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Abstract

The effects of cluttered environments are investigated on the performance of a hierarchical multilayer model of invariant object recog-
nition in the visual system (VisNet) that employs learning rules that utilise a trace of previous neural activity. This class of model relies on the
spatio-temporal statistics of natural visual inputs to be able to associate together different exemplars of the same stimulus or object which will
tend to occur in temporal proximity. In this paper the different exemplars of a stimulus are the same stimulus in different positions. First it is
shown that if the stimuli have been learned previously against a plain background, then the stimuli can be correctly recognised even in
environments with cluttered (e.g. natural) backgrounds which form complex scenes. Second it is shown that the functional architecture has
difficulty in learning new objects if they are presented against cluttered backgrounds. It is suggested that processes such as the use of a high-
resolution fovea, or attention, may be particularly useful in suppressing the effects of background noise and in segmenting objects from their
background when new objects need to be learned. However, it is shown third that this problem may be ameliorated by the prior existence of
stimulus tuned feature detecting neurons in the early layers of the VisNet, and that these feature detecting neurons may be set up through
previous exposure to the relevant class of objects. Fourth we extend these results to partially occluded objects, showing that (in contrast with
many artificial vision systems) correct recognition in this class of architecture can occur if the objects have been learned previously without
occlusion.q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

1.1. Background

In this paper we investigate the effects of cluttered envir-
onments on the performance of a model of transform (e.g.
position, size and view) invariant object recognition in the
visual system (VisNet) proposed by Rolls (1992, 1994,
1995, 2000) that employs learning rules that utilise a trace
of previous neural activity. The model architecture is based
on the following: (i) A series of hierarchical competitive
networks with local graded inhibition. (ii) Convergent
connections to each neuron from a topologically corre-
sponding region of the preceding layer, leading to an
increase in the receptive field size of neurons through the
visual processing areas. (iii) Synaptic plasticity based on a
modified Hebb-like learning rule with a temporal trace of
each neuron’s previous activity. These hypotheses were

incorporated into a simulation, VisNet, which was shown
to be capable of producing stimulus-selective but translation
and view invariant representations (Wallis & Rolls, 1997).
Models with hierarchically organised competitive networks
designed to study neurally plausible ways of forming invar-
iant representations of stimuli have been studied by a
number of investigators (Fukushima, 1980; Poggio &
Edelman, 1990), but VisNet differs from other models in
that it relies on the spatio-temporal statistics of natural
visual inputs to be able to associate together different trans-
forms of stimuli which will tend to occur in temporal prox-
imity. Further work with VisNet is presented in Elliffe,
Rolls and Stringer (2000), Rolls and Milward (2000) and
Rolls and Stringer (2000). However, so far, all investi-
gations with VisNet have involved the presentation of
stimuli against a blank background, so that no segmentation
of the object from its background is needed. The aim of the
investigations described here is to compare such results with
simulations performed in cluttered environments. Although
there has been much work involving object recognition in
cluttered environments with artificial vision systems, many
such systems typically rely on some form of search and
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template matching procedure (see Ullman (1996) for a
general review). Such problems may involve the object
appearing against a cluttered background or partial occlu-
sion of the object. However, biological nervous systems
operate in quite a different manner to those artificial vision
systems that rely on search and template matching, and the
way in which biological systems cope with cluttered envir-
onments is likely to be quite different also.

One of the factors that will influence the performance of
the type of architecture considered here, hierarchically
organised series of competitive networks, which form one
class of approaches to biologically relevant networks for
invariant object recognition (Fukushima, 1980; Poggio &
Edelman, 1990; Rolls, 1992; Rolls & Treves, 1998; Wallis
& Rolls, 1997), is how lateral inhibition and competition are
managed within a layer. Even if an object is not obscured,
the effect of a cluttered background will be to fire additional
neurons, which will in turn to some extent compete with and
inhibit those neurons that are specifically tuned to respond
to the desired object. Moreover, where the clutter is adjacent
to part of the object, the feature analysing neurons activated
against a blank background may be different from those
activated against a cluttered background, if there is no
explicit segmentation process. In this paper we examine
the performance of one network of this type, VisNet,
taken as an exemplar of the class, when presented with
stimuli to be identified invariantly even when presented in
a cluttered background. From the experiments we are able to
make some proposals about the operation of real nervous
systems.

