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Abstract. The operation of a hierarchical competitive
network model (VisNet) of invariance learning in the
visual system is investigated to determine how this class of
architecture can solve problems that require the spatial
binding of features. First, we show that VisNet neurons
can be trained to provide transform-invariant discrimi-
native responses to stimuli which are composed of the
same basic alphabet of features, where no single stimulus
contains a unique feature not shared by any other
stimulus. The investigation shows that the network can
discriminate stimuli consisting of sets of features which
are subsets or supersets of each other. Second, a key
feature-binding issue we address is how invariant
representations of low-order combinations of features in
the early layers of the visual system are able to uniquely
specify the correct spatial arrangement of features in the
overall stimulus and ensure correct stimulus identification
in the output layer. We show that output layer neurons
can learn new stimuli if the lower layers are trained solely
through exposure to simpler feature combinations from
which the new stimuli are composed. Moreover, we show
that after training on the low-order feature combinations
which are common to many objects, this architecture can
— after training with a whole stimulus in some locations —
generalise correctly to the same stimulus when it is
shown in a new location. We conclude that this type of
hierarchical model can solve feature-binding problems to
produce correct invariant identification of whole stimuli.

1 Introduction
1.1 Background

This paper explores how the visual system may
discriminate between stimuli that are composed of
combinations of shared features through the formation
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of transform-invariant neurons. There is now consider-
able evidence to support the hypothesis that over
successive stages the visual system develops neurons
that can respond with view, size and position invariance
to objects or faces (Desimone 1991; Tanaka et al. 1991;
Rolls 1992, 2000; Rolls and Tovee 1995). Rolls (1992,
1994, 1995) proposed a biologically plausible mechanism
for transform-invariant object recognition based on the
following: (1) a series of hierarchical competitive
networks with local graded inhibition; (2) convergent
connections to each neuron from a topologically
corresponding region of the preceding layer, leading to
an increase in the receptive field size of cells through the
visual processing areas; and (3) synaptic plasticity based
on a modified Hebb-like learning rule with a temporal
trace of each cell’s previous activity. Wallis and Rolls
(1997) implemented a four-layer neural network model
(VisNet) to demonstrate that such an architecture can
indeed produce view-invariant neurons that respond to
some but not other stimuli.

In this paper we investigate two key issues that arise
in such hierarchical layered network architectures, other
examples of which have been described and analysed by
Fukushima (1980), Ackley et al. (1985) and Rosenblatt
(1961). One issue is whether the network can
discriminate between stimuli that are composed of the
same basic alphabet of features. The second issue is
whether such network architectures can find solutions to
the spatial-binding problem. These issues are described
in the next two paragraphs.

The first issue investigated is whether the VisNet type
of hierarchical layered network architecture can
discriminate stimuli that are composed of a limited set of
features, and where the different stimuli include cases
where the feature sets are subsets and supersets of those
in the other stimuli. In previous investigations with
VisNet, we used stimuli (such as faces, or shapes such as
T, L and +) where each stimulus might contain unique
features not present in the other stimuli. In Sect. 2.1, the
stimuli are derived from a set of four features which are
designed so that each feature is spatially separate from
the other features, and no unique combination of firing
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caused, for example, by overlap of horizontal and
vertical filter outputs in the input representation distin-
guishes any one stimulus from the others. The results
described in Sect. 2.1 show that VisNet can indeed learn
correct invariant representations of stimuli which do
consist of feature sets where individual features do not
overlap spatially with each other, and where the stimuli
can be composed of sets of features which are supersets
or subsets of those in other stimuli. Fukushima and
Miyake (1982) did not address this crucial issue where
different stimuli might be composed of subsets or
supersets of the same set of features, although they did
show that stimuli with partly overlapping features could
be discriminated by the so-called neocognitron.

In Sect. 2.2 we go on to address the spatial-binding
problem in architectures such as VisNet. This compu-
tational problem, which needs to be addressed in
hierarchical networks such as the primate visual system
and VisNet, is how representations of features can be
(e.g. translation) invariant, yet can specify stimuli or
objects in which the features must be specified in the
correct spatial arrangement. This is the feature-binding
problem, discussed for example by von der Malsburg
(1990), and arising in the context of hierarchical layered
systems (Rosenblatt 1961; Fukushima 1980; Ackley
et al. 1985). The issue is whether or not features are
bound into the correct combinations, or if alternative
combinations of known features would elicit the same
responses. Von der Malsburg suggested that one
potential solution is the addition of a temporal dimen-
sion to the neuronal response, so that features that
should be bound together would be linked by temporal
binding. There has been considerable neurophysiological
investigation of this possibility (Singer et al. 1990;
Abeles 1991; Hummel and Biederman 1992; Singer and
Gray 1995). We note that a problem with this approach
is that temporal binding might enable, say, features 1, 2
and 3, which might define one stimulus, to be bound
together and kept separate from, for example, another
stimulus consisting of features 2, 3 and 4, but would
require a further temporal binding (leading in the end
potentially to a combinatorial explosion) to indicate the
relative spatial positions of the 1, 2 and 3 in the 123
stimulus, so that it can be discriminated from, for
example, 312. Another approach to a binding
mechanism is to group spatial features based on local

aye 5
Layer 4 i 0 J
4]
=
o 20
N
e /
Layer 3 E 80
i
E'* A2
Layer 2 g h
L
Layer 1

0 1.33280 20 50
Eccentricity / deg

mechanisms that might operate for closely adjacent
synapses on a dendrite (Finkel and Edelman 1987; Mel
et al. 1998). A problem for such architectures is how to
force one particular neuron to respond to the same
feature combination invariantly with respect to all the
ways in which that feature combination might occur in a
scene.

