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Abstract
We have studied the development of head-centered visual responses in an unsupervised self-
organizing neural network model which was trained under ecological training conditions.
Four independent spatio-temporal characteristics of the training stimuli were explored to
investigate the feasibility of the self-organization under more ecological conditions. First, the
number of head-centered visual training locations was varied over a broad range. Model
performance improved as the number of training locations approached the continuous
sampling of head-centered space. Second, the model depended on periods of time where
visual targets remained stationary in head-centered space while it performed saccades around
the scene, and the severity of this constraint was explored by introducing increasing levels of
random eye movement and stimulus dynamics. Model performance was robust over a range
of randomization. Third, the model was trained on visual scenes where multiple simultaneous
targets where always visible. Model self-organization was successful, despite never being
exposed to a visual target in isolation. Fourth, the duration of fixations during training were
made stochastic. With suitable changes to the learning rule, it self-organized successfully.
These findings suggest that the fundamental learning mechanism upon which the model rests
is robust to the many forms of stimulus variability under ecological training conditions.
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Introduction

The ability to process sensory input, make a decision about the appropriate course

of action, and execute the corresponding motor commands, is critical for the

survival of an animal. The critical step of translating sensory input encoded in a
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modality specific neural representation, for example about the location of targets or

threats, into the neural representation of the behaviourally relevant motor effector

typically involves a coordinate transformation. In primates, vision is a key sensory

input used for guiding survival behaviours like evasion, feeding and mating. Visual

signals gathered at the retina are initially encoded in an eye-centered reference

frame, meaning that receptive fields are anchored to the point of fixation. However,

motor commands like reaching or gaze adjustment require supra-retinal reference

frames. A substantial body of theoretical work has been devoted to understanding

how such coordinate transformations may occur in a number of parietal areas which

contain the relevant sensory and motor signals (Zipser and Andersen 1988; Mazzoni

et al. 1991; Pouget and Sejnowski 1997; Xing and Andersen 2000). However, the

overwhelming majority of this work was based on supervised error correction

algorithms which did not provide any plausible hypothesis for how such coordinate

transformation circuits may develop in cortex.

To address this, we have previously proposed and modelled a biologically plausible

self-organization hypothesis for how the transformation of visual signals from an eye-

centered to a head-centered reference frame may occur in primate parietal areas

(Mender and Stringer 2013). Because a primate adjusts its gaze more frequently by

moving its eyes rather than its head (Freedman and Sparks 1997; Einhäuser et al.

2007), there will be periods of time during which visual targets within a scene will

remain stationary with respect to the head while shifting on the retina. This results in

temporal sequences of visual inputs with the targets in fixed locations in head-

centered space but occurring in different eye-centered locations. In our model, these

visual input patterns are encoded by a population of retinotopic neurons with eye

position gain modulation as have been found, for example, in areas PO (V6) (Galletti

et al. 1995), 7a and LIP (Andersen et al. 1990). These input neurons send

feedforward connections to a layer of output neurons. The feedforward connections

from the input layer to output layer are modified during visual training by a trace

learning rule (Foldiak 1991), which incorporates a memory trace of recent neuronal

activity. The effect of the trace learning rule is to encourage individual output neurons

to learn to respond to subsets of visual input patterns that tend to occur close together

in time. During training, the model performs sequences of saccades around a number

of visual scenes with targets in fixed locations while the head remains stationary. In

this case, trace learning encourages individual output neurons to learn to respond to a

subset of temporally proximal input patterns corresponding to the same head-

centered target location. In this way, individual output neurons learn to respond to

input patterns corresponding to a visual target in a specific head-centered location,

thus endowing these neurons with head-centered responses.

The basic approach of temporal binding by some form of trace learning has also

been explored in an earlier study by (Spratling 2009). However, this model did not

explore the impact of the full range of ecological training conditions investigated

here, which is a critical consideration given that the model depends on these

assumptions for proper self-organization.

Our previous study (Mender and Stringer 2013) provided only a basic

demonstration of the underlying computational hypothesis under a number of

highly idealized and rather unrealistic training conditions. In particular, the

framework was not tested under more natural conditions of visually-guided

training. This is a key issue because the self-organisation of the network architecture
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depends critically on the statistics of natural eye and head movements, as well as the

statistics of visual scenes. Thus, testing model self-organization under more realistic

conditions is an essential next step and the subject of the current paper.

