
Vision Research 119 (2016) 16–28
Contents lists available at ScienceDirect

Vision Research

journal homepage: www.elsevier .com/locate /v isres
A computational exploration of complementary learning mechanisms
in the primate ventral visual pathway
http://dx.doi.org/10.1016/j.visres.2015.12.008
0042-6989/� 2016 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding authors.
E-mail addresses: courtney.spoerer@mrc-cbu.cam.ac.uk (C.J. Spoerer), akhiro.

eguchi@psy.ox.ac.uk (A. Eguchi).
Courtney J. Spoerer ⇑, Akihiro Eguchi *, Simon M. Stringer
Oxford Centre for Theoretical Neuroscience and Artificial Intelligence, Department of Experimental Psychology, University of Oxford, United Kingdom

a r t i c l e i n f o a b s t r a c t
Article history:
Received 11 March 2015
Received in revised form 21 September
2015
Accepted 8 December 2015

Keywords:
Visual object recognition
Continuous transformation
Trace learning
Inferior temporal cortex
In order to develop transformation invariant representations of objects, the visual system must make use
of constraints placed upon object transformation by the environment. For example, objects transform
continuously from one point to another in both space and time. These two constraints have been
exploited separately in order to develop translation and view invariance in a hierarchical multilayer
model of the primate ventral visual pathway in the form of continuous transformation learning and tem-
poral trace learning. We show for the first time that these two learning rules can work cooperatively in
the model. Using these two learning rules together can support the development of invariance in cells
and help maintain object selectivity when stimuli are presented over a large number of locations or when
trained separately over a large number of viewing angles.
� 2016 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In vision, it is important to correctly identify an object in the
environment as being the same despite changes in the retinal
image. Over successive stages in the visual system, neurons
develop response properties that are invariant to the size, position,
and view of an object (Rolls, 1992; Rolls, 2000; Rolls & Deco, 2002;
Desimone, 1991; Tanaka, Saito, Fukada, & Moriya, 1991). Cells in
inferior temporal cortex (IT) that show invariance to the transla-
tion (Op de Beeck & Vogels, 2000; Kobotake & Tanaka, 1994; Ito,
Tamura, Fujita, & Tanaka, 1995; Tovee, Rolls, & Azzopardi, 1994),
size (Rolls & Baylis, 1986; Ito et al., 1995), contrast (Rolls &
Baylis, 1986), lighting (Vogels & Biederman, 2002), spatial fre-
quency (Rolls, Baylis, & Leonard, 1985; Rolls, Baylis, & Hasselmo,
1987), and view (Hasselemo, Rolls, Baylis, & Nalwa, 1989; Booth
& Rolls, 1998) of objects have been reported.

Developing invariant recognition of objects involves associating
together representations of the same object under different condi-
tions. In the particular case of translation invariance, this would
mean developing associations between the neural representations
of an object in different spatial locations on the retina. In order to
develop these associations, the visual system can exploit con-
straints placed upon object translation by the environment. For
example, when an object translates from one point to another, it
does so in a manner that is continuous in both space and time.
These same constraints can be exploited for the development of
view invariance, as different views of an object also appear in a
spatially and temporally continuous manner.

One method for developing translation invariant representa-
tions utilizes the temporally continuous nature of object transla-
tion. Neurophysiological evidence suggests that the brain might
use this type of information to develop translation invariant repre-
sentations of objects (Li & DiCarlo, 2008). As breaking temporal
continuity causes neurons to lose their selective responses to dif-
ferent objects. Different approaches have been developed in order
to understand how the brain might exploit this temporally conti-
nuity, such as using inputs representing temporal context to guide
learning (Becker, 1999), learning high probability sequences of
visual input in order to infer the object being presented (George
& Hawkins, 2005), and extracting slowly changing features in the
visual inputs to analyze the transform invariant representations
(Berkes & Wiskott, 2005; Wiskott & Sejnowski, 2002).

Temporal information can also be used to develop invariant
representations of objects by incorporating a temporal trace into
associative learning rules (Földiák, 1991; Rolls, 1992; Wallis &
Rolls, 1997). This encourages neurons to respond to stimulus
image transforms that occur close together in time. The advantage
of this approach is that it can arise naturally out of biophysically
realistic spiking neural networks when longer time constants for
synaptic conductance are introduced (Evans & Stringer, 2012).
Increasing this time constant keeps the neuron active for longer
as it lengthens the time period over which current leaks into the
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postsynaptic neuron, thus allowing temporal trace learning to
occur. Therefore, it is feasible that this type of learning could occur
in the brain without requiring a specific architecture to operate.

A second method for developing translation and view invari-
ance, known as continuous transformation (CT) learning, depends
on the spatial continuity of object transformation (Stringer, Perry,
Rolls, & Proske, 2006). As an object moves smoothly from one loca-
tion to another, it will also appear in several intermediate posi-
tions. Each of these intermediate positions will be highly
overlapping with the adjacent locations that the object appears
in as it moves across the environment. Therefore, each of these
adjacent locations would be likely to activate a common post-
synaptic neuron that associates each of the positions together. This
would result in the cell developing translation invariant response
properties.

Each of the methods discussed so far consider how spatial and
temporal constraints could each individually contribute to the
development of invariant representations. However, in the real
world, information provided by each of these constraints is avail-
able to the visual system simultaneously. Psychophysical evidence
suggests that object-selective view-invariant recognition is
improved when stimuli transform in a temporally and spatially
continuous manner, compared to spatially continuous transforma-
tion alone (Perry, Rolls, & Stringer, 2006). It is important to under-
stand how an observer might simultaneously utilize the benefits of
spatial and temporal continuity in object transformation when
developing invariant representations. This effect could be
explained by the visual system using CT learning and temporal
trace learning in tandem.

In this paper, we will explore how CT learning and temporal
trace learning can operate together to help develop view and trans-
lation invariance using a hierarchical model of the ventral visual
pathway, VisNet (Wallis & Rolls, 1997; Rolls & Milward, 2000),
illustrated in Fig. 1. Both trace and CT learning have been tested
extensively in the rate-coded VisNet model (Wallis & Rolls, 1997;
Stringer et al., 2006), and so we shall use VisNet to study how these
two learning mechanisms may be combined in the same rate-
coded model.
2. Methods

2.1. The VisNet model

2.1.1. Hierarchical neural network architecture of the model
The architecture of the model used in this paper, VisNet (Wallis

& Rolls, 1997), is developed according to the following principles:
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Fig. 1. (Left) A schematic representation of VisNet. The model consists of a hierarchy of c
the model is designed so that cells in the final layer of the model have a receptive field th
visual cortex area V1; TEO, posterior inferior temporal cortex; TE, inferior temporal cort
(i) A series of hierarchical competitive networks with local
graded inhibition and excitation.
(ii) Convergent connections to each neuron from a topologically
corresponding region of the preceding layer.
(iii) Synaptic plasticity based on a biologically-plausible local
learning rule, such as the Hebb rule or trace rule.