The approach to the spatial-binding problem that is
proposed for VisNet is that individual neurons at an
early stage of processing are set up (by learning) to
respond to low-order combinations of input features
occurring in a given relative spatial arrangement and
position on the retina (Rolls 1992, 1994, 1995; Wallis
and Rolls 1997, Rolls and Treves 1998; cf. Feldman
1985). Then invariant representations are developed in
the next layer from these feature combination neurons
which already contain evidence on the local spatial
arrangement of features. Finally, in later layers, only one
stimulus would be specified by the particular set of low-
order feature combination neurons present, even though
each feature combination neuron would itself be
somewhat invariant.

1.2 An overview of the VisNet model

The simulations in this paper were performed using the
latest version of the VisNet model (VisNet2) which is
described more fully by Wallis and Rolls (1997) and
Rolls and Milward (2000). The model consists of a
hierarchical series of four layers of competitive
networks, corresponding to V2, V4, the posterior
inferior temporal cortex and the anterior inferior
temporal cortex, as shown in Fig. 1. The forward
connections to individual cells are derived from a
topologically corresponding region of the preceding
layer, using a Gaussian distribution of connection
probabilities. These distributions are defined by a radius
which will contain approximately 67% of the connec-
tions from the preceding layer. Typical values are given
in Table 1.

Before stimuli are presented to VisNet’s first layer,
they are pre-processed by a set of input filters which
accord with the general tuning profiles of simple cells in
V1 (Hawken and Parker 1987). The input filters used are
computed by weighting the difference of two Gaussians

TE view independence X . .
Fig. 1. Left: Stylised image of the
1 VisNet four-layer network. Con-
vergence through the network is
designed to provide fourth-layer
neurons with information from
1 across the entire input retina. In
this diagram, the first layer of
larger receptive fields VisNet corresponds to V1 of the
primate visual system shown on
Vi 1‘ the right. Right: Convergence in
the visual system (adapted from
LGN Rolls 1992). V1, primary (striate)
visual cortex area; TEO, poster-
ior inferior temporal cortex; TE,
inferior temporal cortex
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Table 1. VisNet dimensions
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Table 3. Lateral inhibition parameters

Dimensions No. of connections  Radius
Layer 4 32 x 32 100 12
Layer 3 32 x 32 100 9
Layer 2 32 x 32 100 6
Layer 1 32 x 32 272 6

Input Layer 128 x 128 x 32 - -

Table 2. VisNet layer-1 connectivity. The frequency is in cycles per
pixel

Frequency 0.0625 0.125 0.25 0.5
No. of connections 8 13 50 201

by a third orthogonal Gaussian according to the
following (see Wallis and Rolls 1997):
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where f is the filter spatial frequency, 0 is the filter
orientation and p is the sign of the filter, i.e. +I.
Individual filters are tuned to spatial frequency (0.0625—
0.5 cycles/pixel over 4 octaves), orientation (0—135° in
steps of 45°) and sign (£1). Only even-symmetric (bar)
filters were used. The filter outputs were thresholded at
zero, and the negative results used to form separate
antiphase inputs by other neurons in the network. (This
is to allow for the fact that neurons cannot have negative
firing rates). The filter outputs also are normalised
across scales to compensate for the low-frequency bias in
the images of natural objects. The number of layer 1
connections to each spatial frequency filter group is
given in Table 2.

Within each layer competition is graded rather than
winner-take-all, and is implemented in two stages. First,
to implement lateral inhibition the activations of neu-
rons within a layer are convolved with a spatial filter, 7,
where 0 controls the contrast and o controls the width,
and a and b index the distance away from the centre of
the filter:
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Typical lateral inhibition parameters are given in
Table 3.

Next, contrast enhancement is applied by means of a
sigmoid activation function

. 1
__ psigmoid _
y = L) = s 3)
where r is the activation (or firing rate) after lateral
inhibition, y is the firing rate after contrast enhance-

Layer 1 2 3 4
Radius, o 1.38 2.7 4.0 6.0
Contrast, 0 1.5 1.5 1.6 1.4
Table 4. Sigmoid parameters

Layer 1 2 3 4
Percentile 99.2 98 88 91
Slope, f8 190 40 75 26

ment, and o and f§ are the sigmoid threshold and slope,
respectively. The parameters o and f are constant within
each layer, although « is adjusted to control the
sparseness of the firing rates. For example, to set the
sparseness to, say, 5%, the threshold is set to the value
of the 95th percentile point of the activations within the
layer. Typical parameters for the sigmoid activation
function are shown in Table 4.

The ‘trace’ learning rules implemented in this paper
rely on the natural statistics of real-world objects
(i.e. that the position of an object with respect to the eye
is likely to change more rapidly than the identity of the
object viewed), to be able to learn about their transfor-
mations. The premise set out by Foldiak (1991) and
Rolls (1992) is that individual neurons may learn to
respond to different transformations of an object by
learning to respond to ‘temporal classes’ of the views
that would tend to occur close together in time. The idea
is that because objects have continuous properties in
space and time in the world, an object at one place on
the retina might activate feature analysers at the next
stage of cortical processing, and when the object is
translated to a nearby position — because this would
occur in a short period (e.g. 0.5 s) — the membrane of the
postsynaptic neuron would still be in its associatively
modifiable state, and the presynaptic afferents activated
with the object in its new position would thus become
strengthened on the still-activated postsynaptic neuron.
The neuronal mechanisms that might implement this
short-term temporal averaging in the modifiability are of
interest, and include lasting effects of calcium entry into
the postsynaptic neuron as a result of the voltage-de-
pendent activation of NMDA receptors; and continuing
firing of the postsynaptic neuron implemented by re-
current collateral connections forming a short-term
memory (see Rolls 1992, 2000; Wallis and Rolls 1997).
The original trace learning rule used by Wallis and Rolls
(1997) took the form