For example, in our earlier work (Mender and Stringer 2013), the model was only

exposed to eight different head-centered locations during training, while under

natural conditions the visual targets would be located across the full continuum of

head-centered space. Whether or not the model can continue to develop head-

centered representations when trained on a continuum of such locations is non-

trivial because in this situation an invariance learning mechanism known as

continuous transformation (CT) learning may begin to degrade the network

performance by causing output neurons to respond over very large regions of the

head-centered space (Stringer et al. 2006). Such invariance learning may even

eliminate head-centered responses altogether. An important question, then, is

whether output neurons remain head-centered, and if so, what happens to the size of

the receptive fields as the number of training locations approaches a continuum.

Another critical issue in our earlier study (Mender and Stringer 2013) was that

the model was only exposed to training periods in which the head and visual targets

remained perfectly stationary during a sequence of saccadic eye movements.

However, under natural conditions such sequences of saccadic eye movements

would be frequently interrupted by additional periods in which the head or visual

targets are also moving. The basic self-organization hypothesis sets strict conditions

on the statistics of how the eyes and head move naturally. Specifically, the eyes must

move rapidly while the head and visual objects in the world remain fixed. So will

head-centered representations still develop if for much of the time the statistics of

eye and head movement depart significantly from this ideal? The current study

begins to investigate this question.

An even more fundamental limitation of our previous work (Mender and Stringer

2013) was that the model was only exposed to a single visual target in the scene during

training at any given time, while natural scenes always include multiple targets. How

could output neurons learn to respond to single head-centered locations if the model

is always exposed to stimuli in multiple locations during visually-guided learning?

This is similar to the problem of how neurons in the primate ventral visual pathway

learn to represent individual objects when trained on natural scenes with multiple

objects present (Stringer and Rolls 2000). Some authors have suggested that

attentional mechanisms are needed to highlight one stimulus location at a time during

learning (Rolls and Deco 2002). Below, we show that our model can successfully self-

organise head-centered output neurons without such an attentional mechanism.

Lastly, in our earlier work (Mender and Stringer 2013), the model always

performed uniform 300 ms eye fixations interleaved with saccades, while under

natural conditions there would be much greater variability in fixation durations.

Interestingly, this turns out to be a potential challenge for the basic self-

organisational hypothesis. In the simulations reported below it was found that the

model failed to develop head-centered output neurons unless some additional

architectural modification was introduced to the model. Again, the reason for this is

that the self-organization depends critically on the statistics of eye and head

movement. For example, if the fixations last too long, then trace learning may fail to

bind across successive fixations. Below we show one biologically plausible way in

which this problem may be ameliorated in the brain.
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To begin to address these issues, this paper investigates whether the model can

cope with a greater level of variability within each of these ecologically important

dimensions of the visual training stimuli. Below we show that the model is indeed

able to successfully develop head-centered output representations when trained

under these more ecologically realistic training conditions. The robust performance

of the model lends support to the proposal that these learning mechanisms are

operating in the primate cortex.

Materials and methods

Network architecture

The architecture of the neural network model and methods for analysing its

performance are similar to our earlier study (Mender and Stringer 2013). The

network consisted of an input population that sent feedforward projections to an

output population as shown in Figure 1. The input neurons encoded the retinal

locations of visual stimuli, where the responses were modulated by the position of

the eye in its orbit. The retinal location and eye position spaces covered [�90�, 90�]
and [�30�, 30�], respectively. The N output neurons were a competitive layer (Rolls

and Treves 1998). Each neuron in the output layer received connections from a

randomly chosen subset of ’ percent of the input population. There was no

topagraphic arrangement of neurons or connections within the model.

retinal preference

ey
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po
sit
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ce

Input Population

Output Population

Diluted feed-forward
connectivity

Figure 1. Architecture of 2-layer neural network model, where the population of input
neurons projects to the competitive output population. Neurons in the input population have
a unique combined eye position and retinal preference, but the population has no
topographic spatial organization. Each output neuron is connected to a subset of neurons
in the input population.

Ecological development of head-centered response 119

N
et

w
or

k 
D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 o
f 

O
xf

or
d 

on
 0

9/
29

/1
4

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



Training the network

At the start of training, the synaptic connections were set to random initial values.

The network was then trained on a series of visual scenes containing one or more

visual targets, during which the model performed eye and head movements. In each

simulation, the visual targets were located in M evenly spaced head-centered

locations within [�63�, 63�], which ensured that the visual targets always remained

within the field of view.

