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Abstract

Experimental studies have provided evidence that the visual processing areas of the primate brain represent facial identity
and facial expression within different subpopulations of neurons. For example, in non-human primates there is evidence
that cells within the inferior temporal gyrus (TE) respond primarily to facial identity, while cells within the superior temporal
sulcus (STS) respond to facial expression. More recently, it has been found that the orbitofrontal cortex (OFC) of non-human
primates contains some cells that respond exclusively to changes in facial identity, while other cells respond exclusively to
facial expression. How might the primate visual system develop physically separate representations of facial identity and
expression given that the visual system is always exposed to simultaneous combinations of facial identity and expression
during learning? In this paper, a biologically plausible neural network model, VisNet, of the ventral visual pathway is trained
on a set of carefully-designed cartoon faces with different identities and expressions. The VisNet model architecture is
composed of a hierarchical series of four Self-Organising Maps (SOMs), with associative learning in the feedforward synaptic
connections between successive layers. During learning, the network develops separate clusters of cells that respond
exclusively to either facial identity or facial expression. We interpret the performance of the network in terms of the learning
properties of SOMs, which are able to exploit the statistical indendependence between facial identity and expression.
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Introduction

Single unit recording studies in non-human primates have

revealed that a number of the visual processing areas of the brain

appear to encode facial identity and facial expression across separate

subpopulations of neurons. For example, it has been shown that the

inferior temporal gyrus (TE) contained cells that were primarily

responsive to facial identity, the adjacent superior temporal sulcus

(STS) contained cells that primarily responded to facial expression,

and the cells on the lip of the sulcus (TEm) tended to respond to

expression and identity [1]. Cells responsive to facial identity are

primarily found in inferior temporal cortex, while cells that respond

to dynamic facial features such as facial expression are found in STS

[2]. Orbitofrontal cortex (OFC) of non-human primates contains

some cells that respond exclusively to changes in facial identity,

while other cells respond exclusively to facial expression [3]. Similar

cells have been found in the amygdala of non-human primates,

which respond to either facial identity or facial expression [4].

Further evidence of physically separate visual representations of

facial identity and expression comes from fMRI adaptation

(fMRIa) studies in humans. Using fMRIa, functional dissociations

within the STS have been demonstrated [5]. Specifically, cells in

lateral right fusiform cortex and pSTS were released from

adaptation upon changes to facial identity, while cells in more

anterior STS were released from adaptation upon changes to

facial expression. These findings are consistent with other

neuroimaging studies, including [6–8].

How might the primate visual system develop physically

separate representations of facial identity and expression given

that the visual system is always exposed to simultaneous

combinations of facial identity and expression during learning?

Previous research has shown that Principal Component Analysis

(PCA) can extract and categorise facial cues related to facial

identity and expression [9,10]-for a review see [11]. However,

these computational methods are not based on biologically

plausible models of brain function. In this paper, we show for

the first time how separate visual representations of facial identity

and expression could develop in a biologically plausible neural

network architecture using associative Hebbian learning.

In the simulations described below, images of faces with

different identities and expressions are shown to a neural network

model, VisNet, of the ventral visual pathway [12–17]. The VisNet

model has a biologically plausible neural network architecture.

The version of the VisNet architecture used in this paper consists

of a feedforward series of four Self-Organising Maps (SOMs).

During learning, the feedforward synaptic weights are updated by

associative Hebbian learning. A key aspect of the model for

biological plausibility is that learning is unsupervised, that is, we do

not explicitly tell the network the identity or expression of the

current face during training.
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In this present study, the network is trained with complete

cartoon faces, which convey information about both facial identity

and expression simultaneously. The face images are comprised of

two types of continuously varying facial features. The eyes and

nose convey where the face lies within a uni-dimensional

continuum of identities, while the mouth and eyebrows convey

where the face lies within a uni-dimensional continuum of

expressions. After training, the output layer of the network has

developed separate clusters of cells that respond exclusively to

either facial identity or facial expression. Individual neurons that

learn to encode identity fire selectively to a small region of the

space of identities regardless of expression. Similarly, individual

neurons that learn to represent expression fire selectively to a small

region of the space of expressions regardless of identity. We

interpret the performance of the network in terms of the learning

properties of SOMs.

How might the primate brain form separate visual
representations of facial identity and expression?

Recent research has shown how VisNet can exploit the statistics

of natural visual input in order to learn separate visual

representations of objects despite the fact that multiple objects

were always presented together during training [16,17]. During

presentation, the features that make up an object occur together

more frequently compared to the features that make up different

objects. The frequency with which the objects are presented

together during training denotes the level of correlation between

features from different objects. However, the features that

comprise individual objects are always seen together and so are

more highly correlated. In this situation, a competitive network

will form representations of individual objects, rather than the

combinations of objects seen during training. The same effects

should also be present in SOMs.