Aw; = og?fx; (4)
where the trace y* is updated according to
7= (=) oy (5)

where x; is the jth input to the neuron, y is the output
from the neuron, y° is the trace value of the output of the
neuron at time step 7, o is the learning rate (annealed
between unity and zero), w; is the synaptic weight
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between jth input and the neuron, and 7 is the trace
value (the optimal value varies with presentation
sequence length). The parameter # may be set in the
interval [0, 1], and in our simulations with trace learning
n is in fact set to 0.8. However, for 1 = 0, (4) becomes
the standard Hebb rule

Aw; = oy} . (6)

However, further learning rules for view-invariant object
recognition with enhanced performance are presented by
Rolls and Milward (2000) and Rolls and Stringer (2001).
First, Rolls and Milward (2000) show that performance
is improved by incorporating a trace of activity from
only the preceding time step. A basic example of such a
rule is

Aw; = ocyf_lx; . (7)
One way to understand the operation of this version of a
trace rule is to note that it is trying to set up the synaptic
weight at time 7 based on whether the neuron, based on
its previous history, is responding to that stimulus (in
other positions). Use of the trace accumulated up to
7 — 1 as in (7) does this, that is it takes into account the
firing of the neuron on previous trials, with no
contribution from the firing being produced by the
stimulus on the current trial. On the other hand, use of
the trace at time 7 in the update takes into account the
current firing of the neuron to the stimulus in that
particular position, which is not a good estimate of
whether that neuron should be allocated to invariantly
represent that stimulus. Effectively, using the trace at
time 7 introduces a Hebbian element into the update,
which tends to build position-encoded analysers, rather
than stimulus-encoded analysers. (The argument has
been phrased for a system learning translation invar-
iance, but applies to the learning of all types of
invariance.) In the VisNet simulations discussed later
in this paper, the learning rule in (7) is used to develop
transform invariant neurons, but the results are generic,
and similar invariance learning is obtained with rules of
the form shown in the learning rule in (4). For a further
description of a number of different trace learning rules,
the reader is referred to Rolls and Milward (2000) and
Rolls and Stringer (2001).

VisNet is compared with other models for achieving
invariant object recognition by Wallis and Rolls (1997)
and Parga and Rolls (1998) (see also Stone 1996; Bartlett
and Sejnowski 1997; Salinas and Abbott 1997).

1.3 Training and test procedure

The stimuli used for training and testing VisNet in this
paper are specially constructed to investigate the
performance of VisNet on the feature-binding problems
described in Sect. 1.1, and are described in Sect. 2. To
train the network, a stimulus is presented in a
randomised sequence of nine locations in a square grid
across the 128 x 128 input retina. The central location of
the square grid is in the centre of the ‘retina’, and the

eight other locations are offset 8 pixels horizontally and/
or vertically from this. At each presentation the
activation of individual neurons is calculated, then their
firing rates are calculated, and then the synaptic weights
are updated. After a stimulus has been presented in all
the training locations, a new stimulus is chosen at
random and the process repeated. The presentation of
all the stimuli across all locations constitutes one epoch
of training. In this manner the network is trained one
layer at a time starting with layer one and finishing with
layer 4. In the investigations described here, the numbers
of training epochs for layers 1-4 were 50, 100, 100 and
75 respectively.

The network’s performance is assessed using two in-
formation-theoretic measures: single and multiple cell
information about which stimulus was shown. Full
details on the application of these measures to VisNet
are given by Rolls and Milward (2000). These measures
reflect the extent to which cells respond invariantly to a
stimulus over a number of retinal locations, but respond
differently to different stimuli. The single-cell informa-
tion measure is applied to individual cells in layer 4, and
measures how much information is available from the
response of a single cell about which stimulus was
shown. In general, the more information that is obtained
about a stimulus, the better the invariant representation.
The information a single cell conveys about a stimulus s
from the set S is computed using the formula below,
with details available in Rolls et al. (1997a) and Rolls
and Milward (2000). The stimulus-specific information
(on surprise) I(s, R) is the amount of information the set
of responses R of a single cell has about a specific sti-
mulus s, and is given by

165.8) = 3 POl o )

(8)

The set of responses R consisted of the firing rate y of a
cell to every stimulus presented in every location. The
calculation procedure was identical to that described by
Rolls et al. (1997a) with the following exceptions. First,
no correction was made for the limited number of trials,
because in VisNet2 (as in VisNet), each measurement of
a response is exact, with no variation due to sampling on
different trials. Second, the binning procedure was
altered in such a way that the firing rates were binned
into equispaced rather than equipopulated bins. This
small modification was useful because the data provided
by VisNet2 can produce perfectly discriminating
responses with little trial-to-trial variability. Because
the cells in VisNet2 can have bimodally distributed
responses, equipopulated bins could fail to perfectly
separate the two modes. (This is because one of the
equipopulated bins might contain responses from both
of the modes.) The number of bins used was equal to or
less than the number of trials per stimulus, which for
VisNet is the number of positions used on the retina
(Rolls et al. 1997a).

Because VisNet operates as a form of competitive net
to perform categorization of the inputs received, good
performance of a neuron will be characterized by large



responses to one or a few stimuli regardless of their
position on the retina (or other transform), and small
responses to the other stimuli. We are thus interested in
the maximum amount of information that a neuron
provides about any of the stimuli, rather than the
average amount of information it conveys about the
whole set S of stimuli (known as the mutual informa-
tion). Thus for each cell the performance measure was
the maximum amount of information a cell conveyed
about any one stimulus (with a check — which in practice
was always satisfied — that the cell had a large response
to that stimulus, as a large response is what a correctly
operating competitive net should produce to an identi-
fied category). Some of the graphs in this paper show the
amount of information that each of a number of the
most informative cells had about any stimulus.