Each training epoch was comprised of a number of periods, where in each period

there was a fixed unique subset of k head-centered locations occupied by visual

targets. During such a period, the locations of the k visual targets with respect to the

head remained fixed while the eyes saccaded through a randomised sequence of

P different eye positions. In most experiments the model was trained on only one

visual target at a time, hence there were M periods within each training epoch, each

corresponding to a visual target being located in one of the M head-centered

locations. In other experiments the model was trained on two or more targets (k > 1)

presented simultaneously within each period. In this case, since the model was

trained on k visual objects presented in all possible subsets of the M head-centered

locations, there were
M

k

� �
such periods within each training epoch. During each

period in which k visual targets were presented in a fixed combination of head-

centered locations, the model fixated P uniformly sampled eye positions in [�24�,
24�]. The duration of each fixation was usually set to 300 ms, although in some

experiments this was varied. The model saccaded between successive eye

positions at 400�/s.
The above training protocol obeyed the key assumption that the eyes

move more frequently than the head. However, in some simulations reported

below we explored the effect of relaxing this condition for a portion of the

training time.

Testing the network

After the synaptic connections had been set up during training, the model was

tested to see whether the output neurons had developed head-centered response

properties. In particular, we tested the reference frame of the neuronal response,

receptive field size and receptive field location. It was important, however, to

test the ability of the model to generalise to new combinations of target location

and eye position, which the model had not been trained on. To do this, the

responses of the output neurons were recorded as the model fixated in E¼ 4 eye

positions �18�, �6�, 6� and 18�, during which a single visual target was placed

in each of T¼ 80 head-centered target locations within [�79�, 79�] in

increments of 2�.

Input population

The input neurons encoded the retinal locations of visual targets, where the neuronal

responses were modulated by the position of the eye in its orbit. Neurons with these

firing properties have been reported in brain areas such as PO (Galletti et al. 1995),
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7a and LIP (Andersen et al. 1990). Specifically, the firing rate of each input neuron

i was given by

vI
i ¼ exp � jje� �ijj2

2�2

 !
�
X
r2R

exp � jjr � �ijj2

2�2

 !
ð1Þ

where e is the current eye position, and r denotes the retinal locations of a number

of visual targets. It can be seen that the neuronal response depends on a product of

two terms. The first term represents an eye position gain field, where �i is the the

neuron’s preferred eye position and � is the standard deviation of the corresponding

Gaussian tuning curve. This form of peaked eye position gain field has been found

in area PO (Galletti et al. 1995). The second term reflects the neuron’s response to

the presence of R visual targets in the scene, where �i is the neuron’s preferred

retinal location and � is the standard deviation of this Gaussian tuning curve. The

population of input neurons covered the two dimensional space of all integer

combinations of eye position and retinal target location.

Output population

Each output neuron i had three variables defined: a trace qi(t), an activation hi(t),

and a firing rate vi(t) (Dayan and Abbott 2001).

The activation was set according to

�h

dhi

dt
¼ �hi þ

X
j

wijv
I
j ð2Þ

where �h was the time constant, and wij was the synaptic weight from input neuron j

to output neuron i.

The firing rate was set according to the sigmoid function

vi ¼
1

1þ expð2’ðhi � p� � �Þ
ð3Þ

with slope ’ and threshold �.
The parameter p� controlled competition between output neurons by setting the

proportion of neurons that remained active. Specifically, p� was set to the activation

value at the �th percentile point of the distribution of neuronal activations. So, for

example, setting � to 90 ensured that approximately 10 per cent of the output

neurons remained active.

Trace learning

Trace learning rules encourage postsynaptic neurons to respond to clusters of input

patterns that tend to occur close together in time. To achieve this, trace learning

rules incorporate a trace of recent neuronal activity. In our model, the trace value qi

(t) of output neuron i was computed according to

�q
dqi

dt
¼ �qi þ vi ð4Þ

where �q was a time constant.
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During training, the strength of the synaptic weight wij (t) from input neuron j to

output neuron i was modified according to the trace learning rule

dwij

dt
¼ Qqiv

I
j ð5Þ

where Q was the learning rate, vI
j was the firing rate of input neuron j, and qi was the

trace value of output neuron i.

To prevent unbounded growth of the synaptic weights during training, after each

weight update the weight vectors of all output neurons were renormalised, as is

typical in competitive neural networks (Rolls and Treves 1998).

The trace learning rule encourages output neurons to bind together clusters of

input patterns that tend to occur in temporal proximity. If the agent moves its eyes

more frequently than its head, as per our hypothesis, then input patterns

corresponding to the same fixed head centered target location will tend to be

clustered together in time. In this case, a trace learning rule will encourage output

neurons to learn to respond to visual targets in a head centered reference frame.

Numerical simulation of the differential model equations

The differential Equations 2, 4 and 5 were solved using a Forward-Euler finite

difference scheme, where the numerical time step Dt was set to one tenth of �h. The

visual and eye-position signals required as inputs to the model were simulated

dynamically and sampled at 1 kHz. Where necessary, linear interpolation was then

used to compute the numerical inputs to the discretized Forward Euler equations.