In this paper we show how similar mechanisms, which exploit

the visual statistics of facial identity and expression, may cause

VisNet to form separate representations of identity and expression

during training with complete faces. In this new situation, facial

identity and expression are each modelled as separate spaces

rather than discrete objects. An example is shown in Fig. 1, which

shows a selection of cartoon faces composed from particular

combinations of 40 identities and 40 expressions. In this simplified

test case, identity and expression are represented by different facial

features. Specifically, identity is represented by the shape and

location of the eyes and nose, while expression is represented by

the mouth and eyebrows. The space of identities varies along the

horizontal dimension, while the space of expressions varies along

the vertical dimension. Each space can be varied independently of

the other.

During training, all 1600 possible faces are presented to VisNet.

During presentation, the features that make up a particular

identity always occur together. The Hebbian learning rule will

encourage output neurons to learn to respond to input features

that tend to occur together simultaneously during training.

However, the features that make up that identity are paired with

each of the different expressions on different occasions. Therefore,

the features that make up the identity occur together far more

frequently than they occur with the features that make up any

particular expression. This statistical decoupling between the

Figure 1. Cartoon face stimuli. A selection of 16 cartoon face stimuli presented to VisNet where identity (represented by the shape and location
of the eyes and nose) changes along the horizontal dimension (left to right) and expression (represented by the shape and location on the mouth
and eyebrows) changes along the vertical dimension (top to bottom). A total of 1600 faces were produced by combining all possible combinations of
the 40 identities and 40 expressions.
doi:10.1371/journal.pone.0025616.g001
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particular identity and any of the expressions prevents an output

neuron from learning to respond to a combination of the identity

and any one of the expressions. In this situation, a SOM will form

representations of individual identities, rather than the combina-

tions of identity and expression seen during training.

Similarly, the features that make up a particular expression

always occur together. Moreover, the features that make up that

expression are paired with each of the different identities on

different occasions. Therefore, the features that make up the

expression occur together far more frequently than they occur with

the features that make up any particular identity. This prevents an

output neuron from learning to respond to a combination of the

expression and any one of the identities. Therefore, a SOM will

similarly form representations of individual expressions.

We investigate the effects of a self-organising map (SOM) by

introducing short-range excitatory connections and long-range

inhibitory connections [18,19] to the original VisNet architecture.

This lateral connectivity of the SOM uses a ‘Mexican-hat’ profile

and encourages spatially proximal neurons to develop similar

response properties due to their mutual excitation while neurons

that are relatively far apart will experience mutual inhibition. This

drives competition to create separate pools of functionally distinct

neurons, which encode either the space of identities or the space of

expressions.

In this first study, we have investigated how this process might

operate with idealised cartoon faces, in which facial identity and

expression are unidimensional spaces and represented by non-

overlapping sets of visual features. However, we propose that, as

long as there is sufficient statistical decoupling between facial

identity and expression, then a similar mechanism will operate

with more realistic face stimuli, in which the dimensions of identity

and expression are more complex and the two spaces are

represented by a common set of overlapping visual features.

The computer simulations presented in this paper are carried

out using an established model, VisNet, of the ventral visual

pathway. As discussed above, experimental studies in non-human

primates have shown a dissociation between the representations of

facial identity and expression across a number of visually-

responsive brain areas both within and outside the ventral visual

pathway. However, we propose that the learning mechanisms

demonstrated in our model below, in which SOMs are able to

exploit the statistical decoupling between facial identity and

expression, may still operate across a more complex network of

visually-responsive areas in the brain.

Results

The VisNet model was trained on all possible combinations of

expression and identity to create a total of 1600 faces. The results

presented below show that the network was able to form separate

localised clusters of neurons in the fourth (output) layer which

represented the two independent visual spaces, identity and

expression, even though they are presented together as complete

faces during training. Crucially, neurons in the fourth layer of the

network learned to respond to different portions of each visual

space. Some neurons learned to respond to a small part of the

space of identity irrespective of expression. Similarly, other

neurons learned to respond to a small part of the space of

expression irrespective of identity.

Analysis of firing rate responses
Fig. 2 shows neuronal firing rate responses to complete faces.

The firing rate responses of an 868 subset of fourth (output) layer

cells are shown before training (left) and after training (right) with

the full set of 1600 complete faces. The 868 neurons are

represented by 64 2D response plots, one per neuron. Each 2D

response plot shows the neuron’s firing-rate response to all 1600

possible faces. For each subplot, the x-axis is bound between 1 and

40, where each discrete point along the horizontal axis represents

a different transform of the identity space. Similarly, each discrete

point along the vertical axis represents a different transform of the

expression space. The firing-rate of each neuron is then plotted for

the different combinations of the 40 identities and 40 expressions.

Strong firing is depicted by a dark shading.

In the untrained condition, cells responded fairly randomly due

to the untrained random weight structure in the network.