If all the output cells of VisNet learned to respond to
the same stimulus, then the information about the set of
stimuli § would be very poor, and would not reach its
maximal value of log, of the number of stimuli (in bits).
A measure that is useful here is the information provided
by a set of cells about the stimulus set. If the cells
provide different information because they have become
tuned to different stimuli or subsets of stimuli, then the
amount of this multiple-cell information should increase
with the number of different cells used, up to the total
amount of information needed to specify which of the
Ng stimuli have been shown, i.e. log, Ns bits. Procedures
for calculating the multiple-cell information have been
developed for multiple neuron data by Rolls et al.
(1997b) (see also Rolls and Treves 1998), and the same
procedures were used for the responses of VisNet. In
brief, what was calculated was the mutual information
I(S,R), that is, the average amount of information that
is obtained from a single presentation of a stimulus from
the responses of all the cells. For multiple cell analysis,
the set of responses, R, consists of response vectors
composed of the responses from each cell. Ideally, we
would like to calculate

I(S,R) = > P(s)I(s,R) )
seS
However, the information cannot be measured directly
from the probability table P(r,s) embodying the
relationship between a stimulus s and the response rate
vector r provided by the firing of the set of neurons to a
presentation of that stimulus. (Note, as is made clear at
the start of this paper, ‘stimulus’ refers to an individual
object that can occur with different transforms (e.g. as
translation here), but elsewhere view and size trans-
forms; see Wallis and Rolls (1997).) This is because the
dimensionality of the response vectors is too large to be
adequately sampled by trials. Therefore, a decoding
procedure is used, in which the stimulus s’ that gave rise
to the particular firing rate response vector on each trial
is estimated. This involves, for example, maximum
likelihood estimation or dot-product decoding. (For
example, given a response vector r to a single
presentation of a stimulus, its similarity to the average
response vector of each neuron to each stimulus is used
to estimate — using a dot-product comparison — which
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stimulus was shown. The probabilities of it being each of
the stimuli can be estimated in this way. Details are
provided by Rolls et al. (1997b) and by Panzeri et al.
(1999).) A probability table is then constructed of the
real stimuli s and the decoded stimuli s’. From this
probability table, the mutual information between the
set of actual stimuli S and the decoded estimates S’ is
calculated as

P(s,s'

1(S,8) = ZP(S, s) 1og2m . (10)

This was calculated for the subset of cells which had as
single cells the most information about which stimulus
was shown. Often five cells for each stimulus with high
information values for that stimulus were used for this.

2 VisNet simulations

2.1 Discrimination between stimuli with super-
and subset feature combinations

Previous investigations with VisNet (Wallis and Rolls
1997) have involved groups of stimuli that might be
identified by some unique feature common to all
transformations of a particular stimulus. This would
allow VisNet to solve the problem of transform
invariance by simply learning to respond to the unique
feature present in each stimulus. For example, even in
the case where VisNet was trained on invariant
discrimination of T, L and +, the representation of
the T stimulus at the spatial-filter-level inputs to VisNet
might contain unique patterns of filter outputs where the
horizontal and vertical parts of the T join. The unique
filter outputs thus formed might distinguish the T from,
for example, the L. In this section we test whether
VisNet is able to form transform-invariant cells with
stimuli that are specially composed from a common
alphabet of features, with no stimulus containing any
firing in the spatial filter inputs to VisNet not present in
at least one of the other stimuli. The limited alphabet
enables the set of stimuli to consist of feature sets which
are subsets or supersets of those in the other stimuli. In
this section we examine the performance of VisNet on a
set of such stimuli. Such a task is easily solved by the
human visual system, but it remains to be established
whether or not it can be solved by VisNet.

For these experiments the common pool of stimulus
features chosen was a set of two horizontal and two
vertical 8 x 1 bars, each aligned with the sides of a
32 x 32 square. The stimuli can be constructed by ar-
bitrary combinations of these base features. We note
that effectively the stimulus set consists of four features,
a top bar (T), a bottom bar (B), a left bar (L) and a right
bar (R). Figure 2 shows the complete set used, con-
taining every possible image feature combination. (Note
that, in the interests of retaining symmetry and equal
interobject overlap within each feature-combination
level, the two double-feature combinations where the
features are parallel to each other are not included.)
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Feature-Combination Stimulus Set
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Fig. 2. Merged feature objects. All members of the full object set are
shown, using a dotted line to represent the central 32 x 32 square on
which the individual features are positioned, with the features
themselves shown as dark line segments. Nomenclature is by acronym
of the features present: 7, top bar; B, bottom bar; L, left bar; R, right
bar

Subsequent discussion will group these objects by the
number of features each contain: single-, double-, triple-
and quadruple-feature objects correspond to the
respective rows of Fig. 2. Stimuli are referred to by the
list of features they contain; e.g. ‘LBR’ contains the left,
bottom and right features, while ‘“TL’ contains top and
left features only.