Analysis of model behaviour after training

After training the network, we tested whether the output neurons had learned to

respond to the presence of visual targets in a head-centered frame of reference. The

methods used for analysing the performance of the model were similar to those used

in our earlier study (Mender and Stringer 2013). We recorded the responses of each

output neuron over every combination of the E eye positions and T head-centered

target locations. For each output neuron we computed the matrix R, where R[i, j]

denotes the neuronal response for the ith eye position ei and jth head-centered target

location tj. The vector (R[i, 1], . . . , R[i, T]) is referred to as the response vector at

the ith eye position.

Reference frames. The primary question was whether the population of output

neurons had learned to respond in either an eye-centered reference frame of head-

centered reference frame after training. To quantify this, two metrics were

computed for each output neuron. These metrics reflected how compatible the

responses of the neuron were with either a head-centered or eye-centered reference

frame, respectively.

The head-centeredness metric, �, reflected the stability of neuronal responses to

head-centered target locations across the E different eye positions. Details of how

this was computed are presented in our previous study (Mender and Stringer 2013).

The metric was bounded in the interval [�1,1], where a value of 1 indicated a
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perfect head-centered response. This metric was referred to as the head-centeredness

of the output neuron.

A similar approach was taken to computing the eye-centeredness metric, �, which

reflected the stability of the neuronal responses to retinal target locations across the

E different eye positions. How this was computed is described in our previous study

(Mender and Stringer 2013). The metric was similarly bounded in [�1,1], where a

value of 1 indicated a perfect eye-centered response. This metric was referred to as

the eye-centeredness of the output neuron.

The two metrics, � and �, were finally combined into a single unidimensional

measure known as the receptive field index (RFI) as follows

RFI ¼

�� � if 0 � � � 1 and 0 � � � 1

� if 0 � � � 1 and � 1 � � � 0

�� if � 1 � � � 1 and 0 � � � 1

0 if � 1 � � � 1 and � 1 � � � 1

8>>><
>>>:

ð6Þ

The RFI was also bounded between �1 and 1. If an output neuron had a strictly

positive RFI, then it was classified as head-centered. Alternatively, if the RFI was

strictly negative then the output neuron was classified as eye-centered. Otherwise, if

the RFI was zero, then the neuron remained unclassified.

Another performance metric was the head-centeredness rate, which was the

proportion of output neurons that were classified as head-centered with RFI >0.

Head-centered receptive field location. The head-centered receptive field location of

an output neuron was determined in the following way. For each eye position ei for

i¼ 1, . . . , E, the centre of mass of the head-centered response vector (R[i, 1], . . . ,

R[i, T]) was computed across the T head-centered target locations. Then the head-

centered receptive field location was computed as the average of these centres of

mass over all E eye positions as follows

1

E

XE

i¼1

PT
j¼1 tjR½i, j �PT
j¼1 R½i, j �

ð7Þ

Coverage. If the model is performing well, then the receptive field locations of

head-centered output neurons should ideally be evenly distributed over the M head-

centered training locations g1, . . . , gM. In order to assess this, the first step was to

compute the head-centered receptive field location for each head-centered output

neuron as described above. Then each such neuron was assigned to the nearest of

the M head-centered training locations. Let pi denote the fraction of head-centered

neurons assigned to training location gi. Then the coverage of the model was defined

as the normalized entropy of this distribution

� 1

log2 M

XM
i¼1

pi log2 pi ð8Þ
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If there was a perfectly uniform distribution, then this measure would give

a maximal coverage of 1. However, if there was some pi¼ 0, where the ith

head-centered training location was not represented by any output neurons, then

the coverage was not defined and there was said to be no coverage.

Receptive field size. Another important diagnostic was the size of the head-

centered receptive fields of output neurons after training. For this analysis, a

neuron was considered responsive whenever its firing rate was above 50% of the

neuron’s maximal response across all eye positions and head-centered target

locations. For each eye position, the size of the receptive field was computed by

adding up all regions of the head-centered space in which the neuron

responded. The final receptive field size of the given neuron was then

computed as the average receptive field size across the different eye positions.

Further details of this calculation are provided in our earlier study (Mender and

Stringer 2013).

Results

Number of target locations

In natural visual scenes, visual targets can be seen in any location with respect to the

head. Therefore, it was important to verify that the self-organizing model could

operate under these more ecological conditions. In this experiment it was

investigated how varying the number of visual target locations in head centered

space during training, M, would influence self-organization in the model. In

particular, the asymptotic performance of the model was studied as the number of

head centered target locations was increased towards an effective continuum,

whereby visual targets may be seen anywhere with respect to the head.