Figure 2. Neuronal firing rate responses to complete faces. The firing rate responses of an 868 sample of fourth (output) layer cells are shown
before training (left) and after training (right) with the full set of 1600 complete faces. Each of the 868 sub-plots represents an individual cell in the
output layer, and shows its firing-rate profile to all 1600 faces presented during testing. For each subplot, the horizontal axis denotes the position of
the test face within the identity space and the vertical axis denotes the position within the expression space. The responses of the neuron are
represented on a grey scale where black indicates high firing. After training, some individual neurons learned to respond to local portions of their
preferred space, either identity or expression, irrespective of the position in the alternative space. This results in the appearance of vertical or
horizontal ‘bars’ of activation in the subplots. If a neuron responds selectively to a local region of the identity space, then this results in a vertical bar
in the subplot. In contrast, if a neuron responds to a local region within the expression space, then this results in a horizontal bar. Furthermore, due to
the effects of the SOM architecture, cells with similar response profiles form close together. This causes spatial clustering of cells that respond
preferentially to either facial identity or facial expression.
doi:10.1371/journal.pone.0025616.g002
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However, after training, some neurons responded to local portions

of their preferred space, either identity or expression, irrespective

of the position in the alternative space. This is evidenced by the

appearance of vertical or horizontal ‘bars’ of activation in the

subplots. If a neuron responds selectively to a local region of the

identity space, then this results in a vertical bar in the subplot.

Alternatively, if a neuron responds to a local region within the

expression space, then this results in a horizontal bar. Further-

more, due to the effects of the SOM architecture, cells with similar

response profiles form close together. This causes spatial clustering

of cells that respond preferentially to either facial identity or facial

expression. The firing rates tended to be rather binarised, i.e. near

zero (white) or one (black), because of the steep slopes of the

sigmoid transfer functions used in the present simulations.

We also tested the model with each of the 40 identities and 40

expressions used to generate the 1600 faces presented during

training. Fig. 3 shows neuronal firing rate responses to either

identity or expression. The network is first tested with each one of

the 40 images that comprise the identity space, and then tested

with the 40 images that comprise the expression space. The figure

displays the responses of four different kinds of typical output cells:

(a) a cell that responds exclusively to a portion of the identity

space; (b) a cell that responds exclusively to a portion of the

expression space; (c) a cell that responds to both portions of the

identity and expression space; and (d) a cell that responds to

multiple portions of either or both spaces. Cell responses to the 40

transforms of identity are plotted with the solid line, and cell

responses to the 40 transforms of expression are plotted with the

dashed line. For each cell, the firing-rate (0–1) is plotted on the y-

axis against the identity/expression number (1–40) on the x-axis.

We also investigated whether cells that responded to a part of

either the expression space or the identity space had learned to

respond to a conjunction of the corresponding input features. By

tracing the synaptic weights after training from cells in layer four

back to the input filters, we found that this was indeed the case.

For example, in the case of identity, we found that individual cells

in layer four, which responded selectively to a particular part of the

identity space, received strengthened connections from corre-

sponding conjunctions of both the eyes and the nose. In the case of

expression, we found that cells received strengthened connections

from all parts of the mouth including the two corners of the

mouth, although with weaker connections from the eyebrows.

Information analysis
Fig. 4 shows the results of analysing the amount of information

about expression conveyed by fourth (output) layer cells before and

after training on 1600 complete faces. The information analysis

was performed as described in the Methods. This analysis involved

quantising the expression space into five separate contiguous

blocks. The maximal amount of information possible in this case is

2.32 bits. Fig. 4 shows the amount of single cell information

carried by individual output cells in rank order. In the trained

condition, 17 neurons provided the maximal information of 2.32

bits. These 17 neurons responded selectively to a particular

quantised portion of the expression space irrespective of the

identity. In the untrained condition, no cells reached maximal

information.

It can be seen that training the network on all 1600 complete

faces has led to a dramatic increase in the information carried by

the fourth layer neurons to the expression of the current face

irrespective of identity.

Fig. 5 shows the results of analysing the amount of information

about identity conveyed by fourth (output) layer cells before and

after training on 1600 complete faces. This analysis involved

quantising the identity space into five separate contiguous blocks

as described in the Methods. The plot shows the amount of single

cell information carried by individual output cells in rank order. In

the trained condition, 25 neurons provided the maximal

information of 2.32 bits. In the untrained condition, no cells

reached maximal information.

In summary, Figs. 4 and 5 confirm that, after training on the

1600 complete faces, the output layer cells have learned to convey

large amounts of information about either facial identity or

expression. This is because different subpopulations of cells in the

output layer have learned to respond selectively to just one of the

visual spaces, identity or expression, irrespective of the current

transform of the other space. That is, some cells respond

exclusively to a particular portion of the identity space, while

other cells respond exclusively to a particular portion of the

expression space.

Discussion

A number of experimental studies have shown that physically

separated subpopulations of neurons develop in the visually

responsive areas of the primate brain that respond primarily either

to facial identity or to facial expression [1–4]. In this paper we

have provided a biologically plausible neural network model of

how these separate clusters of neurons might develop through

learning. The results of our simulations were confirmed by

examination of the firing rate responses of the output cells, as well

as analysis of the information carried by these cells about facial

identity and expression. This is a non-trivial problem because the

visual system is always exposed to combinations of facial identity

and expression during learning. Our model solves the problem by

exploiting how SOMs self-organise their output neuronal

responses when they are trained on statistically independent visual

input spaces such as facial identity and expression.