As mentioned above, the forward connections to individual cells
in VisNet are derived from a topologically corresponding location
in the preceding layer. The probability of each connection forming
follows a Gaussian distribution. These distributions are defined by
a radius containing approximately 67% of the connections from the
preceding layer. The values employed in the current study are
given in Table 1. The gradual increase in the receptive field of cells
in successive layers reflects the known physiology of the primate
ventral visual pathway (Freeman & Simoncelli, 2011; Pasupathy,
2006; Pettet & Gilbert, 1992).
2.1.2. Pre-processing of the visual input by Gabor filters
Before images are presented to layer 1 of VisNet, they are pre-

processed by a set of Gabor filters that correspond to the known
response profiles of V1 simple cells (Jones & Palmer, 1987;
Cumming & Parker, 1999). Filtering the images produces a unique
set of inputs that are then presented to layer 1 of the model. The
input filters used are computed by the following equations:

gðx; y; k; h;w;r; cÞ ¼ exp � x02 þ c2y02

2r2

� �
cos 2p x0

k
þ w

� �
ð1Þ

with the following definitions:

x0 ¼ x cos hþ y sin h

y0 ¼ �x sin hþ y cos h
ð2Þ

where x and y specify the position of a light impulse in the visual
field (Petkov & Kruizinga, 1997), r controls the number of such
periods inside the Gaussian window, h defines the orientation of
the feature, w defines the phase, and c sets the aspect ratio that
determines the shape of the receptive field. In each experiment,
an array of Gabor filters is generated at each of 256� 256 retinal
locations with the parameters given in Table 2.

The outputs of the Gabor filters are passed to the neurons in
layer 1 of VisNet according to the synaptic connectivity given in
Table 1. Each layer 1 neuron received connections from 400 ran-
domly chosen Gabor filters within a topologically corresponding
region of the retina.
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Table 1
VisNet parameters.

Layer Dimensionsa Number of connectionsb Radiusc

Layer 4 64� 64 200 24
Layer 3 64� 64 200 18
Layer 2 64� 64 200 12
Layer 1 64� 64 400 12
Retina 256� 256� 16

Notes:
a Number of neurons per layer.
b Number of connections per neuron from the preceding layer.
c Radius from which 67% of the connections from cells in the preceding layer are

received.

Table 2
Parameters for Gabor input filters.

Parameter (Symbol) Value(s)

Phase shift (w) 0: white on black bar
p: black on white bar

Wavelength (k) 2, 16
Orientation (h) 0; p=4; p=2; 3p=4
Spatial bandwidth (b) 1.5 octaves
Aspect ratio (c) 0.5
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2.1.3. Calculation of cell activations within the network
For each of the cells in layers 1 to 4 of VisNet, the activation hi of

each neuron i was set equal to the linear sum of the inputs yj from
afferent neurons j in the preceding layer weighted by the synaptic
weights wij as follows:

hi ¼
X
j

wijyj ð3Þ

where yj is the firing rate of neuron j, and wij is the strength of the
synapse from neuron j to neuron i.
2.1.4. Interactions within layers
In these experiments, we ran simulations with a self-organizing

map (SOM), (Von der Marlsburg, 1973; Kohonen, 1982) imple-
mented within each layer. In the case of the SOM architecture,
short-range excitation and long-range inhibition are combined to
form a Mexican-hat spatial profile and is constructed as a differ-
ence of two Gaussians as follows:

Ia;b ¼ �dI exp � a2 þ b2

r2
I

 !
þ dE exp � a2 þ b2

r2
E

 !
ð4Þ

To implement the SOM, the activations hi of neurons within a
layer were convolved with a spatial filter, Iab, where dI controlled
the inhibitory contrast and dE controlled the excitatory contrast.
The width of the inhibitory radius was controlled by rI and the
width of the excitatory radius by rE. The parameters a and b
indexed the distance away from the center of the filter. The lateral
inhibition and excitation parameters used in the SOM architecture
are given in Table 3.
Table 3
SOM parameters.

Layer 1 2 3 4

Excitatory radius (rE) 1.4 1.1 0.8 1.2
Excitatory contrast (dE) 5.35 33.15 117.57 120.12
Inhibitory radius (rI) 2.76 5.4 8.0 12.0
Inhibitory contrast (dI) 1.6 1.5 1.5 1.5
2.1.5. Contrast enhancement of neuronal firing rates
Next, the contrast between the activities of neurons within each

layer was enhanced by passing the activations of the neurons
through a sigmoid transfer function (Rolls & Treves, 1998) as
follows:

y ¼ f sigmoidðrÞ ¼ 1
1þ exp �2bðr � aÞð Þ ð5Þ

where r is the activation after applying the SOM filter, y is the firing
rate after contrast enhancement, and a and b are the sigmoid
threshold and slope respectively. The parameters a and b are con-
stant within each layer, although a is adjusted within each layer
of neurons to control the sparseness of the firing rates. For example,
to set the sparseness to 4%, the threshold is set to the value of the
96th percentile point of the activations within the layer.

With the recent advances in computational capabilities, it is
now easy to simulate visual pathway with more physiologically
accurate spiking neural network models such as a conductance-
based leaky integrate-and-fire neuron model (Evans & Stringer,
2013) or a Hodgkin–Huxley model (Eguchi, Neymotin, & Stringer,
2014). Therefore, some consider that the use of the sigmoid trans-
fer function is no longer justifiable. However, the sigmoid transfer
function is still the standard activation function used in rate-coded
neural network modeling of brain function as they represent the
fact that the firing rates of neurons are bounded and it introduces
non-linearities to the network, making them an appropriate choice
for the model (Ranzato, Huang, Boureau, & LeCun, 2007; Erhan
et al., 2010; Ngiam et al., 2011). Furthermore, despite the complex
mechanisms that cause a neuron to fire (Mainen et al., 1995;
Destexhe & Pare, 1999), it has been claimed that a much simpler
sigmoid activation function can provide a reasonable approxima-
tions at the level of population dynamics as the average of many
different threshold functions becomes nonlinear (Marreiros,
Daunizeau, Kiebel, & Friston, 2008). The parameters we used for
the sigmoid activation function are those shown in Table 4, which
have previously been selected after a number of optimization runs
(Rolls, 2007).

2.1.6. Parameter setting
The parameter settings for these simulations were based upon

values that optimized invariance learning in the network in previ-
ous experiments (Rolls, 2007; Tromans, Harris, & Stringer, 2011).
This is with the exception of sparseness, which controls a in Eq.
(3); the parameters were chosen based on the values that opti-
mized performance on invariance learning in terms of the single
cell information about each face in the current simulations. The
justification for this exception is that sparseness levels are unlikely
to be constant in the visual system and different sparseness levels
are likely to be optimal for particular tasks (Rolls & Tovee, 1995). In
the current simulations, sparseness levels were kept constant for
both the translation invariance and view invariance simulations,
and the high sparseness in the earlier layer reflects the physiolog-
ical observations in some respect (Vinje & Gallant, 2000; Olshausen
& Field, 2004).