Each simulation was performed with a fixed value of M. For each simulation, a

stimulus set was created as described in section 2. Each training epoch was divided

into M periods, each of which corresponded to one of the head centered target

locations. During each such training period, the location of the visual target

remained fixed in the corresponding head centered location while the model

saccaded through a sequence of P¼ 15 eye positions. Three example stimulus sets

are shown in Figure 2 for values of M of 2, 4 and 12. Table I gives the full parameter

set of the experiment.

The impact of varying the number of head centered target locations during

training on the performance of the model was inspected by plotting key summary

statistics as a function of M in Figure 3. The head-centeredness rate and the average

head-centeredness increased approximately monotonically with increasing M, and

were always above their corresponding untrained network values of �25% and

�0.17 respectively. The coverage did not drop below �0.88 when M� 7 in the

trained model, while there was no coverage for the untrained model. The average

head centered receptive field size decreased steadily as M increased, and was always

well below the untrained average of �69�. In summary, these results showed that

model performance actually improved as the number of head centered training

locations was increased during training.
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Figure 2. Simulated movements of the eyes and head-centered locations of visual targets
during training and testing, and each row shows the stimuli for a given value of M, that is 2, 4
and 12 from the top respectively. The left hand column (A,C,E) shows scatter plots in
which each point corresponds to a single fixation during either training (red points forming
negative slope line) or testing (blue points forming four vertical lines). The fixation points are
plotted as a function of the eye position (abscissa) and the retinal location of the visual target
(ordinate). Each of the diagonal lines of red points corresponds to a period during training
when the visual target was fixed in one of the head-centered target locations while the eyes
moved. The vertical lines of blue points correspond to the four eye positions in which the
network was tested. The right hand column (B,D,F) shows plots showing how the eye position
is shifted through time in a randomised manner during training. Each trace corresponds to a
different period during which the visual target is maintained in a fixed head centered location.
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Figure 3. The plot shows four key population metrics as a function of M. The average
receptive field size curve (black declining curve with error bars) shows the average size of the
head centered receptive field among head-centered neurons, and the error bars represent the
standard deviations. The head-centeredness rate (blue increasing curve without error bars)
shows the fraction of output neurons that were head-centered. The coverage curve (green
curve appearing at M¼ 7) shows the coverage of the head-centered training locations by the
output neuron population, where missing data points before epoch M¼ 7 were due to at least
one of the eight head-centered training locations not being represented by the output cells.
The average head-centeredness curve (red increasing curve with error bars) shows the average
head-centeredness value among all head-centered neurons, and the error bars were the
standard deviations. The dashed lines show the corresponding quantity in the untrained
model, that is average head-centeredness, head-centeredness rate and average receptive field
size respectively, from bottom to top in plot.

Table I. Parameters of experiment varying the number of target locations during training (M).

Parameter Symbol Value

Number of target locations M 1, . . . ,30

Fixation sequence length P 15

Number of training epochs – 20

Width of eye position tuning curve � 6�

Width of retinal tuning curve � 6�

Output neuron population size N 900

Input neuron population size 12261

Trace time constant �q 400 ms

Activation time constant �h 100ms

Activation function slope ’ 4.5

Activation function threshold � 0.4

Sparseness percentile � 80%

Learning rate Q 0.05

Synaptic connectivity � 5%
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Variation in statistics of stimulus dynamics

The basic hypothesis for how head-centered output representations may develop

assumes that during natural self-motion, there are periods of time when the eyes are

moving in the head while the head remains stationary with respect to the visual

environment and visual objects also remain stationary within the environment.

In the simulations reported so far, the statistics of the stimulus dynamics have

conformed to this assumption. However, in reality there will be times when the

stimulus dynamics radically depart from this assumption. For example, sometimes

the eyes might track a moving object while the head remains stationary, or the head

may move while the eyes fixate a stationary object. Both of these alternative stimulus

dynamics do not result in visual objects remaining in a fixed head-centered location

for a continuous period while the object shifts on the retina, which is required for

trace learning to form head-centered output representations. However, the

hypothesis does not actually require the stimulus dynamics to conform to this

assumption all of the time. Indeed, it was conjectured that as long as there were

some periods of time when the visual objects remain in a fixed head-centered

location while the eyes move, which may be interspersed with periods governed

by alternative stimulus dynamics, then this would still permit head-centered output

representations to develop. This key property is important to verify in order to

support the biological and ecological validity of the model.