In Section 2 we show that whereas recognition of objects
learned previously against a blank background is hardly
affected by the presence of background noise, the ability
to learn position invariant responses to new objects when
presented against cluttered backgrounds is greatly reduced.
This suggests that some form of attentional mechanism may
be required during learning to highlight the current stimulus
being attended to and suppress the effects of background
noise. However, we also demonstrate that this problem
may be ameliorated by the prior existence of stimulus
tuned feature detecting neurons in the early layers of the
VisNet, and that these feature detecting neurons may be
set up through previous exposure to the relevant class of
objects. Such feature detecting neurons may then help to
suppress the effects of background clutter when the visual
system is exposed to new members of that class. Hence, the
findings predict that in real world cluttered environments,
attention is more likely to be required for learning than for
recognition; and that learning of new objects is facilitated in
cluttered backgrounds if feature analysers useful for the new
objects have been formed by previous exposure to other
objects with similar features.

In Section 3 we examine the recognition of partially
occluded stimuli. Many artificial vision systems that
perform object recognition typically search for specific
markers in stimuli, and hence their performance may

become fragile if key parts of a stimulus are occluded.
However, in contrast we demonstrate that the biologically
inspired model discussed in this paper can continue to offer
robust performance with this kind of problem, and that the
model is able to correctly identify stimuli with considerable
flexibility about what part of a stimulus is visible.

1.2. The VisNet model

In this section we give an overview of the VisNet model;
full details are provided by Rolls and Milward (2000) and
Wallis and Rolls (1997). In particular, the simulations
performed in this paper use the latest version of the VisNet
model (VisNet2) with the same parameter values as given in
Rolls and Milward (2000). The model consists of a feed-
forward1 hierarchical series of 4 layers of competitive
networks (with 1024 neurons per layer), corresponding in
the primate visual system to V2, V4, the posterior inferior
temporal cortex, and the anterior inferior temporal cortex, as
shown in Fig. 1. The V2 layer of the model receives its
inputs from an input layer which provides a representation
comparable to that found in V1. The forward connections to
individual cells are derived from a topologically corre-
sponding region of the preceding layer, using a Gaussian
distribution of connection probabilities. Within each layer
competition is graded rather than winner-take-all, and is
implemented in two stages. First, to implement lateral
inhibition the activation of neurons within a layer is
convolved with a local spatial filter which operates over
several pixels. Next, contrast enhancement is applied by
means of a sigmoid activation function where the sigmoid
threshold is adjusted to control the sparseness of the firing
rates to values that are approximately 0.01 for the first two
layers, and 0.1 for layers 3 and 4 (see for details Rolls and
Milward (2000)).

The mechanism for transform invariant object recog-
nition proposed by Fo¨ldiák (1991) and Rolls (1992) relies
on the spatio-temporal statistics of natural visual input. In
particular, in the real world different views of the same
object are likely to occur in temporal proximity to each
other. Then if synaptic learning rules are utilised that
encourage neurons to respond invariantly to temporally
proximal input patterns, such neurons should learn to
respond invariantly to different views of individual stimuli.
The original trace learning rule used in the simulations of
(Wallis & Rolls, 1997) took the form

Dwj � a �ytxtj �1�
where the trace�yt is updated according to

�yt � �1 2 h�yt 1 h �yt21 �2�
and we have the following definitions:xj, jth input to the
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1 Backprojections are not included in the current implementation of
VisNet, because there is evidence that they are not necessary for rapid
object identification (Rolls & Treves, 1998).



neuron;y, output from the neuron;�yt; trace value of the
output of the neuron at time stept ; a , learning rate.
Annealed between unity and zero;wj, synaptic weight
betweenjth input and the neuron;h , trace value. The opti-
mal value varies with presentation sequence length. The
parameterh may be set in the interval [0,1], and in our
simulations with trace learningh is set to 0.8. However,
for h � 0 Eq. (1) becomes the standard Hebb rule

Dwj � aytxtj : �3�
Recently, however, it has been demonstrated (Rolls &
Milward, 2000) that a modified Hebbian rule which incor-
porates a trace of activity calculated from the preceding
presentations but not the current time step can offer substan-
tially improved performance over the standard trace rules
described in Fo¨ldiák (1991) and Wallis and Rolls (1997).
This rule takes the form

Dwj � a �yt21xtj : �4�
In VisNet simulations discussed later in this paper, learning
rule (4) is used to develop transform invariant neurons.