A potential pitfall in the construction of the stimuli is
that all images presented to VisNet are pre-processed by
a filtering operation described in Wallis and Rolls
(1997), which produces firing in a set of cells that is
intended to emulate some of the processing performed
by VI1. Unfortunately, this can introduce uniquely
identifying pixels for individual feature combinations
due to interaction between individual feature elements
during the filtering process. Such a unique pixel present
in one stimulus but not in any other stimulus could
provide a way for a network to operate as a look-up
table, in which a particular stimulus could be identified
by the presence of a particular pixel. We wished to
eliminate this possibility for this particular investigation,
as the hypotheses we are investigating are the extent to
which networks such as (the neural network part of)
VisNet can learn about stimuli composed of subsets and
supersets of a set of features. An approach to stimulus
preparation which avoids the problem is construction
from pre-processed component features. (Of course,
interactions between features will occur at later stages,
and indeed are part of the way in which such networks
operate, but the aim was to prevent the network from
using any unique identifying pixel or pixels in the stimuli
themselves.) That is, base stimuli are first constructed
consisting of a single image feature only, and are then
pre-processed in the normal way. More complex stimuli
are then constructed by merging these pre-processed
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Fig. 3. Merged image feature components. The graph is a contour
diagram of the simple sum of all pre-processed image features. The
outer (lowest) contour is the lowest non-zero value, with the remaining
nine contours linearly spaced to the maximum

representations, with the maximum taken wherever
component pixel values differ. This prevents formation
of some high pixel values that might indicate, regardless
of the transform, that a particular feature combination
was present. Other steps to minimise feature interaction
were to place individual features far apart, and in some
simulations even to remove the firing of the lowest-
spatial-frequency filters to ensure no overlap of any of
the activity produced by features in different spatial
positions. Figure 3 shows the sum of all filter outputs
representing a single stimulus built from merging all pre-
processed image features. (The ten contours on the
diagram as shown begin with the lowest non-zero value,
and are then linearly spaced to the maximum.) We note
that when VisNet operates normally without this special
stimulus preparation, then some interaction between
features in the visual scene may be introduced by the
pre-processing filtering stage of VisNet, and that such
interactions are also known to occur in primate V1.

In the following experiments, the training procedure
was carried out as described in Sect. 1.3 with all of the
individual stimuli presented in sequences of nine
locations across the input. As described in that section,
to train the network a stimulus is presented in a
randomised sequence of nine locations in a square grid
across the 128 x 128 input retina. The central location of
the square grid is in the centre of the retina, and the eight
other locations are offset 8 pixels horizontally and/or
vertically from this. In these experiments we tested
performance using two different learning rules:
‘Hebbian’ (6) and ‘trace’ (7), and also an untrained
condition with random weights. As in earlier work
(Wallis and Rolls 1997; Rolls and Milward 2000), only
the trace rule led to any cells with invariant responses,
and the results shown here are for networks trained with
the trace rule.
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Fig. 4. Performance of VisNet2 on the full set of stimuli shown in
Fig. 2. Separate graphs showing the information available about the
stimulus for cells tuned to respond best to each of the stimuli are
shown. The number of cells responding best to each of the stimuli is
indicated in parentheses. The information values are shown for the

The results with VisNet trained on the set of stimuli
shown in Fig. 2 with the trace rule are as follows.
Firstly, it was found that single neurons in the top layer
learned to differentiate between the stimuli, in that the
responses of individual neurons were maximal for one of
the stimuli and had no response to any of the other
stimuli invariantly with respect to location. Secondly, to
assess how well every stimulus was encoded for in this
way, Fig. 4 shows the information available about each
of the stimuli consisting of feature singles, feature pairs,
feature triples and the quadruple feature stimulus
‘TLBR’. The single-cell information available from the
26-85 cells with best tuning to each of the stimuli is
shown. The cells in general conveyed translation-in-
variant information about the stimulus to which they
responded, with indeed some cells which perfectly
discriminated one of the stimuli from all others over
every testing position for all stimuli except ‘RTL’ and
‘TLBR’. The results presented show clearly that the
VisNet paradigm can accommodate networks which can
perform invariant discrimination of objects which have a
subset-superset relationship. The result has important
consequences for feature binding and for discriminating

different cells ranked according to how much information about that
stimulus they encode. Separate graphs are shown for cells tuned to
stimuli consisting of single features, pairs of features, and triples of
features, as well as the quadruple feature stimulus TLBR

stimuli from other stimuli which may be supersets of the
first stimulus. For example, a VisNet cell which responds
invariantly to feature combination TL can genuinely
signal the presence of exactly that combination, and will
not necessarily be activated by T alone, or by TLB. The
basis for this separation by competitive networks of
stimuli which are subsets and supersets of each other is
described by Rolls and Treves (1998, Sect. 4.3.6).

2.2 Feature binding in a hierarchical network with
invariant representations of local feature combinations

2.2.1 Feature binding. In this section we investigate the
ability of output-layer neurons to learn new stimuli if the
lower layers are trained solely through exposure to
simpler feature combinations from which the new stimuli
are composed. A key question we address is how
invariant representations of low-order feature combina-
tions in the early layers of the visual system are able to
uniquely specify the correct spatial arrangement of
features in the overall stimulus, and contribute to
preventing false recognition errors in the output layer.
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The problem, and its proposed solution, can be
considered as follows. Consider an object 1234 made
from the features 1, 2, 3 and 4. The invariant low-order
feature combinations might represent 12, 23 and 34.
Then, if neurons at the next layer respond to combina-
tions of these neurons, the only next-layer neurons that
would respond would be those tuned to 1234, and not
those tuned to, for example, 3412, which is distinguished
from 1234 by the input of a pair neuron responding to
41 rather than to 23. The argument (Rolls 1992) is that
low-order spatial-feature-combination neurons in the
early stage of visual processing contain sufficient spatial
information so that a particular combination of those
low-order feature-combination neurons specifies a
unique object, even if the relative positions of the low-
order feature-combination neurons are not known,
because they are somewhat invariant.

