defined as

e(w) = 1
2

∑
k

(tk − yk)2 = 1
2

∑
k

(
tk −

∑
j

wjx
k
j

)2

. (32)

This cost function is a function of the input patterns xk and the synaptic weight vector
w = [w1, w2, . . .]T . With a fixed set of input patterns, we can reduce the error measure
by employing a gradient descent algorithm to calculate an improved set of synaptic weights.
Gradient descent achieves this by moving downhill on the error surface defined in w space
using the update

�wj = −α
∂e

∂wj

= α
∑
k

(tk − yk)xkj . (33)

If we update the weights after each pattern k, then the update takes the form of an error
correction rule

�wj = α(tk − yk)xkj (34)

which is also commonly referred to as the delta rule or Widrow–Hoff rule (see Widrow and
Hoff (1960) and Widrow and Stearns (1985)). Error correction rules continually compare the
neuronal output with its pre-specified target value and adjust the synaptic weights accordingly.
In contrast, the way we have introduced in this paper of utilizing error correction is to specify
the target as the activity trace based on the firing rate at nearby time steps. Now the actual
firing at those nearby time steps is not a pre-determined fixed target, but instead depends on
how the network has actually evolved. This effectively means the cost function e(w) that is
being minimized changes from time step to time step. Nevertheless, the concept of calculating
an error, and using the magnitude and direction of the error to update the synaptic weights, is
the similarity we wish to draw out to gradient descent learning. Further investigations of this
concept may be of interest in the future. For example, with each update taking one gradient
descent step in a direction that helps to minimize the current cost function, it might be the case
that there is an overall cost function that is minimized. The relatively good performance of
the error correction rules investigated in this paper would suggest that this possibility deserves
further investigation. In a similar way, the temporal difference learning rules introduced in this
paper do not use fixed final outcomes z that can be pre-specified, but instead the traditional
temporal difference concept is extended to include a temporally varying outcome ym+1 ≡ z.

The simulations were run with the memory trace ȳτ being reset between stimuli. The issue
of trace reset between stimuli should not be thought of as a major issue in VisNet, in that an
exponentially decaying trace minimizes interfering effects from previous stimuli (Wallis and
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Rolls 1997, Wallis and Baddeley 1997), and in that a trace might be reset biologically between
stimuli due to a large saccade to a different stimulus (Wallis and Rolls 1997). However, we
did run additional simulations to investigate whether trace reset had effects that were more
prominent with the rules investigated in this paper. First, we found that for rule (4) not
resetting the trace between stimuli produced very similar results to those obtained with trace
reset. Second, we found that for error correction rule (10) not resetting the trace between
stimuli produced somewhat less good performance than with trace reset. This effect may be
related to the fact that as the error correction rule is more powerful, then large changes to
the weights are made on the first one or two presentations of a new stimulus which are in
the direction of the stimulus that was being shown previously. The changes in the synaptic
weights on the first few trials of a new stimulus thus tended with the error correction rule to
strongly encourage neurons to respond as they had to the previous stimulus. We also showed
that this effect can be reduced by, for example, sweeping through the locations more than
once whenever a stimulus is selected. This minimizes between-stimulus interference effects,
as the same stimulus is presented successively more times. In summary, the lack of a trace
reset may introduce some performance cost with the more powerful learning rules such as
the error correction rules presented here, but these effects can be minimized by using longer
presentations of each stimulus during training. Resetting of the trace by, for example, large
saccades to a new stimulus (Wallis and Rolls 1997) might be especially beneficial in a system
that used the more powerful error correction learning rules described here.

To conclude, we see then the error correction and temporal difference rules explored in
this paper as providing interesting approaches to help understand invariant pattern recognition
learning. Although we do not know whether the full power of these rules is expressed in the
brain, we have provided suggestions about how they might be implemented. At the same
time, we note that the original trace rule used by Földiák (1991), Rolls (1992) and Wallis and
Rolls (1997) is a simple associative rule, is therefore biologically very plausible, and while
not as powerful as many of the other rules introduced here, can nevertheless solve the same
class of problem. We would also like to emphasize that although we have demonstrated how
a number of error correction and temporal difference rules might play a role in the context
of view-invariant object recognition, they may also operate elsewhere where it is important
for neurons to learn to respond similarly to temporal classes of inputs that tend to occur close
together in time.
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