1.3. Training and test procedure

The images used for training and testing VisNet in this
paper are specially constructed for the cluttered environ-
ment problems described in Section 1.1. There are 7 face
stimuli approximately 64 pixels in height constructed with-
out backgrounds as shown in Fig. 2. In addition there are
three possible backgrounds: a blank background (greyscale
127, where the range is 0–255), and 2 cluttered backgrounds
as shown in Fig. 3 which are 128× 128 pixels in size. Each
image presented to VisNet’s 128× 128 input retina is then
composed of a single face stimulus positioned at one of nine
locations on either a blank or cluttered background. The
cluttered background was intended to be like the back-

ground against which an object might be viewed in a natural
scene. If a background is used in an experiment described
here, the same background is always used, and it is always
in the same position, with stimuli moved to different
positions on it. The nine stimulus locations are arranged
in a square grid across the background, where the grid
spacings are 32 pixels horizontally or vertically. Before
images are presented to VisNet’s input layer they are pre-
processed by a set of input filters which accord with the
general tuning profiles of simple cells in V1 (Hawken &
Parker, 1987); full details are given in Rolls and Milward
(2000). To train the network a sequence of images is
presented to VisNet’s retina that corresponds to a single
stimulus occurring in a randomised sequence of the nine
locations across a background. At each presentation the
activation of individual neurons is calculated, then their
firing rates are calculated, and then the synaptic weights
are updated. After a stimulus has been presented in all the
training locations, a new stimulus is chosen at random and
the process repeated. The presentation of all the stimuli
across all locations constitutes 1 epoch of training. In this
manner the network is trained one layer at a time starting
with layer 1 and finishing with layer 4. In the investigations
described here, the numbers of training epochs for layers
1–4 were 50, 100, 100 and 75, respectively.

The network’s performance is assessed using two infor-
mation theoretic measures: single and multiple cell infor-
mation about which stimulus was shown. Full details on the
application of these measures to VisNet are given by Rolls
and Milward (2000). These measures reflect the extent to
which cells respond invariantly to a stimulus over a number
of retinal locations, but respond differently to different
stimuli. The single cell information measure is applied to
individual cells in layer 4, and measures how much infor-
mation is available from the response of a single cell about
which stimulus was shown. For each cell the single cell
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Fig. 1. Left: Stylised image of the VisNet four layer network. Convergence through the network is designed to provide 4th layer neurons with information from
across the entire input retina. Right: Convergence in the visual system—adapted from Rolls (1992). V1, visual cortex area V1; TEO, posterior inferior temporal
cortex; and TE, inferior temporal cortex (IT).



information measure used was the maximum amount of
information a cell conveyed about any one stimulus. This
is computed using the following formula with details given
by Rolls, Treves, Tovee and Panzeri (1997) and Rolls and
Milward (2000). The stimulus-specific informationI �s;R� is
the amount of information the set of responsesRhas about a
specific stimuluss, and is given by

I �s;R� �
X
r[R

P�r us�log2
P�r us�
P�r� �5�

wherer is an individual response from the set of responsesR.
However, the single cell information measure cannot give

a complete assessment of VisNet’s performance with
respect to invariant object recognition. If all output cells
learned to respond to the same stimulus then there would
in fact be relatively little information available about the set
of stimuli S, and single cell information measures alone
would not reveal this. To address this issue, we also calcu-
lated a multiple cell information measure, which assesses
the amount of information that is available about the whole
set of stimuli from a population of neurons. Procedures for
calculating the multiple cell information measure are
described by Rolls, Treves and Tovee (1997) and Rolls
and Milward (2000). In brief, we calculate the mutual infor-
mation, that is, the average amount of information that is
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Fig. 3. Cluttered backgrounds used in VisNet simulations: backgrounds 1 and 2 are left and right, respectively.