The architecture of VisNet is intended to solve this
problem partly by allowing high spatial precision
combinations of input features to be formed in layer 1.
The actual input features in VisNet are, as described
above, the output of oriented spatial-frequency-tuned
filters, and the combinations of these formed in layer 1
might thus be thought of in a simple way as, for
example, a T or an L or for that matter a Y. Then, in
layer 2, application of the trace rule might enable neu-
rons to respond to a T with limited spatial invariance
(limited to the size of the region of layer 1 from which
layer 2 cells receive their input). Then an ‘object’ such as
H might be formed at a higher layer because of a
conjunction of two Ts in the same small region.

To show that VisNet can actually solve this problem,
we performed the experiments described below. In
particular, we trained the first two layers of VisNet with
feature-pair combinations, forming representations of
feature pairs with some translation invariance in layer 2.
Then we used feature triples as input stimuli, allowed no
more learning in layers 1 and 2, and then investigated
whether layers 3 and 4 could be trained to produce
invariant representations of the triples, where the triples
could only be distinguished if the local spatial arrange-
ment of the features within the triple had effectively to
be encoded in order to distinguish the different triples.
For this experiment, we needed stimuli that could be
specified in terms of a set of different features (we chose
vertical, diagonal and horizontal bars) each capable of
being shown at a set of different relative spatial positions
(designated A, B and C), as shown in Fig. 5. The stimuli
are thus defined in terms of what features are present
and their precise spatial arrangement with respect to
each other. The length of the horizontal and vertical
feature bars shown in Fig. 5 is 8 pixels. To train the
network, a stimulus (i.e. a two- or three-feature combi-
nation) is presented in a randomised sequence of nine
locations in a square grid across the 128 x 128 input
retina. The central location of the square grid is in the
centre of the retina, and the eight other locations are
offset 8 pixels horizontally and/or vertically from this.
We refer to the two and three-feature stimuli as ‘pairs’
and ‘triples’, respectively. Individual stimuli are denoted
by three numbers which refer to the individual features

B
Positions
A C
Features | / —
0 1 2 3

Fig. 5. Feature combinations for experiments of Sect. 2.2: there are
three features denoted by 1, 2 and 3 (including a blank space 0) that
can be placed in any of three positions: A, B, and C. Individual stimuli
are denoted by three consecutive numbers which refer to the
individual features present in positions A, B and C, respectively. In
the experiments in Sect. 2.2, layers 1 and 2 were trained on stimuli
consisting of pairs of the features, and layers 3 and 4 were trained on
stimuli consisting of triples. Then the network was tested to show
whether layer-4 neurons would distinguish between triples, even
though the first two layers had only been trained on pairs. In addition,
the network was tested to show whether individual cells in layer 4
could distinguish between triples even in locations where the triples
were not presented during training

present in positions A, B and C, respectively. For
example, a stimulus with positions A and C containing a
vertical and diagonal bar, respectively, would be referred
to as stimulus 102, where the 0 denotes that no feature
present in position B. In total there are 18 pairs
(120, 130, 210, 230, 310, 320, 012, 013, 021, 023, 031,
032, 102, 103, 201, 203, 301 and 302) and 6 triples (123,
132, 213, 231, 312 and 321). This nomenclature not only
defines which features are present within objects, but
also the spatial relationships of their component fea-
tures. The computational problem can be illustrated by
considering the triple 123. If invariant representations
are formed of single features, then there would be no
way that neurons higher in the hierarchy could distin-
guish the object 123 from 213 or any other arrangement
of the three features. An approach to this problem (see
e.g. Rolls 1992) is to form, early on in the processing,
neurons that respond to overlapping combinations of
features in the correct spatial arrangement, and then to
develop invariant representations in the next layer from
these neurons which already contain evidence on the
local spatial arrangement of features. An example might
be that with the object 123, the invariant feature pairs
would represent 120, 023 and 103. Then if neurons at the
next layer correspond to combinations of these neurons,
the only next layer neurons that would respond would
be those tuned to 123, not to, for example, 213. The
argument is that the low-order spatial-feature-combi-
nation neurons in the early stage contain sufficient spa-
tial information so that a particular combination of
those low-order feature-combination neurons specifies a
unique object, even if the relative positions of the low-
order feature-combination neurons are not known
because these neurons are somewhat translation
invariant (cf. Fukushima 1988).
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Table 5. Alternative training regimes used in VisNet experiments
1-4. In the no training condition, the synaptic weights were left at
their initial untrained random values

Layers 1, 2

Layers 3, 4

Experiment 1
Experiment 2

Trained on pairs
No training

Trained on triples
No training

Experiment 3
Experiment 4

No training
Trained on triples

Trained on triples
Trained on triples

In these experiments the stimuli are constructed from
pre-processed component features as discussed in
Sect. 2.1. That is, base stimuli containing a single feature
are constructed and filtered, and then the pairs and
triples are constructed by merging these pre-processed
single-feature images. In the first experiment, layers 1
and 2 of VisNet were trained with the 18 feature pairs,
each stimulus being presented in sequences of nine lo-
cations across the input as described in Sect. 1.3. This
led to the formation of neurons which responded to the
feature pairs with some translation invariance in layer 2.
Then we trained layers 3 and 4 on the six feature triples
in the same nine locations, while allowing no more
learning in layers 1 and 2, and examined whether the
output layer of VisNet had developed transform-in-
variant neurons to the six triples. The idea was to test
whether layers 3 and 4 could be trained to produce
invariant representations of the triples, where the triples
could only be distinguished if the local spatial arrange-
ment of the features within the triple had effectively to
be encoded in order to distinguish the different triples.
The results from this experiment were compared and
contrasted with results from three other experiments
which involved different training regimes for layers 1, 2
and layers 3, 4. All four experiments are summarised in
Table 5. Experiment 2 involves no training in layers 1, 2
and 3, 4, with the synaptic weights left unchanged from
their initial random values. These results are included as
a baseline performance with which to compare results
from the other experiments, 1, 3 and 4. The model
parameters used in these experiments were as described
in Sect. 1.2, and as used in Rolls and Milward (2000)
and Rolls and Stringer (2001).