The learning principles demonstrated in this paper can also be

applied to other problems in vision, such as learning to recognise

different parts of the body [20], learning separate representations

of two different objects that are always seen together but which

move independently [21], or learning to classify gender.

Our simulations were performed using an established model,

VisNet, of the ventral visual pathway. Experimental studies have

demonstrated a dissociation between representations of facial

identity and expression occurs across a number of visually

responsive areas of the primate brain, both within and outside

the ventral visual pathway. Nevertheless, our model has

demonstrated biologically plausible learning mechanisms, specif-

ically how learning in SOMs is shaped by the statistical

independence between facial identity and expression, that may

operate across these different but connected brain areas. In further

simulation work we will explore how more architecturally detailed

models of these interconnected areas of the brain develop their

heterogeneous representations of facial identity and expression.

The results presented in this paper are robust. Altering the

learning rates over three orders of magnitude did not qualitatively

alter our findings. We also explored the effects of varying levels of

global competition within the model by adjusting the sparseness

percentile values. The model performed well with a sparseness of

4% to 10% within each layer, that is when 4% to 10% of the

neurons were allowed to fire during any given stimulus

presentation. Large variations in learning rate, sparseness, and

the width of the SOM still produced spatially organised clusters of

cells that were responsive to either facial identity or expression.

A spatial filter Ia,b that simulated short-range excitatory and

long-range inhibitory connections was introduced to the VisNet

Computational Model: Facial Identity and Expression
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model to create the SOM network architecture. There is some

anatomical evidence demonstrating that lateral inhibitory connec-

tions in V1 tend to project over a smaller proximity than excitatory

connections [22–24]; this is the opposite of the SOM architecture

implented in VisNet. However, if lateral inhibitory connections are

rapid, a Mexican-hat style functional architecture may still be

achieved [25]. The SOM architecture implemented in this paper

is similar to others that are successful in replicating a range of

experimental findings [26–28].

The tuning profiles of cells shown in Fig. 3 are consistent with

non-human primate single cell recording data from [29]; in their

study only 6.7% of cells responded to facial expression and

identity. However, more recent research has shown that in the

monkey amygdala, 64% of recorded cells responded to both facial

Figure 3. Neuronal firing rate responses to either identity or expression. First the network is trained with all 1600 complete faces. Then the
network is tested with the visual features that represent either the 40 transforms of facial expression or the 40 transforms of facial identity presented
separately. The figure displays the responses of four different kinds of typical output cells: (a) a cell that responds exclusively to a portion of the
identity space; (b) a cell that responds exclusively to a portion of the expression space; (c) a cell that responds to both portions of the identity and
expression space; and (d) a cell that responds to multiple portions of either or both spaces. Cell responses to the 40 transforms of identity are plotted
with the solid line, and cell responses to the 40 transforms of expression are plotted with the dashed line. For each cell, the firing-rate (0–1) is plotted
on the y-axis against the identity/expression number (1–40) on the x-axis.
doi:10.1371/journal.pone.0025616.g003
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expression and identity [4]. This cell type is presented in Fig. 3 (iii).

Indeed, fMRIa studies with human subjects report clusters of cells

in the fusiform face area (FFA) that respond to both identity and

expression [8]. This type of heterogeneous cell type is consistent

with our simulations, which produced four types of cell in the

output layer.

A number of studies have revealed that neonates are able to

mimic certain facial gestures [30,31]. Furthermore, neonates show

preference for familiar faces over novel faces, suggesting they can

recognise different identities [32]. However, the question of innate

functional segregation remains an open issue. The model we have

presented in this paper shows how a functional segregation

between facial identity and expression could be learned through

visual experience without requiring any innate functional

segregation.

The VisNet architecture used in this study has a number of

limitations in terms of biological accuracy. For example, the

current VisNet model lacks backprojections, which are a major

feature of the ventral visual pathway in the primate brain. In

future developments of the VisNet model we intend to explore the

effects of these additional connections during learning. Also,

because the current model is purely feedforward, it is possible to

train the layers one at a time from layer 1 to 4. However, with the

introduction of backprojections, all of the layers will need to be

trained simultaneously. Moreover, the neurons in the current

model are rate-coded with rather binarised firing rates. In future

studies, we will implement integrate and fire neurons, which

explicitly model the times of action potentials. This in turn will

allow us to explore the effects of spike time dependent plasticity on

visually-guided learning in the network.

In this paper we used carefully designed cartoon faces. This was

to allow us to begin by exploring the simplified situation in which

the visual spaces of facial identity and expression are independent,

uni-dimensional, and non-overlapping on the retina. However,

real faces are more complex in a number of ways. First, with real

faces, expression may not be entirely independent of identity.