Fig. 2. Face stimuli used in VisNet simulations: faces are ordered from face 1 (top left) to face 7 (bottom right).



obtained about which stimulus was shown from a single
presentation of a stimulus from the responses of all the
cells. That is, the mutual information between the whole
set of stimuliS and of responsesR is the average across
stimuli of this stimulus-specific information. This is
achieved through a decoding procedure, in which the stimu-
lus s0 that gave rise to the particular firing rate response
vector on each trial is estimated. A probability table is
then constructed of the real stimulisand the decoded stimuli
s0. From this probability table, the mutual information is
calculated as

I �s; s0� �
X
s;s0

P�s; s0�log2
P�s; s0�

P�s�P�s0� : �6�

Multiple cell information values were calculated for the
subset of cells which had as single cells the most infor-
mation about which stimulus was shown. In particular, we
calculated the multiple cell information from the first five
cells for each stimulus that had maximal single cell infor-
mation about that stimulus, that is from a population of 35
cells given that there were seven stimuli. This was found to
be a sufficiently large subset of the cells to enable a check
that the cells did indeed include some tuned to each of the
different stimuli. The criterion for perfect performance to all
stimuli was that the multiple cell information should reach
the information needed to fully discriminate the set of
stimuli, that is log2 Sbits.

2. VisNet simulations with stimuli in cluttered
backgrounds

2.1. Previously trained stimuli tested in cluttered
backgrounds

In the simulations in this section we begin by testing with
VisNet2 how, after the network has been trained with
stimuli presented on a blank background, testing with the
stimuli presented in cluttered backgrounds affects the
performance. Is invariant recognition still possible?

Previous investigations with VisNet have involved the
presentation of stimuli against a blank (e.g. greyscale 127)
background. In the simulations described here we compare
such results with simulations performed with the cluttered
backgrounds as shown in Fig. 3.

Experiment 1 involves testing the network with the 7 face
stimuli shown in Fig. 2 presented during training and recog-
nition on a blank background. This experiment provides a
baseline performance with which to compare results from
later experiments with cluttered backgrounds or partially
occluded stimuli. Numerical results for experiment 1 are
presented in Fig. 4. On the left are the single cell infor-
mation measures for all top (4th) layer neurons ranked in
order of their invariance to the faces, while on the right are
the multiple cell information measures. Results are
presented for the network trained with the trace rule (4) or
the Hebb rule (3), or untrained with the initial random
weights. It may be seen that view invariant neurons with
high single cell information measures only develop with the
network trained with the trace rule (4). The results with trace
rule (4) show a mildly reduced performance compared to
results given in Rolls and Milward (2000). This is because
in this present work the face stimuli are carefully separated
from their original 64× 64 natural backgrounds before
being inserted into the 128× 128 backgrounds used here.
However, it can still be seen that a number of cells have
reached the maximum possible single cell information
measure of 2.8 bits (log2 of the number of stimuli) for this
test case, and that the multiple cell information measures
also reach the 2.8 bits indicating perfect performance.

In experiment 2, VisNet is trained with the 7 face stimuli
presented on a blank background, but tested with the faces
presented on each of the 2 cluttered backgrounds. Fig. 5
shows results for experiment 2, with single and multiple
cell information measures on the left and right respectively.
Comparing Figs. 4 and 5 shows that there is very little
deterioration in performance when testing with the faces
presented on either of the 2 cluttered backgrounds. This is
an interesting result to compare with many artificial vision
systems that would need to carry out computationally

S.M. Stringer, E.T. Rolls / Neural Networks 13 (2000) 305–315 309

Fig. 4. Numerical results for experiment 1, with the 7 faces presented on a blank background during both training and testing. On the left are single cell
information measures, and on the right are multiple cell information measures. Results are presented for the network trained with the trace rule (4),the Hebb
rule (3), and random weights.



intensive serial searching and template matching procedures
in order to achieve such results. In contrast, the VisNet
neural network architecture is able to perform such recog-
nition relatively quickly through a simple feedforward
computation. Further results from experiment 2 are
presented in Fig. 6 where we show the response profiles
of a 4th layer neuron to the 7 faces presented on cluttered
background 1 during testing. It can be seen that this neuron
achieves excellent invariant responses to the 7 faces even
with the faces presented on a cluttered background. The
response profiles are independent of location but differen-

tiate between the faces in that the responses are maximal for
only one of the faces and minimal for all other faces.

2.2. Training with stimuli presented in cluttered
backgrounds

In experiment 3, VisNet was trained with the 7 face
stimuli presented on either one of the 2 cluttered back-
grounds, but tested with the faces presented on a blank back-
ground. Results for experiment 3 are shown in Fig. 7, with
single and multiple cell information measures on the left and
right, respectively. This time, however, performance is very
significantly degraded, with no cells reaching the maximum
possible single cell information measure of 2.8 bits. This is
in stark contrast to results from experiment 2, and reveals a
significant asymmetry in terms of the effect of a cluttered
background during learning and recognition. In this case,
during training the network has learned to respond to a
combination of a face and a cluttered background, and
does not produce perfect recognition when the face is
presented alone on a plain background.