2.1.7. Learning rules
For these simulations, two different learning rules were used to

modify the strength of feed-forward synaptic connections between
Table 4
Parameters for the sigmoid activation function.

Layer 1 2 3 4

Percentile 98 90 90 90
Slope (b) 190 40 75 26



Fig. 2. An example of the stimuli used in the experiment.
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neurons within the network. The first rule used was the Hebb rule,
where synaptic weights are updated by the following rule:

Dwj ¼ ayxj ð6Þ
where xj is the firing rate of the jth presynaptic neuron, a is the
learning rate (set in the interval between 0 and 1), y is the firing rate
of the postsynaptic neuron, and wj is the synaptic weight of the jth
input to the postsynaptic neuron.

The second rule used was the trace rule. This rule is similar to
the Hebb rule described above (Eq. (6)). However, it incorporates
a trace of recent neuronal activity in the postsynaptic term, �ys, at
time step s. The rule has the effect of encouraging the postsynaptic
neuron to respond to input patterns that occur close together in
time during training. The standard form of the trace rule is given
by the following rule:

Dwj ¼ a�ys xsj ð7Þ
where �ys is updated according to

�ys ¼ ð1� gÞys þ g�ys�1 ð8Þ
The parameter g is set in the interval between 0 and 1.
However, in this study a variant of the trace rule was used

where the trace activity is taken from the immediately preceding
time step, so the rule becomes

Dwj ¼ a�ys�1 xsj ð9Þ
This variant was used as it has been shown to improve upon the

performance of the standard trace rule in developing transform
invariant representations (Rolls & Milward, 2000).

2.2. Training procedure

The synaptic weights in the network were initiated with ran-
dom values. The simulations were repeated three times, each using
a different random seed. This was done to ensure that the observed
performance was not simply a consequence of the initial synaptic
weights.

During training, an image of each face was presented to the net-
work. The images were initially pre-processed by the Gabor input
filters, and the output from these filters was used as input to the
first layer of VisNet. Each cell in the first layer received a combina-
tion of inputs from 400 randomly chosen Gabor filters. The activa-
tion is then propagated through the network, using Eq. (3) to
calculate individual cell activations and Eqs. (4) and (5) to deter-
mine firing rates. The weights are then updated according to either
the Hebb rule (Eq. (6)) or the trace rule (Eq. (9)) depending on the
condition.

For each face, images corresponding to successive transforms
are presented sequentially to the network. For example, in the
translation invariance simulations, the next image is the same as
the previous image, but shifted by one pixel. The network then
updates the synaptic weights after each individual image presenta-
tion. This process is repeated for each different face.

2.3. Stimuli

Faces were chosen as the stimuli to use in the simulations as
they are complex stimuli that would make invariance learning
more difficult. Increasing the difficulty of the task reduces the risk
of the network reaching ceiling performance, which would make it
difficult to see any difference that might exist between the two
learning rules. This should enhance any beneficial effects of the
learning rules, making these effects clearer to identify. The faces
were generated using FaceGen 3D face modeling software (an
example is shown in Fig. 2).
The number of different positions or viewing angles were varied
across three different experiments. For all experiments, each face
was presented so that the stimulus transformed smoothly across
space (Fig. 3), with no more than a 1 pixel shift between each pre-
sentation in the translation invariance experiments, and with no
more than 1� change in viewing angle in the view invariance
experiments, as is required for continuous transformation learning
to operate (Stringer et al., 2006). The faces were also presented
with temporal continuity, so that each successive transform of a
face is presented in sequence before showing the transforms of
the next face.

2.4. Information based measures of performance

To assess performance, a single cell measure of information was
used for cells in the final layer (layer 4) of the model (Rolls &
Milward, 2000). This measure describes the amount of informa-
tion, Iðs;RÞ, that a set of responses, R, gives about a stimulus, s,
e.g. a particular face.

Iðs;RÞ ¼
X
r2R

PðrjsÞlog2
PðrjsÞ
PðrÞ ð10Þ

where r is an individual response from the set of responses, R, of a
particular neuron. Information is highest when a cell responds
invariantly to a stimulus across all different locations or views,
but does not respond to other stimuli. We can then calculate the
maximum information, Imax, that a cell can have with the following
formula:

Imax ¼ log2ðNÞ ð11Þ
where N is the number of different stimuli s. We computed the
maximum amount of information a cell conveyed about a particular
face identity, using the same stimuli as in testing. This is as opposed
to mutual information, IðS;RÞ, where S is the whole set of different
stimuli s. Examples of the cell information calculations are given in
Appendix A.
3. Results

In the experiment 1, we investigated the development of trans-
lation invariant representation of faces and compared the perfor-
mance between the network when the synaptic connections were
updated based on either theHebb rule or the trace rule. In the exper-
iment 2, we investigated the development of rotational view invari-
ant representations of faces, and finally, in the experiment 3, we



Fig. 3. An example of a single face from different viewing angles. Each image is separated by 20�.
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investigated the development of both the translation and rotational
view invariant representations of faces.
3.1. Experiment 1: Translation invariance

3.1.1. Model performance with 4 faces in 100 locations
Experiment 1 compared the performance of the model when

trained with the two different learning rules using a stimulus set
containing a small number of faces in a large number of retinal loca-
tions (Fig. 4). In this scenario, the network was trained with 4 faces
in 100 different retinal locations (N ¼ 4; Imax ¼ 2). Mann–Whitney
U tests were used to test for differences in single-cell information
measures between learning rules in all experiments.

In this experiment, single cell informationmeasures were signif-
icantly lower in the untrainedmodel (Mdn ¼ 0:30) compared to the
model after training with CT learning using the Hebb rule
(Mdn ¼ 1:06),U ¼ 186:00; p < 0:001; r ¼ 0:86. Single cell informa-
tion was also significantly lower in the untrained model compared
to themodel after trainingwith CT learning combinedwith the trace
rule (Mdn ¼ 1:48), U ¼ 0:00; p < 0:001; r ¼ 0:87. Most signifi-
cantly, single cell information was significantly
higher when the model was trained using CT learning combined
with the trace rule compared to CT learning alone, U
¼ 1551:00; p < 0:001; r ¼ 0:84.