Secondly, identity and expression are not simple uni-dimensional

spaces. Thirdly, individual facial features such as the mouth may

convey information about both identity and expression simulta-

neously. In this case, the visual representations of identity and

expression are encoded by overlapping sets of retinal input

neurons in a more distributed manner. Therefore, in future work,

we intend to test how the learning mechanisms demonstrated in

the simulations above might work with face images that are more

realistic in all of these respects. For example, more realistic faces

can be produced by the FaceGen modeller software package,

which is used in a number of fMRI studies into the separation of

identity and expression [8]. We will eventually test the model on

real faces. This will allow us to assess the network’s ability to

generalise when tested with faces not presented during training.

However, we expect that this will require VisNet’s retina to be

substantially increased in size in order to provide a sufficiently

detailed input representation of the visual features encoding facial

identity and expression.

Methods

The VisNet Model
The original VisNet architecture [33] is based on the following:

(i) A series of hierarchical competitive networks with local graded

inhibition. (ii) Convergent connections to each neuron from a

topologically corresponding region of the preceding layer, leading

to an increase in the receptive field size of neurons through the

visual processing areas. (iii) Synaptic plasticity based on a Hebb-

like associative learning rule.

In this paper, we implement a self-organising map (SOM)

[18,19] within each layer in place of the original competitive

Figure 4. Information analysis for expression. Analysis of
information about expression conveyed by fourth (output) layer cells
before and after training on 1600 complete faces. The information
analysis was performed as described in the Methods. The plot shows
the amount of single cell information carried by individual output cells
in rank order. In the trained condition, 17 neurons provided maximal
information of 2.32 bits. In the untrained condition, no cells reached
maximal information.
doi:10.1371/journal.pone.0025616.g004

Figure 5. Information analysis for identity. Analysis of information
about identity conveyed by fourth (output) layer cells before and after
training on 1600 complete faces. The information analysis was
performed as described in the Methods. The plot shows the amount
of single cell information carried by individual output cells in rank order.
In the trained condition, 25 neurons provided maximal information of
2.32 bits. In the untrained condition, no cells reached maximal
information.
doi:10.1371/journal.pone.0025616.g005
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network architecture. That is, in our model simulations we

adjusted the local graded inhibition within a layer to incorporate

short-range excitation and longer-range inhibition.

This VisNet model consists of a hierarchical series of four layers

of SOMs, corresponding to V2, V4, the posterior inferior temporal

cortex, and the anterior inferior temporal cortex, as shown in

Fig. 6. The forward connections to individual cells are derived

from a topologically corresponding region of the preceding layer,

using a Gaussian distribution of connection probabilities. These

distributions are defined by a radius which will contain

approximately 67% of the connections from the preceding layer.

The values used are given in Table 1.

Before the visual stimuli are presented to the network’s input

layer, they are pre-processed by a set of input filters which accord

with the general tuning profiles of simple cells in V1. The filters

provide a unique pattern of filter outputs for each visual face

stimulus, which is passed through to the first layer of VisNet. The

input filters used are computed by weighting the difference of two

Gaussians by a third orthogonal Gaussian according to the

following:
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{
xcoshzysinhffiffiffi

2
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{
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1:6
e
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 !2
2
66664
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77775

e
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p
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 !2
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where f is the filter spatial frequency, h is the filter orientation, and

r is the sign of the filter, i.e. 61. Individual filters are tuned to

spatial frequency (0.0625 to 0.5 cycles/pixel); orientation (0u to

135u in steps of 45u); and sign (61). The number of layer 1

connections to each spatial frequency filter group is given in

Table 2. Past neurophysiologcal research has shown that models

based on difference-of-Gaussians functions can account for the

variety of shapes of spatial contrast sensitivity functions observed

in cortical cells better than those based on the Gabor function or

the second differential of a Gaussian. They do have more free

parameters, but unlike other models, they provide a detailed

description of the organization of subregions of the receptive field

that is consistent with the physiological constraints imposed by

earlier stages in the visual pathway [34].

The activation hi of each neuron i in the network is set equal to a

linear sum of the inputs yj from afferent neurons j weighted by the

synaptic weights wij. That is,

hi~
X

j

wijyj ð2Þ

where yj is the firing-rate of neuron j, and wij is the strength of the

synapse from neuron j to neuron i.

In this paper, we run simulations with a self-organising map

(SOM) implemented within each layer. Short-range excitation and

long-range inhibition are combined to form a ‘Mexican-hat’

spatial filter, which is constructed as a difference of two Gaussians

as follows:

Ia,b~{dI e
{

a2zb2

s2
I

� �
zdEe

{
a2zb2

s2
E

� �
ð3Þ

To implement the SOM, the activations hi of neurons within a

layer are convolved with the spatial filter, Ia,b, where dI controls

the inhibitory contrast and dE controls the excitatory contrast. The

width of the inhibitory radius is controlled by sI while the width of

the excitatory radius is controlled by sE . a and b index the distance

away from the centre of the filter. The lateral inhibition and

excitation parameters are given in Table 3.