The difficulty in producing good results when the stimuli
are presented during training in cluttered backgrounds is
even more evident in experiment 4, in which VisNet is
both trained and tested with the 7 face stimuli presented
on either one of the 2 cluttered backgrounds, with the
same background being used for both training and testing.
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Fig. 5. Numerical results for experiment 2, with the 7 faces presented on a blank background during training and a cluttered background during testing. On the
left are single cell information measures, and on the right are multiple cell information measures.

Fig. 6. Response profiles of a top layer neuron to the 7 faces from experi-
ment 2, with the faces presented against cluttered background 1 during
testing.

Fig. 7. Numerical results for experiment 3, with the 7 faces presented on a cluttered background during training and a blank background during testing. On the
left are single cell information measures, and on the right are multiple cell information measures.



Results for experiment 4 are shown in Fig. 8, with single and
multiple cell information measures on the left and right,
respectively. In particular, Fig. 9 shows the response profiles
of a typical 4th layer neuron to the 7 faces presented on
cluttered background 1 during training and testing. It can
be seen that this neuron has learned to respond to all of the
faces in all of the positions, which implies that the cell has
simply learned to respond to the background.

Part of the difficulty that hierarchical multilayer com-
petitive networks have with learning in cluttered environ-
ments may be that without explicit segmentation of the
stimulus from its background, at least some of the features
that should be formed to encode the stimuli are not formed
properly, because the neurons learn to respond to combin-
ations of inputs which come partly from the stimulus, and
partly from the background. To investigate this, we
performed experiment 5 in which we pretrained layers 1–
3 with stimuli to ensure that good feature combination
neurons for stimuli were available, and then allowed learn-
ing in only layer 4 when stimuli were presented in the
cluttered backgrounds.

In experiment 5 VisNet is first exposed to a completely
random sequence of the face stimuli in different positions
against a blank background during which layers 1–3 are
allowed to learn for the usual number of epochs. The effect
of this is to set up feature detecting neurons in the early
layers that are tuned to this general class of stimulus.
However, this initial random exposure to the face stimuli
cannot develop position invariant responses among top
layer neurons since there is no temporal structure to the
order of the different positions in which the faces are
presented at this stage. That is, the different positions in
which the presentations of a given stimulus are presented
are not constrained to occur in temporal proximity during
this initial exposure. However, the presence of the stimulus
tuned feature detecting neurons in the early layers has a
significant impact on the subsequent ability of VisNet to
develop invariant neurons when the 4th layer is properly
trained with the stimuli presented against cluttered back-
grounds. The next step, then, is to train layer 4 in the

usual way with the 7 faces presented against a cluttered
background, where the images are now presented such
that different positions for the same face occur close
together in time. Results for experiment 5 are shown in
Fig. 10, with single and multiple cell information measures
on the left and right, respectively. Comparing Figs. 8 and 10
shows that prior random exposure to the face stimuli has led
to much improved performance. Indeed, it can be seen that a
number of cells have reached the maximum possible single
cell information measure of 2.8 bits for this test case,
although the multiple cell information measures do not
quite reach the 2.8 bits that would indicate perfect perfor-
mance for the complete face set. Response profiles of a top
layer neuron to the 7 faces from experiment 5, with the faces
presented against cluttered background 1 during training of
layer 4 and testing are shown in Fig. 11. It can be seen that
this neuron has developed excellent invariant responses to
the 7 faces.

These results demonstrate that the problem of developing
position invariant neurons to stimuli occurring against
cluttered backgrounds may be ameliorated by the prior exis-
tence of stimulus tuned feature detecting neurons in the
early layers of the visual system, and that these feature
detecting neurons may be set up through previous exposure
to the relevant class of objects.
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Fig. 8. Numerical results for experiment 4, with the 7 faces presented on the same cluttered background during both training and testing. On the left are single
cell information measures, and on the right are multiple cell information measures.

Fig. 9. Response profiles of a top layer neuron to the 7 faces from experi-
ment 4, with the faces presented against cluttered background 1 during
training and testing.