In order to visualize the selectivity, we first identified the five
cells that carried the highest single cell information regarding each
identity of faces. We then recorded the firing rates of each of these
cells in response to the presentation of all the four faces at all the
100 retinal locations. Fig. 5 shows the results in the untrained net-
work (Fig. 5a), and networks trained with (Fig. 5b) CT learning, and
CT learning with the trace rule (Fig. 5c). The figures presented on
the top of each pane show the average firing rates of the five cells
in response to the entire set of stimuli presented during testing,
and the figures presented on the bottom show the mean firing
rates for each face identity across the 100 transforms.
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Fig. 4. Single cell information from experiment 1, using 4 faces in 100 locations.
Results displayed are for the untrained network, CT learning using the Hebb rule
(CT), and CT Learning combined with trace learning using the trace rule (CT and
Trace). The plots show the maximum single cell information for 300 output cells
plotted in rank order.
3.1.2. Model performance with 10 faces in 100 locations
In this simulation, we compared the performance of the model

using the different learning rules when a large number of faces and
a large number of locations were used (Fig. 6). In order to do this
we tested the performance of the network with a stimulus set
including 10 faces in 100 different locations (N ¼ 10; Imax ¼ 3:32).

We also found single cell information measures to be signifi-
cantly lower in the untrained model (Mdn ¼ 0:47) compared to
the model after training with CT learning using the Hebb rule
(Mdn ¼ 0:81), U ¼ 1273:5; p < 0:001; r ¼ 0:84. Single cell infor-
mation was also significantly lower in the untrained model com-
pared to the model after training with CT learning combined
with the trace rule (Mdn ¼ 2:89), U ¼ 0:00; p < 0:001; r ¼ 0:87.
Again, we found that combining CT learning with the trace rule
during training led to significantly higher single cell information
compared to training the model with CT learning alone,
U ¼ 0:00; p < 0:001; r ¼ 0:87.

In order to visualize the selectivity, we first identified the top
five cells that carried the highest single cell information regarding
each stimulus. We then recorded the firing rates of these cells in
response to the presentation of all 10 faces at all 100 retinal loca-
tions. Fig. 7 shows the results in the untrained network (Fig. 7a),
and networks trained with (Fig. 7b) CT learning, and CT learning
with the trace rule (Fig. 7c).
3.2. Experiment 2: Rotation invariance

3.2.1. Model performance with 4 faces from 100 views
In experiment 2, we compared the performance of the model

when developing view invariance of faces from a large number of
viewing angles (Fig. 8). To achieve this we tested the performance
of the network when it was trained and tested with 4 faces from
100 viewing angles (N ¼ 4; Imax ¼ 2).

We again found that single cell information measures were sig-
nificantly lower in the untrained model (Mdn ¼ 0:35) compared to
the model after training with CT learning using the Hebb rule
(Mdn ¼ 1:41), U ¼ 0:00; p < 0:001; r ¼ �0:87. Similarly, single
cell information was significantly lower in the untrained model
compared to the model after training with CT learning combined
with the trace rule (Mdn ¼ 1:61), U ¼ 0:00; p < 0:001, r ¼ 0:87.
Most importantly, we also found that training the model with CT
learning combined with the trace rule led to higher single cell
information compared to CT learning alone, though the effect size
was reduced, U ¼ 27012:50; p < 0:001; r ¼ 0:35.

To visualize the selectivity, we identified the five cells that carried
the highest single cell information regarding the stimulus. We then
recorded the firing rates of these cells in response to the presentation
of all the four faces at all the 100 rotational views. Fig. 9 shows the
results in the untrained network (Fig. 9a), and networks trained with
(Fig. 9b) CT learning, and CT learning with the trace rule (Fig. 9c).
3.2.2. Model performance with 10 faces from 100 views
In this simulation, we compared the performance of the model

using the different learning rules when a large number of faces and



Fig. 5. Cell activations for four cells from experiment 1, using 4 faces in 100 locations. Plots show the cell selectivity based on the activation of the four most informative cells
in the (a) untrained network, (b) trained network (CT), and (c) trained network (CT and Trace). For each stimulus, we first identified the top five cells that carried the highest
single cell information regarding the stimulus. We then recorded the firing rates of these cells in response to the presentation of all four faces at all 100 retinal locations. The
results are presented on the top of each pane, and the mean firing rates for each face identity across the 100 transforms are presented as a bar graph on the bottom of the
pane.
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a large number of rotational views were used (Fig. 10). In order to
do this we tested the performance of the network with a stimulus
set including 10 faces in 100 different rotational views
(N ¼ 10; Imax ¼ 3:32).

We also found single cell information measures to be signifi-
cantly lower in the untrained model (Mdn ¼ 0:25) compared to
the model after training with CT learning using the Hebb rule
(Mdn ¼ 0:94), U ¼ 0; p < 0:001; r ¼ 0:87. Single cell information
Fig. 7. Cell activations from experiment 1, using 10 faces in 100 locations. Plots show
network, (b) trained network (CT), and (c) trained network (CT and Trace). For each
information regarding the stimulus. We then recorded the firing rates of these cells in re
presented on the top of each pane, and the mean firing rates for each face identity acro
was also significantly lower in the untrained model compared to
the model after training with CT learning combined with the trace
rule (Mdn ¼ 1:31), U ¼ 0:00; p < 0:001; r ¼ 0:87. Again, we found
that combining CT learning with the trace rule during training led
to significantly higher single cell information compared to training
the model with CT learning alone, U ¼ 3305; p < 0:001; r ¼ 0:80.

To visualize the selectivity, we first identified the five cells that
carried the highest single cell information regarding the stimulus.
We then recorded the firing rates of these cells in response to
the presentation of all 10 faces at all the 100 rotational views.
Fig. 11 shows the results in the untrained network (Fig. 11a), and
networks trained with (Fig. 11b) CT learning, and CT learning with
the trace rule (Fig. 11c).

3.3. Experiment 3: Translation and rotation invariance

In experiment 3, we compared the performance of the model
when developing both shifting and view invariance of faces from
a large number of retinal locations and viewing angles (Fig. 12).
To achieve this we tested the performance of the network when
it was trained and tested with 4 faces from 50 viewing angles as
well as 9 retinal locations (N ¼ 4; Imax ¼ 2). Each face at a particu-
lar viewing angle is shifted across different retinal locations in
turn.

We again found that single cell information measures were sig-
nificantly lower in the untrained model (Mdn ¼ 0:19) compared to
the model after training with CT learning using the Hebb rule
(Mdn ¼ 0:65), U ¼ 0:00; p < 0:001; r ¼ 0:87. Similarly, single cell
the cell selectivity based on the activations of subsets of cells in the (a) untrained
stimulus, we first identified the top five cells that carried the highest single cell
sponse to the presentation of all ten faces at all 100 retinal locations. The results are
ss the 100 different views are presented as a bar graph on the bottom of the pane.
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Fig. 8. Single cell information from experiment 2, using 4 faces from 100 viewing
angles. Results displayed are for the untrained network, CT learning using the Hebb
rule (CT), and CT Learning combined with trace learning using the trace rule (CT and
Trace). The plots show the maximum single cell information for 300 output cells
plotted in rank order.
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information was significantly lower in the untrained model com-
pared to the model after training with CT learning combined with
the trace rule (Mdn ¼ 1:26), U ¼ 0:00; p < 0:001, r ¼ 0:87. Most
importantly, we also found that training the model with CT learn-
ing combined with the trace rule led to single cell information
compared to CT learning alone, U ¼ 0:00; p < 0:001; r ¼ 0:87.