In Fig. 6 we present numerical results for the four
experiments listed in Table 5. On the left are the single

on the right are multiple-cell
information measures

10 15 20 25 30
Number of Cells

cell information measures for all top (4th) layer neurons
ranked in order of their invariance to the triples, while
on the right are multiple cell information measures. To
help to interpret these results, we can compute the
maximum single cell information measure according to

Maximum single-cell information

= log, (number of triples) (11)
where the number of triples is 6. This gives a maximum
single-cell information measure of 2.6 for these test
cases. First, comparing the results for experiment 1 with
the baseline performance of experiment 2 (no training)
demonstrates that even with the first two layers trained
to form invariant responses to the pairs, and then only
layers 3 and 4 trained on feature triples, layer 4 is indeed
capable of developing translation-invariant neurons that
can discriminate effectively between the six different
feature triples. Indeed, from the single cell information
measures it can be seen that a number of cells have
reached the maximum level of performance in experi-
ment 1. In addition, the multiple-cell information
analysis presented in Fig. 6 shows that all the stimuli
could be discriminated from each other by the firing of a
number of cells. Analysis of the response profiles of
individual cells showed that a fourth-layer cell could
respond to one of the triple feature stimuli and have no
response to any other of the triple-feature stimuli
invariantly with respect to location.

A comparison of the results from experiment 1 with
those from experiment 3 (see Table 5 and Fig. 6) reveals
that training the first two layers to develop neurons that
respond invariantly to the pairs (performed in experiment
1) actually leads to improved invariance of fourth-layer
neurons to the triples, as compared with when the first
two layers are left untrained (experiment 3).

Two conclusions follow from these results. First, a
hierarchical network which seeks to produce invariant
representations in the way used by VisNet can solve the
feature-binding problem. In particular, when feature
pairs in layer 2 with some translation invariance are used
as the input to later layers, these later layers can
nevertheless build invariant representations of objects,
where all the individual features in the stimulus must
occur in the correct spatial position relative to each
other. This is possible because the feature-combination
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Fig. 7. Numerical results for a
repeat of experiment 1 with the
triples presented at only seven of
the original nine locations dur-
ing training, and with the trace
learning rule (7). On the left are
single-cell information measures,
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neurons formed in the first layer (which could be trained
just with a Hebbian rule) do respond to combinations of
input features in the correct spatial configuration, partly
because of the limited size of their receptive fields. The
second conclusion is that even though early layers can in
this case only respond to small feature subsets, these
provide, with no further training of layers 1 and 2, an
adequate basis for learning to discriminate in layers 3
and 4 stimuli consisting of combinations of larger
numbers of features. Indeed, comparing results from
experiment 1 with experiment 4 (in which all layers were
trained on triples, see Table 5) demonstrates (see Fig. 6)
that training the lower-layer neurons to develop
invariant responses to the pairs offers almost as good
performance as training all layers on the triples.

2.2.2 Stimulus generalisation to new locations. Another
important aspect of the architecture of VisNet is that it
need not be trained with every stimulus in every possible
location. Indeed, part of the hypothesis (Rolls 1992) is
that training early layers (e.g. 1-3) with a wide range of
visual stimuli will set up feature analysers in these early
layers which are appropriate later on with no further
training of early layers for new objects. For example,
presentation of a new object might result in large
numbers of low-order feature-combination neurons in
early layers of VisNet being active, but the particular set
of feature-combination neurons active would be differ-
ent for the new object. The later layers of the network
(layer 4 in VisNet) would then learn this new set of
active layer-3 neurons as the new object. However, if the
new object was then shown in a new location, the same
set of layer-3 neurons would be active because they
respond with spatial invariance to feature combinations,
and given that the layer 3-4 connections had already
been set up by the new object, the correct layer-4
neurons would be activated by the new object in its new
untrained location, and without any further training.
To test this hypothesis we repeated the general pro-
cedure of experiment 1 (training layers 1 and 2 with
feature pairs) but then instead we trained layers 3 and 4
on the triples in only seven of the original nine locations.
The crucial test was to determine whether VisNet could
form top-layer neurons that responded invariantly to the
six triples when presented over all nine locations, not
just the seven on which the triples had been presented

10 15 20 25 30
Number of Cells

and on the right are multiple-cell
information measures

during training. The results are presented in Fig. 7, with
single-cell information measures on the left and multi-
ple-cell information measures on the right. VisNet is still
able to develop some fourth-layer neurons with perfect
invariance, that is, which have invariant responses over
all nine location, as shown by the single-cell information
analysis. The response profiles of individual fourth-layer
cells showed that they can continue to discriminate
between the triples even in the two locations where the
triples were not presented during training. In addition,
the multiple-cell analysis shown in Fig. 7 shows that a
small population of cells was able to discriminate
between all of the stimuli irrespective of location, even
though for two of the test locations the triples had not
been trained at those particular locations during the
training of layers 3 and 4.

3 Discussion

In this paper, we first showed (in Sect. 2.1) that
hierarchical feature-detecting neural networks can learn
to respond differently to stimuli which consist of unique
combinations of non-unique input features, and that this
extends to stimuli that are direct subsets or supersets of
the features present in other stimuli.