3. VisNet simulations with partially occluded stimuli

In this section we examine the performance of VisNet2
tested with partially occluded stimuli. In these simulations,
training and testing is performed with a blank background to
avoid confounding the two separate problems of occlusion
and background clutter. In object recognition tasks, artificial
vision systems may typically rely on being able to locate a
small number of key markers on a stimulus in order to be
able to identify it. This approach can become fragile when a
number of these markers become obscured. In contrast,
biological vision systems may generalise or complete
from a partial input as a result of the use of distributed
representations in neural networks (for introduction see
Rolls & Treves, 1998 and for early contributions see
Kohonen, 1989 and Willshaw, Buneman & Longuet-Higgins,
1969) and this could lead to greater robustness in situations of
partial occlusion.

In experiment 6, the network is first trained with the 7
face stimuli without occlusion, but during testing there are
two options: either (i) the top halves of all the faces are
occluded, or (ii) the bottomhalves ofall the faces are occluded.
Since VisNet is tested with either the top or bottom half of
the stimuli no stimulus features are common to the two test
options. This ensures that if performance is good with both
options, the performance cannot be based on the use of a
single feature to identify a stimulus. Results for experiment
6 are shown in Fig. 12, with single and multiple cell infor-
mation measures on the left and right, respectively. Compar-
ing Figs. 4 and 12 show that there is only a modest drop in
performance in the single cell information measures when
the stimuli are partially occluded. For both options (i) and
(ii), even with partially occluded stimuli, a number of cells
continue to respond maximally to one preferred stimulus in
all locations, while responding minimally to all other
stimuli. However, comparing results from options (i) and
(ii) shows that the network performance is better when the
bottom half of the faces is occluded. This is consistent with
psychological results showing that face recognition is

performed more easily when the top halves of faces are
visible rather than the bottom halves (see Bruce, 1988).
The top half of a face will generally contain salient features,
e.g. eyes and hair, that are particularly helpful for recog-
nition, and it is interesting that these simulations appear to
further demonstrate this point. Furthermore, the multiple
cell information measures confirm that performance is
better with the upper half of the face visible (option (ii))
than the lower half (option (i)), in that when the top halves
of the faces are occluded the multiple cell information
measure asymptotes to a sub-optimal value reflecting the
difficulty of discriminating between these more difficult
images. Further results from experiment 6 are presented in
Fig. 13 where we show the response profiles of a 4th layer
neuron to the 7 faces, with the bottom half of all the faces
occluded during testing. It can be seen that this neuron
continues to respond invariantly to the 7 faces, responding
maximally to one of the faces but minimally for all other
faces.

4. Discussion

The results of experiments 1 and 2 show that once this
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Fig. 10. Numerical results for experiment 5. In this experiment VisNet is first exposed to a completely random sequence of faces in different positionsagainst a
blank background during which layers 1–3 are allowed to learn. This builds general features detecting neurons in the lower layers that are tuned to theface
stimuli, but cannot develop view invariance since there is no temporal structure to the order in which different views of different faces occur. Then layer 4 is
trained in the usual way with the 7 faces presented against a cluttered background, where the images are now presented such that different views of the same
face occur close together in time. On the left are single cell information measures, and on the right are multiple cell information measures.

Fig. 11. Response profiles of a top layer neuron to the 7 faces from experi-
ment 5, with the faces presented against cluttered background 1 during
training of layer 4 and testing.



class of network has been trained on a set of stimuli
presented against a blank background, then it can later
recognise a stimulus with invariance even when the stimulus
is presented in a cluttered background. This is an interesting
and important result, for it shows that after learning, special
mechanisms for segmentation and for attention are not
needed in order for neurons already tuned by previous learn-
ing to the stimuli to be activated correctly in the output
layer. Although the experiments described here tested for
position invariance, we predict and would expect that the
same results would be demonstrable for size and view invar-
iant representations of objects.

When tested in cluttered environments, the background
clutter may of course activate some other neurons in the
output layer, but at least the neurons that have learned to
respond to the trained stimuli are activated. The result of this
activity is sufficient for the activity in the output layer to be
useful, in the sense that it can be read off correctly by a
pattern associator connected to the output layer. Indeed,
we have tested this by connecting a pattern associator to
layer 4 of VisNet. The pattern associator has seven neurons,
one for each face, and 1024 inputs, one from each neuron in
layer 4 of VisNet. The pattern associator learned when
trained with a simple associative Hebb rule (3) to activate
the correct output neuron whenever one of the faces was
shown in any position in the uncluttered environment. This
ability was shown to be dependent on invariant neurons for
each stimulus in the output layer of VisNet, for the pattern
associator could not be taught the task if VisNet had not
been previously trained to produce invariant represen-
tations. Then it was shown that exactly the correct neuron
was activated when any of the faces was shown in any
position with the cluttered background. This read-off by a
pattern associator is exactly what we hypothesize takes
place in the brain, in that the output of the inferior temporal
visual cortex (where neurons with invariant responses are
found) projects to structures such as the orbitofrontal cortex
and amygdala, where associations between the invariant
visual representations and stimuli such as taste and touch
are learned (Rolls, 1999; Rolls & Treves, 1998). Thus test-