In order to visualize the selectivity, we first identified the five
cells that carried the highest single cell information regarding the
stimulus. We then recorded the firing rates of each subset of the
cells in response to the presentation of all the four faces at all
the 9 retinal locations and from 50 rotational views. Fig. 13 shows
the results in the untrained network (Fig. 13a), and networks
trained with (Fig. 13b) CT learning, and CT learning with the trace
rule (Fig. 13c).
4. Discussion

The results shown here illustrate that using the trace rule in
conjunction with CT learning can improve object-selective transla-
tion and view invariance in VisNet beyond what CT learning can
achieve by itself. Furthermore, this effect is found to be present
for both a small (4) and large (10) number of faces in simulations
with location invariance and view invariance.

Inspecting the firing properties of individual cells in the model
suggests that introducing the trace rule generally improves invari-
ance by reducing the risk of cells learning to bind together the rep-
resentations of different faces in a particular spatial location or
viewing angle. (E.g., Figs. 5(b) and 7) This is because CT learning
by itself has no information about the temporal sequence in which
the images were presented. Therefore, as long as any two images
appear similar in terms of spatial structure, the cells will learn to
associate them together even if they are two different objects pre-
sented at different time points. As a result, the cells lose their face
selectivity and respond to a large number of faces viewed in the
same location or from the same angle.

As can be seen in our results, invariant representations of faces
in the model worsen when the number of face identities increases.
This is due to the increased difficulty of the task without a change
in the capacity of the network (e.g. the size of the layers). If the dif-
ficulty of the task were to continue increasing in this manner, then
the performance of the network would continue to decrease. How-
ever, even with this degraded overall performance, we still see a
benefit of combining continuous transformation learning with
temporal trace learning over using continuous transformation
learning in isolation.
However, when the trace rule is used together with CT learning
then temporal information also guides learning in the network.
This temporal information can then be used to prevent the net-
work from associating similar objects together that occur at widely
different time points. Exploiting the temporal information means
associations will not just be formed based on spatial similarity of
the input, helping to increase the face selectivity in the network
and strengthening invariance in the cells. This result is consistent
with both psychophysical and neurophysiological data that sug-
gest a role for temporal trace learning in developing and maintain-
ing object-selective transform invariant representations of objects
(Perry et al., 2006; Li & DiCarlo, 2008). This suggests that CT learn-
ing and temporal trace learning operating together could explain
why invariant recognition of objects is improved when objects
transform continuously in both space and time.

Whilst it is relatively straightforward to compare CT learning
alone to CT learning combined with the trace rule, it is difficult
to compare these two learning conditions with learning using the
trace rule without CT learning. This is because the only way to pre-
vent CT learning from taking place is to increase the spacing
between stimulus locations. If the spacing is increased, but the
number of training locations are kept the same, then the locations
to be learnt will be spread over a larger retinal space, which is a
more difficult task for the model. However, if the spacing is
increased and the retinal space covered by the stimuli is kept the
same, then there are fewer locations to develop invariance over,
resulting in an easier task. This means that any comparison
between CT learning and the trace rule without CT learning would
be difficult to make.

4.1. Comparison to other computational modeling studies

Compared to the other work with convolutional networks
(Krizhevsky, Sutskever, & Hinton, 2012; Taigman, Yang, Ranzato,
& Wolf, 2014), one may assume that the problem of transform
invariant representations of faces is tiny. However, the series of
studies conducted in this paper represents an important theoreti-
cal advance in understanding how the visual system may learn
such transform invariant representations, contrasting many cur-
rent accounts of learning based on the feedback of error signals
from higher- to lower-levels of representation.

In particular, our approach differs from the typical engineering
approaches that rely on supervised signals in terms of the back-
propagation of error (Rumelhart, Hinton, & Williams, 1986) to
achieve accurate classifications of faces (Krizhevsky et al., 2012).
In terms of neurophysiology, it is unlikely that the brain employs
backpropagation of error because the mechanism requires finely
structured neural connectivity, and such a network structure and
the organizational principles required for its generation at the level
of individual neurons is rather artificial and not biologically plausi-
ble (Stork, 1989).

Furthermore, for the development of transform invariant repre-
sentations, many deep neural networks usually require large set of
labeled data for invariances learning (Zou, Ng, & Yu, 2011); how-
ever, this training is not realistic as our brains are rarely provided
with such ideal sets of visual inputs with labels. Although it has
recently been reported that the accuracy of the transform invariant
natural face verification by a deep neural network model has
reached to nearly the same level of humans (Taigman et al.,
2014), the algorithm still requires the employment explicit 3D face
modeling to handle the transform invariance, which is again very
biologically implausible.

Other attempts have been made to demonstrate invariant
object recognition using teaching signals that are based on
information that is inherent in the input, such as maximum
likelihood cost functions (Becker, 1999). Although these models



Fig. 9. Cell activations from experiment 2, using 4 faces from 100 viewing angles. Plots show cell selectivity based on the activations of subsets of cells in the (a) untrained
network, (b) trained network (CT), and (c) trained network (CT and Trace). For each stimulus, we first identified five cells that carried the highest single cell information
regarding the stimulus. We then recorded the firing rates of each subset of these cells in response to the presentation of all four faces at all 100 rotational views. The results
are presented on the top of each pane, and the mean firing rates for each face identity across the 100 views are presented as a bar graph on the bottom of the pane.
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Fig. 10. Single cell information from experiment 2, using 10 faces from 100 viewing
angles. Results displayed are for the untrained network, CT learning using the Hebb
rule (CT), and CT Learning combined with trace learning using the trace rule (CT and
Trace). The plots show the maximum single cell information for 300 output cells
plotted in rank order.
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Fig. 12. Single cell information from experiment 3. Results displayed are for the
untrained network, CT learning using the Hebb rule (CT), and CT Learning combined
with trace learning using the trace rule (CT and Trace). The plots show the
maximum single cell information for 300 output cells plotted in rank order.
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are unsupervised, in the sense that the teaching signal is not based
on external information, they still use backpropagation of error to
learn the weights, which, as we have discussed above, is itself
biologically implausible.