Next, contrast enhancement is applied by means of a sigmoid

activation function

Figure 6. VisNet model. Left: Stylised image of the four layer VisNet network. The four layers of the network represent successive stages in the
ventral visual pathway of the primate brain: V2, V4, TEO (posterior inferior temporal cortex) and TE (anterior inferior temporal cortex). The synaptic
connections to V2, the first layer of the network, are derived from an array of input filters with the response characteristics of V1 simple cells. The V1
input filters are used to process the raw visual images to provide input to the first layer of the network. The layer of V2 cells then sends feedforward
connections to the V4 layer. Similarly, V4 sends feedforward connections to TEO, and TEO sends feedforward connections to TE. During training with
visual images, the feedforward synaptic connections into each of the four stages (V2, V4, TEO and TE) are modified by Hebbian learning. Convergence
through the network is designed to provide fourth layer (TE) neurons with information from across the entire input retina. Right: Convergence of
feedforward connections through successive stages of the ventral visual pathway. The receptive field size of neurons increases through successive
layers. The final layer, TE, receives visual input from across the whole retina.
doi:10.1371/journal.pone.0025616.g006
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y~f sigmoid rð Þ~ 1

1ze{2b r{að Þ ð4Þ

where r is the activation (or firing-rate) after applying the SOM

filter, y is the firing-rate after contrast enhancement, and a and b
are the sigmoid threshold and slope respectively. The parameters a
and b are constant within each layer, although a is adjusted to

control the sparseness of the firing-rates. For example, to set the

sparseness to, say, 5%, the threshold is set to the value of the 95th

percentile point of the activations within the layer. The parameters

for the sigmoid activation function are shown in Table 4. These

are robust values found to operate well for this experiment.

The inhibitory part of the SOM filter and contrast enhance-

ment stages of the VisNet model aim to simulate the function of

inhibitory interneurons. In the brain, inhibitory interneurons effect

direct competition between excitatory cells within each layer of the

ventral visual pathway. The way in which contrast enhancement is

currently implemented in VisNet allows us to control the

sparseness of firing-rates within each layer. This is a useful aspect

of the model, which allows us to explore the effects of sparseness

on network performance.

An important property of the model is that the learning at

synaptic connections between cells is unsupervised. That is, during

training, the expression or identity of the current face is not

explicitly specified to the network to guide learning. The co-

activation of neurons in two successive layers causes their synaptic

connection to become strengthed, according to a Hebbian

learning rule,

dwij~ayiyj ð5Þ

where dwij is the increment in the synaptic weight wij, yi is the

firing-rate of the post-synaptic neuron i, yj is the firing-rate of the

pre-synaptic neuron j, and a is the learning rate. To restrict and

limit the growth of each neuron’s synaptic weight vector, wi for the

i th neuron, its length is normalised at the end of each timestep

during training as is usual in competitive learning [35].

Normalisation is required to ensure that the same set of neurons

do not always win the competition. Neurophysiological evidence

for synaptic weight normalization is provided by [36].

Stimuli
To train the VisNet model we used computer-generated images

of 2D faces, shown in Fig. 1. The use of carefully-constructed

cartoon faces allowed us to investigate in the most controlled way

the hypothesis outlined in the Introduction. In this initial study, we

examine the simplest case, in which the identity and expression

spaces are unidimensional and different facial features encode

either identity or expression but not both. First we created 40

continuously varying transforms of identity by exclusively varying

the shape and location of the nose and eyes (Fig. 1: left to right).

Then we created 40 continuously varying transforms of expression

by varying the shape and location of the mouth and eyebrows

(Fig. 1: top to bottom). The different identities and expressions

were then combined to create 40640 = 1600 combinations of

facial identity and expression. The final images were presented on

a 1286128 pixel background each as a 256 grey level image.

Training procedure
To train the network, all identity and expression combinations

were presented creating a total of 1600 possible faces. One training

epoch comprises all 1600 face presentations. At each presentation

of a face to the network, the activation of individual neurons is

calculated, then their firing-rate is calculated and finally their

synaptic weights updated in accordance with the procedure

outlined above.

To reduce the computational expense, we exploited the

feedforward architecture of the model by training the network

one layer at a time from layer 1 through 4. The feedforward

architecture means that each layer must wait for learning in the

previous layer to converge before it can do the same. Therefore, in

previous studies, training the network one layer at a time has been

found not to affect the qualitative performance of the network

[37]. We used 50, 100, 100, 75 training epochs for layers 1, 2, 3

and 4 respectively. We explored the performance of the network

using a SOM within each layer. In all experiments, the learning

rate of the model was set to 0.1 and the sparseness was set to 0.05.

Table 3. Lateral Connectivity Parameters.