ing whether the output of an architecture such as VisNet can
be used effectively by a pattern associator is a very bio-
logically relevant way to evaluate the performance of this
class of architecture.

The results of experiments 3 and 4 suggest that in order
for a cell tolearn invariant responses to different transforms
of a stimulus when it is presented during training in a
cluttered background, some form of segmentation is
required in order to separate the figure (i.e. the stimulus or
object) from the background. This segmentation might be
performed using evidence in the visual scene about different
depths, motions, colours, etc. of the object from its back-
ground. In the visual system, this might mean combining
evidence represented in different cortical areas, and might
be performed by cross-connections between cortical areas to
enable such evidence to help separate the representations of
objects from their backgrounds in the form-representing
cortical areas. However, we note that it was not possible
in the experiments described here to change the background
from trial to trial during learning due to the complexity of
VisNet’s image construction and pre-processing stage. It is
possible that if the background did continually change
during learning, whereas the object being learned about
tended to be present (though in a somewhat transformed
version) from trial to trial, then the architecture would
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Fig. 12. Numerical results for experiment 6, with the 7 faces presented on a blank background during both training and testing. However, during testing there
are two options: either (i) the top half of all the faces are occluded; or (ii) the bottom half of all the faces are occluded. On the left are single cell information
measures, and on the right are multiple cell information measures.

Fig. 13. Response profiles of a top layer neuron to the 7 faces from experi-
ment 6, with the bottom half of all the faces occluded during testing.



have little that it could learn across trials by trace learning
about the backgrounds,but would learn about the transforming
object. Hence, it may be possible that an architecture such as
VisNet cannot only recognise previously learned objects when
presented in a cluttered background as shown here, but may
also be able to learn invariant representations of objects
provided that the background is not constant.

Another mechanism that might help the learning of new
objects is attention. An attentional mechanism might high-
light the current stimulus being attended to and suppress the
effects of background noise, providing a training represen-
tation of the object more like that, which would be produced
when it is presented against a blank background. With
respect to attention, many neurophysiological experiments
have demonstrated an attentional modulation of neuronal
responses in visual areas V1, V2, V4, MT and MST
(Luck, Chelazzi, Hillyard & Desimone, 1997; Motter,
1993; Reynolds, Chelazzi & Desimone 1999; Treue &
Maunsell, 1996), and models of these sorts of attentional
processes have been proposed by Hahnloser, Douglas,
Mahowald and Hepp (1999) and Olhausen, Anderson and
Van Essen (1993). Such attentional mechanisms could help
subsequent brain structures to associate for example a
fixated object with reward, and not to associate other objects
in the visual field with reward, by making the response to the
object being attended to considerably larger than for other
objects. However, attention would also be useful for the
trace-based learning of view invariant responses to novel
objects in the environment. In this case, the output of the
visual system for a particular object must be associated with
all the different views of the same object, but not associated
with other objects in the field of view. Hence, we propose
that one way in which the visual system may solve the
problem of learning view invariant responses to individual
objects in cluttered environments uses an attentional
mechanism in a similar way to that suggested for object-
reward reinforcement learning. If such an attentional
mechanism is required for the development of view invar-
iance, then it follows that cells in the temporal cortex may
only develop transform invariant responses to objects to
which attention is directed.

The implication of the findings described here is that we
have shown that explicit attentional and segmentation
processes are not required in the type of architecture
described for invariant responses to previously learned
objects to be obtained. There may be some advantage to
having foveally weighted processing, or an explicit atten-
tional mechanism, to facilitate the readout of information
under these circumstances when the previously learned
objects are presented in cluttered environments, as the back-
ground will activate some output neurons. On the other
hand, learning invariant representations of new objects in
cluttered backgrounds may be simplified by having
processes that either perform segmentation, or focus atten-
tion on one part of the input, or perform both (perhaps
together).
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