Besides the temporal trace learning rule (Földiák, 1991), Slow
Feature Analysis (SFA) has been proposed as one of the few other
unsupervised frameworks to solve the invariance problem in our
brains (Berkes & Wiskott, 2005; Wiskott & Sejnowski, 2002). This
Fig. 11. Cell activations from experiment 2, using 10 faces from 100 viewing angles. P
untrained network, (b) trained network (CT), and (c) trained network (CT and Trace). For
information regarding the stimulus. We then recorded the firing rates of each subset of t
The results are presented on the top of each pane, and the mean firing rates for each face
the pane.
is based on similar assumptions to temporal trace learning, as
object identity tends to change much slower than the rapidly
changing sensory input signals due to its transforms. Accordingly,
they hypothesize that the neural systems in our brains are natu-
rally self-organized in the way to detect a set of slowly changing
features in the temporal sequence of visual inputs. By exploiting
this principle, (Franzius, Wilbert, & Wiskott, 2008) has shown that
the model can learn not only transform invariant object-specific
representations but also the representations of other parameters
lots show the cell selectivity based on the activations of subsets of cells in the (a)
each stimulus, we first identified the top five cells that carried the highest single cell
hese cells in response to the presentation of all ten faces at all 100 rotational views.
identity across the 100 different views are presented as a bar graph on the bottom of



Fig. 13. Cell activations from experiment 3. Plots show cell selectivity based on the activations of subsets of cells in the (a) untrained network, (b) trained network (CT), and
(c) trained network (CT and Trace). For each stimulus, we first identified the top five cells that carried the highest single cell information regarding the stimulus. We then
recorded the firing rates of each subset of cells in response to the presentation of all four faces at all 9 retinal locations and at all 50 rotational views. The results are presented
on the top of each pane, and the mean firing rates for each face identity across the 450 transforms are presented as a bar graph on the bottom of the pane.
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Table A.5
Example cell firing rates to each face over presented in 100 different spatial locations.

Faces 0 6 r < 0:33 0:33 6 r < 0:67 0:67 6 r 6 1

A 3 17 80
B 68 31 1
C 73 25 2
D 65 12 17
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such as object positions and rotation angles. However, in reality,
SFA requires non-linear expansion of input, which suffers from
the course of dimensionality (Zou et al., 2011). These mechanisms
can be contrasted with our approaches where all computations
required for the development of invariant representations in our
model is achieved locally at each synapse.

Furthermore, based on the principle of SFA, (George & Hawkins,
2005) extended the algorithm to incorporate a Bayesian inference
prediction framework and revised its architecture in accordance
with the anatomic organization of the brain. As a result, this brain-
inspired mechanism successfully exhibits invariance across a wide
variety of transformations. Nevertheless, it is still not clear how
exactly the brain may represent such information and develop the
neuronal circuits to specifically extract slowly changing features.

Therefore, despite the relative simplicity of rate-coded models,
such as VisNet, they still remain useful models for understanding
competitive learning in vision. Their simplicity allows us to clarify
the key learning mechanisms of interest and avoids additional con-
founding factors that might arise in more complex models, such as
integrate-and-fire networks, justifying its current use.

In this paper, we present neural network simulations of the
visually-guided development of transform invariant facial repre-
sentations in the primate ventral visual pathway, using completely
unsupervised learningmechanisms and feed-forward processing. In
particular, VisNet differs from those othermodels in which the abil-
ity to utilize the temporal information is incorporated into the asso-
ciative learning rules that govern the changes of synaptic weights.
We believe this approach has implications for better learning rules
in the current realm of deep learning by allowing networks to make
use of additional information thatmight be inherent in the ordering
of stimulus presentations. This may be particularly useful in many
real world applications that involve sequences of inputswhere deep
learning can be used, such as processing speech and real-time visual
inputs.

4.2. Conclusions

Previous research has shown that invariant representations of
objects can be learnt based on temporal information in VisNet
(Wallis & Rolls, 1997) and in other models of invariant object
recognition (Becker, 1999; George & Hawkins, 2005). Furthermore,
we have known that CT learning on its own can produce invariant
representations of objects (Stringer et al., 2006). However, this
research has demonstrated for the first time that trace learning
and CT learning can work cooperatively to improve invariance
learning in VisNet. More generally, this suggests that neural net-
work architectures that perform transform invariant object recog-
nition based on structural similarity could benefit from also
making use of temporal information.

More specifically, we have shown that, whilst some invariance
can be achieved based upon CT learning alone, the visual system
can use temporal trace learning to prevent cells losing their selec-
tivity to particular objects. This is achieved by providing the sys-
tem with temporal information about object translation, allowing
both mechanisms to cooperate within the same model. We know
that this type of trace learning naturally emerges in biophysically
realistic spiking neural networks (Evans & Stringer, 2012).
Therefore, future research may wish to explore whether coopera-
tion between CT learning and temporal trace learning can emerge
in spiking neural networks. Furthermore, this research highlights
the fact that the visual system is unlikely to use single cues to
develop invariant object representations, but is likely to use cues
from multiple sources during learning - such as spatial and
temporal information – in order to achieve this feat.

Appendix A. Computing cell information measures

The single cell information measure used in these simulations is
given by Eq. (10). The process of computing these values will be
given in more detail here by the use of an example.

In this case we will consider single cell information measures
for simulations with four different faces, A, B, C and D, and 100 dif-
ferent spatial locations. As each face is presented an equal number
of times the probability of each face being presented, PðsÞ will be
PðsÞ ¼ 1=4. To calculate the probability of each response the firing
rates for each cell, r, must be binned. We chose to use three equally
spaced bins, 0 6 r < 0:33; 0:33 6 r < 0:67, and 0:67 6 r 6 1. This
produces a matrix of responses for each cell, an example is given
in Table A.5.

Using the table of firing rates we can calculate the information
that a particular response from the cell carries about a particular
stimulus by calculating the probability of that response PðrÞ and
the probability of the responses given the stimulus PðrjsÞ. For
example, the strongest category of response 0:67 6 r 6 1 has the
probability of occurring PðrÞ ¼ 100=400 ¼ 0:25 and the probability
of occurring given that face A was presented of
PðrjsÞ ¼ 80=100 ¼ 0:8. Therefore, by Eq. (10) the amount of infor-
mation about face A carried by this category of response is
Iðs;RÞ ¼ 0:8 log20:8=0:25 ¼ 0:931.

The information value given for each cell is the maximum con-
veyed by a particular response about a particular stimulus. In the
case of this example, the information for this cell would be given
as 0:931.

References

Becker, S. (1999). Implicit learning in 3D object recognition: The importance of
temporal context. Neural Computation, 11, 347–374.

Berkes, P., & Wiskott, L. (2005). Slow feature analysis yields a rich repertoire of
complex cell properties. Journal of Vision, 5(6), 9. http://dx.doi.org/10.1167/
5.6.9. ISSN 1534-736.

Booth, M. C. A., & Rolls, E. T. (1998). View-invariant representations of familiar
objects by neurons in the inferior temporal visual cortex. Cerebral Cortex, 8,
510–523.

Cumming, B. G., & Parker, A. J. (1999). Binocular neurons in V2 of awake monkeys.
The Journal of Neuroscience, 16, 5602–5618.

Desimone, R. (1991). Face-selective cells in the temporal cortex of monkeys. Journal
of Cognitive Neuroscience, 3, 1–8.

Destexhe, A., & Pare, D. (1999). Impact of network activity on the integrative
properties of neocortical pyramidal neurons in vivo. Journal of Neurophysiology,
81(4), 1531–1547. ISSN 0022-3077.