Layer 1 2 3 4

Excitatory Radius, sE 0.7 0.55 0.4 0.6

Excitatory Contrast, dE 5.35 33.15 117.57 120.12

Inhibitory Radius, sI 1.38 2.7 4.0 6.0

Inhibitory Contrast, dI 1.5 1.5 1.6 1.4

Lateral inhibition and excitation parameters for the SOM.
doi:10.1371/journal.pone.0025616.t003

Table 4. Sigmoid parameters.

Layer 1 2 3 4

Percentile 95 95 95 95

Slope b 190 40 75 26

The sigmoid parameters used to control the global inhibition within each layer
of the model.
doi:10.1371/journal.pone.0025616.t004

Table 1. Network dimensions.

Dimensions Number of Connections Radius

Layer 4 32632 100 12

Layer 3 32632 100 9

Layer 2 32632 100 6

Layer 1 32632 272 6

Retina 1286128632 - -

Network dimensions showing the number of connections per neuron and the
radius in the preceding layer from which 67% are received.
doi:10.1371/journal.pone.0025616.t001

Table 2. Layer 1 connectivity.

Frequency 0.5 0.25 0.125 0.0625

Number of Connections 201 50 13 8

The numbers of connections from each spatial frequency set of filters are
shown. The spatial frequency is in cycles per pixel.
doi:10.1371/journal.pone.0025616.t002
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Other values were explored (not presented) and receive comment

in the Discussion.

Testing procedure
After training all four layers of the network on the 1600 faces

comprising unique combinations of identity and expression, the

performance of the network was tested in two ways. First, the

network was tested using the same complete faces that were

presented during training. Secondly, network performance was

also tested by presenting either identity or expression in isolation.

In both cases, we recorded the firing-rates from all neurons within

the fourth (output) layer of the model.

Information measures
The network’s ability to recognise varying identities or

expressions during testing is also assessed using information theory

[37,38]. However, the visual face stimuli used in the present study

were constructed from a large number (40) of different expressions

and identities in order to represent near continuous spaces of

expression and identity. VisNet’s information analysis measures

were originally designed for a discrete number of visual stimuli,

each of which was presented over a range of different transforms

[37,38]. Therefore, in order to apply these information measures

to the current work, we needed to quantise the identity and

expression spaces as follows.

In order to analyse how much information about facial identity

was carried by neurons within the fourth (output) layer of the

network, the 40 identities were quantised into five contiguous

blocks of eight. During testing, we presented a central identity

from within each of the five blocks, which was then combined with

all 40 expressions. If a subpopulation of neurons in the fourth layer

had learned to represent exclusively facial identity, then each

neuron within that subpopulation should ideally respond selec-

tively to only one of the five quantised identities. Furthermore,

each neuron should respond to its favoured identity invariantly

over all of the 40 expressions that can paired with that identity. In

this case, such neurons will convey maximal information about

facial identity.

In a separate analysis, the information measures were also used

to assess how much information was carried by fourth layer

neurons about facial expression. This was done by quantising and

testing the expression space in a corresponding manner.

The single cell information measure has been used to show how

much information is available from the response of a single cell

about a stimulus that was presented over a range of different

transforms [37,38]. In the present study, the stimulus is taken to be

one of the five quantised identities or five quantised expressions.

When we are assessing the amount of information conveyed about

identity, then the five quantised identities are treated as the five

stimuli, and the 40 expressions are treated as transforms of those

five identity stimuli. Conversely, when we are assessing the amount

of information conveyed about expression, then the five quantised

expressions are treated as the five stimuli, and the 40 identities are

treated as transforms of those five expression stimuli.

The single cell information measure for each cell shows the

maximum amount of information that the cell conveys about any

one stimulus over all transforms. This is computed using the

following formula with details provided elsewhere [37,38]. The

stimulus-specific information I(s, R) is the amount of information

the set of responses R has about a specific stimulus s, and is given

by

I s,Rð Þ~
X
r[R

P rjsð Þ log2

P rjsð Þ
P rð Þ , ð6Þ

where r is an individual response from the set of responses R.

The maximum amount of information that can be attained is

log2 Nð Þ bits, where N is the number of stimuli. For the case of five

stimuli, the maximum amount of information is 2.32 bits.

Author Contributions

Conceived and designed the experiments: JMT MH SMS. Performed the

experiments: JMT MH SMS. Analyzed the data: JMT MH SMS.

Contributed reagents/materials/analysis tools: JMT MH SMS. Wrote the

paper: JMT MH SMS.

References

1. Hasselmo ME, Rolls ET, Baylis GC (1989) The role of expression and identity in

the face-selective responses of neurons in the temporal visual cortex of the

monkey. Behavioural Brain Research 32: 203–218.

2. Perrett DI, Hietanen JK, Oram MW, Benson PJ, Rolls ET (1992) Organization

and functions of cells responsive to faces in the temporal cortex [and discussion].

Philosophical Transactions of the Royal Society of London Series B: Biological

Sciences 335: 23–30.

3. Rolls ET, Critchley H, Browning A, Inoue K (2006) Face-selective and auditory

neurons in the primate orbitofrontal cortex. Experimental Brain Research 170:

74–87.