The following experiment investigated how altering the stimulus dynamics by

including additional periods of randomised visual target and eye movements would

influence the self-organization of the model. In previous experiments, the input

stimulus was structured into regular training periods corresponding to sequences of

eye movement while the stimulus was kept stationary with respect to the head. In

our previous work (Mender and Stringer 2013) it was established that by reducing

the length of these periods, effectively decreasing the relative frequency of eye versus

head movements, the model performed worse in terms of the number of head-

centered output neurons developed through learning. In the following experiment,

the regular training periods during which the eyes move while the visual target

remains fixed with respect to the head were interleaved with new periods consisting

of completely randomised eye and stimulus movement sequences. It was

investigated how the self-organization was influenced by varying the length of

these new periods of randomised stimulus dynamics. The expectation was that

increasing the length of these randomised stimulus sequences would eventually

dominate the effects of the regular training periods promoting the development of

head-centered neurons. How tolerant the model was to increasing the proportion of

randomised stimulus dynamics during training would inform whether the model

could self-organise head-centered output representations under more natural

training conditions.

An epoch of training had M¼ 8 regular training periods where a single visual

target was located in one of the eight head-centered locations �56�, �40�, �24�,
�8�,8�,24�,40� or 56� while a sequence of P¼ 30 fixations were performed.

Additionally, the M regular training periods were interleaved by randomised

training periods during which there was a fixed number, K, of random movements

of both the eyes and the location of the stimuli in head-centered space. Separate

simulations were performed for K¼ 10, 15, . . . , 75 to explore the effects of gradually

increasing the proportion of training that was governed by randomised stimulus
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Figure 4. Movements of the eyes and locations of visual targets during simulations with
additional training periods of randomised movements of the visual target and eyes. Each row
shows the input stimuli for a given value of K, that is 10, 20 and 40 from the top respectively.
The plots show the input stimuli during both periods of regular movements and periods of
randomised movements. The left column (A,C,E) shows the fixation positions in the testing
and training set. The fixations off the main diagonals in the left column plots represent the
fixations that occur during the training periods with randomised movements of the visual
target and eyes. The right column (B,D,F) shows the eye movement dynamics during each
period within a single training epoch. The eye movement dynamics are shown only for the
duration of the shortest period within each plot. That is, for K¼ 10 and K¼ 20 this
corresponds to the periods of randomised movements, while for K¼ 40 this corresponds to
the periods of regular movements for which P¼ 30.
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dynamics. Figure 4 shows the training and testing stimuli for three different values

of K, namely 10, 20 and 40. The simulation parameters were otherwise the same as

the previous experiment.

The effects of varying the length of the randomised training periods on the

performance characteristics of the model was inspected by plotting key summary

statistics as a function of K in Figure 5. The head-centeredness rate remained above

67% across the explored range of K. While it did eventually decline with increasing

K, it was still well above the head-centeredness rate of �22% in the untrained

model. There was coverage across all explored values of K, and the coverage

remained close to maximal, i.e. greater than �0.94, for all K. Among head-centered

neurons the average head-centeredness remained very stable and never went below

0 67. Indeed, this measure showed minimal dependence on K. It was also well

above the average head-centeredness among head-centered neurons in the

untrained model which was �0.22. The average receptive field size among head-

centered neurons also remained very stable and close to 30�, which was well below

the untrained network value of �67�. In summary, this showed that model

performance was robust to the introduction of a significant level of randomised eye-

and head-movements during training.

Multiple simultaneously visible targets during training

In this experiment it was investigated whether the model could self-organize to

develop neurons with head-centered receptive fields despite always being exposed
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Figure 5. Population summary statistics of the response properties of the output neurons
from experiments with additional training periods with randomised movements of the visual
target and eyes. Results are plotted for simulations with different lengths of the randomised
training periods K.
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to multiple simultaneously appearing visual targets during training. This

was an important issue to explore because the primate visual system will typically

be exposed to multiple objects within a visual scene at any one time. So it is

important to verify that the model can self-organize successfully under these

conditions.

Stimuli were presented during training in two target locations at a time while the

eyes moved through a sequence of saccades. Showing stimuli in all possible pairs

of target locations was intended to break the statistical coupling between different

target locations. This effective statistical decoupling between different target

locations can be exploited by the architecture and operation of a biologically

plausible competitive neural network, which will be forced to learn to represent

the individual target locations rather than the pairs of target locations that are

actually presented during training. That is, the competitive output layer is forced

to develop output neurons that only respond to one target location. A number of

papers have previously explored how this general phenomenon of statistical

decoupling between multiple visual objects can allow a competitive neural network

model of the primate visual system to develop separate representations of the

individual objects that have been shown together in different combinations

(e.g. pairs or triples) during training (Stringer et al. 2007, 2008). In particular,

(Stringer et al. 2007) showed that this mechanism of statistical decoupling in a

competitive neural network architecture can be successfully combined with trace

learning to simultaneously perform temporal binding of input patterns that occur

in temporal proximity.