Eguchi, A., Neymotin, S. A., & Stringer, S. M. (2014). Color opponent receptive fields
self-organize in a biophysical model of visual cortex via spike-timing dependent
plasticity. Frontiers in Neural Circuits, 8(16). http://dx.doi.org/10.3389/
fncir.2014.00016.

Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., & Bengio, S. (2010).
Why does unsupervised pre-training help deep learning? Journal of Machine
Learning Research, 11, 625–660. ISSN 1532-4435.

Evans, B. D., & Stringer, S. M. (2012). Transformation-invariant visual
representations in self-organizing spiking neural networks. Frontiers in
Computational Neuroscience, 6.

Evans, B. D., & Stringer, S. M. (2013). How lateral connections and spiking dynamics
may separate multiple objects moving together. PLoS ONE, 8(8), e69952. http://
dx.doi.org/10.1371/journal.pone.0069952.

Földiák, P. (1991). Learning invariance from transformation sequences. Neural
Computation, 3, 194–200.

Franzius, M., Wilbert, N., & Wiskott, L. (2008). Invariant object recognition with
slow feature analysis. In V. Kurková, R. Neruda, & J. Koutnk (Eds.), Artificial
neural networks – ICANN 2008. No. 5163 in lecture notes in computer science
(pp. 961–970). Berlin Heidelberg: Springer. ISBN 978-3-540-87535-2 978-3-
540-87536-9.

http://refhub.elsevier.com/S0042-6989(16)00012-2/h0005
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0005
http://dx.doi.org/10.1167/5.6.9
http://dx.doi.org/10.1167/5.6.9
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0015
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0015
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0015
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0020
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0020
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0025
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0025
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0030
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0030
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0030
http://dx.doi.org/10.3389/fncir.2014.00016
http://dx.doi.org/10.3389/fncir.2014.00016
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0040
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0040
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0040
http://refhub.elsevier.com/S0042-6989(16)00012-2/h9005
http://refhub.elsevier.com/S0042-6989(16)00012-2/h9005
http://refhub.elsevier.com/S0042-6989(16)00012-2/h9005
http://dx.doi.org/10.1371/journal.pone.0069952
http://dx.doi.org/10.1371/journal.pone.0069952
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0055
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0055
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0060
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0060
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0060
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0060
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0060


28 C.J. Spoerer et al. / Vision Research 119 (2016) 16–28
Freeman, J., & Simoncelli, E. P. (2011). Metamers of the ventral stream. Nature
Neuroscience, 14, 1195–1201.

George, D., & Hawkins, J. (2005). A hierarchical Bayesian model of invariant pattern
recognition in visual cortex. IEEE international joint conference on neural
networks (vol. 3, pp. 1812–1817). IEEE.

Hasselemo, M. E., Rolls, E. T., Baylis, G. C., & Nalwa, V. (1989). Object-centered
encoding by face-selective neurons in the cortex in the superior temporal sulcus
of the monkey. Experimental Brain Research, 75, 415–429.

Ito, M., Tamura, H., Fujita, I., & Tanaka, K. (1995). Size and position invariance of
neuronal responses in monkey inferotemporal cortex. Journal of
Neurophysiology, 73, 218–226.

Jones, J. P., & Palmer, L. A. (1987). An evaluation of the two-dimensional Gabor filter
model of simple receptive fields in the cat striate cortex. Journal of
Neurophysiology, 58, 1233–1258.

Kobotake, E., & Tanaka, K. (1994). Neuronal selectivities to complex object features
in the ventral visual pathway of the macaque cerebral cortex. Journal of
Neurophysiology, 71, 856–867.

Kohonen, T. (1982). Cluseter, taxonomy, and topological maps of patterns. In M.
Lang (Ed.), Proceedings of the sixth international conference on pattern recognition
(pp. 114–125). MD: IEEE Computer Society Press, Silver Spring.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with
deep convolutional neural networks. In F. Pereira, C. Burges, L. Bottou, & K.
Weinberger (Eds.), Advances in neural information processing systems (vol. 25,
pp. 1097–1105). Curran Associates Inc.

Li, N., & DiCarlo, J. J. (2008). Unsupervised natural experience rapidly alters
invariant object representation in visual cortex. Science, 321, 1502–1507.

Mainen, Z., & Sejnowski, T. (1995). Reliability of spike timing in neocortical neurons.
Science, 268(5216), 1503–1506. ISSN 0036-8075.

Marreiros, A. C., Daunizeau, J., Kiebel, S. J., & Friston, K. J. (2008). Population
dynamics: Variance and the sigmoid activation function. NeuroImage, 42(1),
147–157. http://dx.doi.org/10.1016/j.neuroimage.2008.04.239. ISSN 1053-
8119.

Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., Le, Q.V., Ng, A.Y. (2011). On
optimization methods for deep learning. In: Proceedings of the 28th
international conference on machine learning (ICML-11) (pp. 265–272).

Olshausen, B. A., & Field, D. J. (2004). Sparse coding of sensory inputs. Current
Opinion in Neurobiology, 14(4), 481–487. http://dx.doi.org/10.1016/
j.conb.2004.07.007. ISSN 0959-4388.

Op de Beeck, H., & Vogels, R. (2000). Spatial sensitivity of macaque inferior temporal
neurons. Journal of Comparative Neurology, 426, 505–518.

Pasupathy, A. (2006). Neural basis of shape representation in the primate brain.
Progress in Brain Research, 154, 293–313.

Perry, G., Rolls, E. T., & Stringer, S. M. (2006). Spatial vs temporal continuity in view
invariant visual object recognition learning. Vision Research, 46,
3994–4006.

Petkov, N., & Kruizinga, P. (1997). Computational models of visual neurons
specialised in the detection of periodic and aperiodic oriented visual stimuli:
Bar and grating cells. Biological Cybernetics, 76, 83–96.

Pettet, M. W., & Gilbert, C. D. (1992). Dynamic changes in receptive-fields size in cat
primary visual cortex. Proceedings of the National Academy of Sciences, 89,
8366–8370.

Ranzato, M., Huang, F. J., Boureau, Y.-L., LeCun, Y. (2007). Unsupervised learning of
invariant feature hierarchies with applications to object recognition, IEEE, 1–8.
http://dx.doi.org/10.1109/CVPR.2007.383157. ISBN 978-1-4244-1179-5 978-1-
4244-1180-1.

Rolls, E. T. (1992). Neurophysiological mechanisms underlying face processing
within and beyond the temporal cortical visual areas. Philosophical Transactions
of the Royal Society, 335, 11–21.

Rolls, E. T. (2000). Functions of the primate temporal lobe cortical visual areas in
invariant visual object and face recognition. Neuron, 27, 205–218.
Rolls, E. (2007). Memory, attention, and decision-making: A unifying computational
neuroscience approach. 1st ed.: Oxford University Press. ISBN 978-0-19-923270-3.