4. Gothard KM, Battaglia FP, Erickson CA, Spitler KM, Amaral DG (2007)

Neural responses to facial expression and face identity in the monkey amygdala.

Journal of Neurophysiology 97: 1671–1683.

5. Winston JS, Henson R, Fine-Goulden MR, Dolan RJ (2004) fMRI-Adaptation

reveals dissociable neural representations of identity and expression in face

perception. Journal of Neurophysiology 92: 1830–1839.

6. Fox CJ, Moon SY, Iaria G, Barton JJ (2009) The correlates of subjective

perception of identity and expression in the face network: An fMRI adaptation

study. NeuroImage 44: 569–580.

7. Cohen Kadosh K, Henson RNA, Cohen Kadosh R, Johnson MH, Dick F (2010)

Task-dependent activation of face-sensitive cortex: An fMRI adaptation study.

Journal of Cognitive Neuroscience 22: 903–917.

8. Xu X, Biederman I (2010) Loci of the release from fMRI adaptation for changes

in facial expression, identity, and viewpoint. Journal of Vision 10.

9. Calder AJ, Burton AM, Miller P, Young AW, Akamatsu S (2001) A principal

component analysis of facial expressions. Vision Research 41: 1179–1208.

10. Gary GC, Branson KM, Calder AJ (2002) Do expression and identity need

separate representations? Proceedings of the Twenty-Fourth Annual Conference

of the Cognitive Science Society. pp 238–243.

11. Calder AJ, Young AW (2005) Understanding the recognition of facial identity

and facial expression. Nat Rev Neurosci 6: 641–651.

12. Wallis G, Rolls E, Foldiak P (1993) Learning invariant responses to the natural

transformations of objects 2: 1087–1090 vol.2.

13. Stringer SM, Rolls ET (2000) Position invariant recognition in the visual system

with cluttered environments. Neural Networks 13: 305–315.

14. Stringer SM, Rolls ET (2002) Invariant object recognition in the visual system

with novel views of 3D objects. Neural Computation 14: 2585–2596.

15. Stringer S, Perry G, Rolls E, Proske J (2006) Learning invariant object

recognition in the visual system with continuous transformations. Biological

Cybernetics 94: 128–142.

16. Stringer SM, Rolls ET, Tromans JM (2007) Invariant object recognition with

trace learning and multiple stimuli present during training. Network:

Computation in Neural Systems 18: 161.

17. Stringer SM, Rolls ET (2008) Learning transform invariant object recognition in

the visual system with multiple stimuli present during training. Neural Netw 21:

888–903.

18. von der Malsburg C (1973) Self-organization of orientation sensitive cells in the

striate cortex. Kybernetik 14: 85–100.

19. Kohonen T (1982) Self-organized formation of topologically correct feature

maps. Biological Cy-bernetics 43: 59–69.

20. Higgins I, Stringer S (2011) The role of independent motion in object

segmentation in the ventral visual stream: Learning to recognise the separate

parts of the body. Vision Research 51: 553–562.

21. Tromans JM, Page H, Stringer SM (2011) Learning separate visual

representations of independently rotating objects. Submitted.

22. Fitzpatrick D, Lund JS, Blasdel GG (1985) Intrinsic connections of macaque striate

cortex: afferent and efferent connections of lamina 4C. The Journal of Neuroscience:

The Official Journal of the Society for Neuroscience 5: 3329–3349.

Computational Model: Facial Identity and Expression

PLoS ONE | www.plosone.org 9 October 2011 | Volume 6 | Issue 10 | e25616



23. Bosking WH, Zhang Y, Schofield B, Fitzpatrick D (1997) Orientation selectivity

and the arrangement of horizontal connections in tree shrew striate cortex. The
Journal of Neuroscience 17: 2112–2127.

24. Tucker TR, Katz LC (2003) Spatiotemporal patterns of excitation and inhibition

evoked by the horizontal network in layer 2/3 of ferret visual cortex. Journal of
Neurophysiology 89: 488–500.

25. Kang K, Shelley M, Sompolinsky H (2003) Mexican hats and pinwheels in visual
cortex. Proceedings of the National Academy of Sciences of the United States of

America 100: 2848–2853.

26. Sirosh J, Miikkulainen R (1994) Cooperative self-organization of afferent and
lateral connections in cortical maps. Biological Cybernetics 71: 65–78.

27. Choe Y, Miikkulainen R (1998) Self-organization and segmentation in a laterally
connected orientation map of spiking neurons. Neurocomputing 21: 139–158.

28. Bednar JA, Miikkulainen R (2006) Joint maps for orientation, eye, and direction
preference in a self-organizing model of v1. Neurocomputing 69: 1272–1276.

29. Hasselmo ME, Rolls ET, Baylis GC, Nalwa V (1989) Object-centered encoding

by face-selective neurons in the cortex in the superior temporal sulcus of the
monkey. Experimental Brain Research Experimentelle Hirnforschung Expéri-
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