In the following simulation there were eight head-centered target locations that

the visual stimuli could occupy during training. During training, stimuli were

presented in two of these locations at a time while the eyes shifted through a

sequence of saccades. Therefore, each epoch of training consisted of
8

2

� �
¼ 28

periods, where the network was exposed to a unique pair of target locations for each

such period. In particular, none of the target locations were ever presented

singularly to the network during training. Unlike previous experiments, the

sequence of eye movements was identical across periods, which was found to

permit statistical decoupling with fewer fixations.

Figure 6 shows the population results from testing the model before and after

training, and population statistics are given in Table II.

The head-centeredness rate increased from �35% to �97% after training

(Figure 6A), and this was also significantly higher than the head-centeredness rate

of �69% found when training only with a single visible target. Among the head-

centered neurons, the average head-centeredness increased from 0.08 to 0.59 with

training. The receptive fields were clustered around the eight training locations

(Figure 6C). Neurons did not have multi-modal receptive field peaks corresponding

to multiple target locations, but rather neurons were tuned to single training

locations as desired. This was also reflected in a very even distribution of head-

centered receptive fields among the eight locations, which gave a coverage of �0.99.

In summary this showed that the model could successful develop head-centered

output neurons with single peaked receptive fields in head-centered space after

being exposed only to multiple (i.e. pairs of) visual targets appearing simultaneously

during training.
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Variability in fixation durations

In this experiment it was investigated how variability of fixation duration within

the same model simulation would influence the self-organization of the model.

In the previous experiments the fixation duration was fixed, however, under natural

conditions there would be substantial variability in the duration of individual

fixations. Therefore, it was important to establish whether the model could still self-

organize successfully under these conditions. The training dynamics were exactly

as before, except that all fixation durations were independently sampled from
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Figure 6. Population analyses of receptive field properties of output neurons in the untrained
and trained model from experiment with multiple simultaneously visible targets during
training. (A) Scatter plot shows the reference frame response characteristics of all neurons in
the output layer, where each neuron is plotted as a point corresponding to that neuron’s
particular combination of head-centeredness and eye-centeredness. Data points for the
untrained model are plotted in blue, while results for the trained model are shown in red.
(B) Distributions for receptive field index values in the two models. (C) Scatter plot showing
the combination of head centered receptive field size and head-centered receptive field
location of all head-centered output neurons for the two models. (D) Histograms showing the
distribution of the numbers of output neurons that responded preferentially to each of the
head-centered locations which were observed during training.
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N(300,�) were � was varied and negative samples were discarded and re-sampled.

A set of experiments were conducted where � was varied from 0 ms to 2000 ms

in increments of 100 ms, resulting in a total of 21 experiments.

Preliminary experiments revealed that longer fixations cause synapses from the

input neurons that are active for the current fixation to continue to be strengthened

for a longer period of time at the expense of synapses that were potentiated during

previous fixations, which are depressed by the continuous global re-normalisation of

each output neuron’s synaptic weight vector. This process depresses the previously

potentiated synapses in favour of the present input to such a degree that output

neurons are unable to develop and sustain strong synapses to multiple input patterns

with different combinations of eye position and retinal target location corresponding

to a particular head-centered target location. A slight alteration of the learning

dynamics was therefore introduced to overcome this effect, in the form of an upper

bound on individual synapses which prevented long periods of fixation from causing

indefinitely long potentiations at the single synapse level at the expense of the rest of

the weight vector. Specifically, the learning rule used was

dwij

dt
¼ Qðw	 �wijÞqiv

I
j ð9Þ

where w	 is an effective upper bound on each synapse. That is, as approaches w	
from below, the rate of change of wij tends to zero due to the factor (w	�wij) and

hence further potentiation ceases. The weight vector normalization performed at

each time step in previous experiments was also included. The parameters for this

simulation were identical to those used above, except w	¼ 0.15 and Q¼ 2.

The impact of the variability of fixation duration on the performance of the model

was inspected by plotting key summary statistics as a function of fixation duration

standard deviation � in Figure 7. The head-centeredness rate and the average head-

centeredness initially decreased with increasing �. However, the head-centeredness

rate and average head-centeredness eventually stabilised just below 60% and above

0.6, respectively. In particular, the head-centeredness rate of the trained model was

well above the untrained rate of �22%. Among head-centered neurons the average

head-centeredness and receptive field size both remained very stable across the full

range of standard deviations �, and also well above and below corresponding values

in the untrained condition respectively. Finally there was coverage, at no less than

�0.95, across the full range of explored standard deviations. In summary, these

results showed that model performance was robust to variability in fixation duration

across a wide range of �.