Rolls, E. T., & Baylis, G. C. (1986). Size and contrast have only small effects on the
responses to faces of neurons in the cortex of the superior temporal sulcus of
the monkey. Experimental Brain Research, 65, 38–48.

Rolls, E. T., Baylis, G. C., & Hasselmo, M. E. (1987). The responses of neurons in the
cortex of the superior temporal sulcus of the monkey to bandpass spatial
frequency filtered faces. Vision Research, 27, 311–326.

Rolls, E. T., Baylis, G. C., & Leonard, C. M. (1985). Role of low and high spatial
frequencies in the face-selective responses of neurons in the cortex in the
superior temporal sulcus. Vision Research, 25, 1021–1035.

Rolls, E. T., & Deco, G. (2002). Computational neuroscience of vision. Oxford: Oxford
University Press.

Rolls, E. T., & Milward, T. (2000). A model of invariant object recognition in the
visual system: Learning rules, activation functions, lateral inhibition, and
information-based performance measures. Neural Computation, 12, 2547–2572.

Rolls, E., & Tovee, M. (1995). Sparseness of the neuronal representation of stimuli in
the primate temporal visual cortex. Journal of Neurophysiology, 73(2), 713–726.
ISSN 0022-3077.

Rolls, E. T., & Treves, A. (1998). Neural networks and brain function. Oxford: Oxford
University Press.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by
back-propagating errors. Nature, 323(6088), 533–536. http://dx.doi.org/
10.1038/323533a0.

Stork, D. (1989). Is backpropagation biologically plausible? In: International joint
conference on neural networks, 1989. IJCNN, vol. 2 (pp. 241–246). http://dx.doi.
org/10.1109/IJCNN.1989.118705.

Stringer, S. M., Perry, G., Rolls, E. T., & Proske, J. H. (2006). Learning invariant object
recognition in the visual system with continuous transformations. Biological
Cybernetics, 94, 128–142.

Taigman, Y., Yang, M., Ranzato, M., Wolf, L. (2014). DeepFace: Closing the gap to
human-level performance in face verification. In: 2014 IEEE conference on
computer vision and pattern recognition (CVPR) (pp. 1701–1708). http://dx.doi.
org/10.1109/CVPR.2014.220.

Tanaka, K., Saito, H., Fukada, Y., & Moriya, M. (1991). Coding visual images of
objects in the inferotemporal cortex of the macaque monkey. Journal of
Neurophysiology, 66, 170–189.

Tovee, M. J., Rolls, E. T., & Azzopardi, P. (1994). Translation invariance and the
responses of neurons in the temporal visual cortical areas of primates. Journal of
Neurophysiology, 72, 1049–1060.

Tromans, J. M., Harris, M., & Stringer, S. M. (2011). A computational model of the
development of separate representations of facial identity and expression in the
primate visual system. PLoS ONE, 6(10), e25616. http://dx.doi.org/10.1371/
journal.pone.0025616.

Vinje, W. E., & Gallant, J. L. (2000). Sparse coding and decorrelation in primary visual
cortex during natural vision. Science, 287(5456), 1273–1276. http://dx.doi.org/
10.1126/science.287.5456.1273. ISSN 0036-8075, 1095-920.

Vogels, R., & Biederman (2002). Effects of illumination intensity and direction on
object coding in the macaque inferior temporal cortex. Cerebral Cortex, 12,
756–766.

Von der Marlsburg, C. (1973). Self-organization of orientation sensitive cells in the
striate cortex. Kybernetik, 14, 85–100.

Wallis, G., & Rolls, E. T. (1997). Invariant face and object recognition in the visual
system. Progress in Neurobiology, 51, 167–194.

Wiskott, L., & Sejnowski, T. J. (2002). Slow feature analysis: Unsupervised learning
of invariances. Neural Computation, 14(4), 715–770. http://dx.doi.org/10.1162/
089976602317318938. ISSN 0899-766.

Zou, W. Y., Ng, A. Y., Yu, K. (2011). Unsupervised learning of visual invariance with
temporal coherence. In: NIPS 2011 workshop on deep learning and unsupervised
feature learning.

http://refhub.elsevier.com/S0042-6989(16)00012-2/h0065
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0065
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0070
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0070
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0070
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0075
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0075
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0075
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0080
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0080
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0080
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0085
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0085
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0085
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0090
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0090
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0090
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0095
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0095
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0095
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0100
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0100
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0100
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0100
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0105
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0105
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0110
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0110
http://dx.doi.org/10.1016/j.neuroimage.2008.04.239
http://dx.doi.org/10.1016/j.conb.2004.07.007
http://dx.doi.org/10.1016/j.conb.2004.07.007
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0130
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0130
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0135
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0135
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0140
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0140
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0140
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0145
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0145
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0145
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0150
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0150
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0150
http://dx.doi.org/10.1109/CVPR.2007.383157
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0160
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0160
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0160
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0165
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0165
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0170
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0170
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0175
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0175
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0175
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0180
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0180
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0180
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0185
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0185
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0185
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0190
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0190
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0195
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0195
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0195
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0200
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0200
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0200
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0205
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0205
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1109/IJCNN.1989.118705
http://dx.doi.org/10.1109/IJCNN.1989.118705
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0220
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0220
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0220
http://dx.doi.org/10.1109/CVPR.2014.220
http://dx.doi.org/10.1109/CVPR.2014.220
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0230
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0230
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0230
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0235
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0235
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0235
http://dx.doi.org/10.1371/journal.pone.0025616
http://dx.doi.org/10.1371/journal.pone.0025616
http://dx.doi.org/10.1126/science.287.5456.1273
http://dx.doi.org/10.1126/science.287.5456.1273
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0250
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0250
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0250
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0255
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0255
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0260
http://refhub.elsevier.com/S0042-6989(16)00012-2/h0260
http://dx.doi.org/10.1162/089976602317318938
http://dx.doi.org/10.1162/089976602317318938

	A computational exploration of complementary learning mechanisms �in the primate ventral visual pathway
	1 Introduction
	2 Methods
	2.1 The VisNet model
	2.1.1 Hierarchical neural network architecture of the model
	2.1.2 Pre-processing of the visual input by Gabor filters
	2.1.3 Calculation of cell activations within the network
	2.1.4 Interactions within layers
	2.1.5 Contrast enhancement of neuronal firing rates
	2.1.6 Parameter setting
	2.1.7 Learning rules

	2.2 Training procedure
	2.3 Stimuli
	2.4 Information based measures of performance

	3 Results
	3.1 Experiment 1: Translation invariance
	3.1.1 Model performance with 4 faces in 100 locations
	3.1.2 Model performance with 10 faces in 100 locations

	3.2 Experiment 2: Rotation invariance
	3.2.1 Model performance with 4 faces from 100 views
	3.2.2 Model performance with 10 faces from 100 views

	3.3 Experiment 3: Translation and rotation invariance

	4 Discussion
	4.1 Comparison to other computational modeling studies
	4.2 Conclusions

	Appendix A Computing cell information measures
	References