Discussion

We have hypothesised that head-centered visual neurons might develop in the

primate parietal cortex through visually-guided learning by combining trace learning

(Foldiak 1991) with the natural statistics of eye and head movement (Freedman and

Sparks 1997; Einhäuser et al. 2007). Specifically, if a primate adjusts its gaze by

moving its eyes more frequently than its head, then the visual input signals

corresponding to a visual target situated at a particular head-centered location will

tend to be clustered together in time. In this case, a trace learning rule will

Ecological development of head-centered response 133

N
et

w
or

k 
D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 o
f 

O
xf

or
d 

on
 0

9/
29

/1
4

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



encourage individual postsynaptic neurons to bind these visual input patterns

together and thereby develop head-centered visual responses.

The aim of this paper was to extend the idealized experiments in (Mender and

Stringer 2013) with more biologically and ecologically constrained model features,

thus lending further support to the viability of the model. A range of more realistic

model features were successfully accommodated without further difficulty. These

model extensions included increasing the number of head-centered target training

locations, implementing more realistic stimulus dynamics during training, training

on multiple simultaneously visible targets and introducing fixation duration

variability. This work is the first time a model of the development of head-centered

visual neurons has been examined along these dimensions.

It was found that the model could be trained with visual targets presented along

the full continuum of head-centered space, and indeed the performance of the

model improved as the density of training locations increased. Previous supervised

models have only been trained on a relatively small number of training locations.

This showed that, despite the potential for destructive interaction effects between

the overlapping representation of adjacent head-centered locations, the self-

organization was robust and improved as training conditions became more

ecological.

It was found that the model could be trained on visual scenes that always included

multiple visual targets, and the output neurons still developed head-centered

receptive fields around single training locations. This was a critical finding given that

natural visual scenes always contain multiple simultaneously visible targets, and
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Figure 7. Population summary statistics of the response properties of output neurons from
experiments in which the fixation durations during training are continually sampled from a
normal distribution N(300 ms, s). The dashed lines show the corresponding quantity in the
untrained model.
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hence the self-organization of the system must function under these more ecological

conditions. For simplicity, only two targets where shown simultaneously, but

(Stringer et al. 2007) have studied the problem in further detail for three or more

visible stimuli.

The basic model of (Mender and Stringer 2013) employed global re-normalisa-

tion of the synaptic weight vectors, but did not incorporate a bound on the

magnitude of the individual synaptic weights. It was important to test that this

simplest form of network architecture was able to cope well on most of the

ecological tests in this current study. However, it was found that introducing

variability into the fixation durations could undermine the successful self-organiza-

tion of head-centered output neurons in this model. This was because neurons then

forgot past input patterns in favour of the most recent one presented for a relatively

long period of time. To remedy this, one approach that we explored was to

introduce an upper bound on individual synapses, which prevented long periods of

fixation from causing indefinitely long potentiations at the single synapse level at

the expense of the rest of the weight vector. This allowed the model to successfully

self-organise with relatively long fixation durations. Moreover, the new model with

bounds on individual synaptic weights should perform well on the other ecological

tests for the same reasons as the basic model. However, we do not discount that

there may be alternative solutions to the problem of variable fixation durations.

It was found that departing from the ideal spatio-temporal training dynamics, in

which the eyes move while the head remains stationary, still produced a significant

proportion of head-centered output neurons. This finding was particularly critical

given that natural eye and head-movements, as well as the dynamics of visual objects

in the world, do not conform to the strict training regime previously explored.

The result shows the robustness of the underlying principle of temporal

association by trace learning, and that it may still function even though the majority

of the visual training is dominated by stimulus dynamics radically different from

what is actually required for the system to self-organize properly. However, there

must of course continue to be some portion of the visual training that follows

the stimulus dynamics needed for trace learning to operate, that is, with the eyes

moving while the head remains stationary. But this is an entirely realistic

requirement of the model.

Nevertheless, the simplified stimulus dynamics used in these simulations were

still substantially less rich than what would be observed under natural conditions.

Both the retinal and eye position spaces in these simulations were one dimensional,

and including a second dimension in both could introduce more complex dynamics.

Perhaps more importantly, there was no relationship between the movement

dynamics of the head, eyes and the visual targets that the model was presented with.

However, this is certainly not the case under natural conditions considering that

animals frequently reorient their gaze to acquire visual targets. In future work, it

would be valuable to expose a two dimensional version of the model to the eye and

head movements recorded from a human subject while viewing a natural visual

environment.
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