Second, we investigated (in Sect. 2.2) the hypothesis
that hierarchical layered networks can produce identifi-
cation of unique stimuli even when the feature-combi-
nation neurons used to define the stimuli are themselves
partly translation invariant. The stimulus identification
should work correctly because feature-combination
neurons in which the spatial features are bound together
with high spatial precision are formed in the first layer.
Then at later layers, when neurons with some translation
invariance are formed, the neurons nevertheless contain
information about the relative spatial position of the
original features. There is only then one object which
will be consistent with the set of active neurons at earlier
layers, which though somewhat translation-invariant as
combination neurons, reflect in the activity of each
neuron information about the original spatial position
of the features. We note that the trace-rule training used
in early layers (1 and 2) in experiments 1 and 4 would set
up partly invariant feature-combination neurons, and
yet the late layers (3 and 4) were able to produce, during



training, neurons in layer 4 that responded to stimuli
that consisted of unique spatial arrangements of lower-
order feature combinations. Moreover, and very
interestingly, we were able to demonstrate in Sect. 2.2.2
that VisNet layer-4 neurons would respond correctly to
visual stimuli at untrained locations, provided that the
feature subsets had been trained in early layers of the
network at all locations, and that the whole stimulus had
been trained at some locations in the later layers of the
network.

The computational problem that needs to be
addressed in hierarchical networks such as the primate
visual system and VisNet is how representations of
features can be (e.g. translation) invariant, yet can
specify stimuli or objects in which the features must be
specified in the correct spatial arrangement. This is the
feature-binding problem, discussed for example by von
der Malsburg (1990), and arising in the context of
hierarchical layered systems (Ackley etal. 1985;
Fukushima 1980, 1988; Rosenblatt 1961). The results
described in this paper provide one solution to the
feature-binding problem. The solution which has been
shown to work in the model is that in a multilayer
competitive network, feature-combination neurons
which encode the spatial arrangement of the bound
features are formed at intermediate layers of the
network. Then neurons at later layers of the network
which respond to combinations of active intermediate
layer neurons do contain sufficient evidence about the
local spatial arrangement of the features to identify
stimuli, because the local spatial arrangement is encoded
by the intermediate-layer neurons. The information
required to solve the visual-feature-binding problem
thus becomes encoded by self-organisation into what
become hard-wired properties of the network. In this
sense, feature binding is not solved at run-time by the
necessity to instantiate arbitrary syntactic links between
sets of co-active neurons. The computational solution
proposed to the superset/subset aspect of the binding
problem will apply in principle to other multilayer
competitive networks, although the issues considered
here have not been explicitly addressed in architectures
such as the neocognitron (Fukushima and Miyake
1982).

Consistent with these hypotheses about how VisNet
operates to achieve, by layer 4, position-invariant
responses to stimuli defined by combinations of features
in the correct spatial arrangement, the effective stimuli
for neurons in intermediate layers of VisNet were as
follows. In layer 1, cells responded to the presence of
individual features, or to low-order combinations of
features (e.g. a pair of features) in the correct spatial
arrangement at a small number of nearby locations. In
layers 2 and 3, neurons responded to single features or to
higher-order combinations of features (e.g. stimuli
composed of feature triples) in more locations. These
findings provide direct evidence that VisNet does oper-
ate as described above to solve the feature-binding
problem.

The type of solution investigated here is thus different
to the proposal of von der Malsburg (1990), that feature-
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selective neurons might be linked by temporal binding.
There has been considerable neurophysiological
investigation of this possibility (Singer et al. 1990;
Abeles 1991; Hummel and Biederman 1992; Singer and
Gray 1995). We note that a problem with this approach
is that temporal binding might enable, say, features 1, 2
and 3 which might define one stimulus to be bound
together and kept separate from, for example, another
stimulus consisting of features 2, 3 and 4, but would
require a further temporal binding (leading in the end
potentially to a combinatorial explosion) to indicate the
relative spatial positions of the 1, 2 and 3 in the 123
stimulus, so that it can be discriminated from, for
example, 312. Another approach to a binding mechan-
ism is to group spatial features based on local mechan-
isms that might operate for closely adjacent synapses on
a dendrite (Finkel and Edelman 1987; Mel et al. 1998).

A further issue with hierarchical multilayer archi-
tectures such as VisNet is that false binding errors might
occur in the following way (Mozer 1991; Mel and Fiser
2000). Consider the output of one layer in such a
network in which there is information only about which
pairs are present. How then could a neuron in the next
layer discriminate between the whole stimulus (such as
the triple 123 in the above experiment) and what could
be considered a more distributed stimulus or multiple
different stimuli composed of the separated subparts of
that stimulus (e.g. the pairs 120, 023 and 103 occurring
in three of the nine training locations in the above ex-
periment)? The problem here is to distinguish a single
object from multiple other objects containing the same
component combinations (e.g. pairs). We propose that
part of the solution to this general problem in real visual
systems is implemented through Ilateral inhibition
between neurons in individual layers, and that this
mechanism, implemented in VisNet, acts to reduce the
possibility of false recognition errors in the following
two ways.

First, consider the situation in which neurons in layer
N have learned to represent small feature combinations
with location invariance, and where a neuron » in layer
N + 1 has learned to respond to a particular set Q of
these feature combinations. The problem is that neuron
n receives the same input from layer N as long as the
same set Q of feature combinations is present, and
cannot distinguish between different spatial arrange-
ments of these feature combinations. The question is
how can neuron n respond only to a particular favoured
spatial arrangement W of the feature combinations
contained within the set Q. We suggest that as the
favoured spatial arrangement ¥ is altered by rearran-
ging the spatial relationships of the component feature
combinations, the new feature combinations that are
formed in new locations will stimulate additional neu-
rons nearby in layer N + 1, and these will tend to inhibit
the firing of neuron n. Thus, lateral inhibition within a
layer will have the effect of making neurons more
selective, ensuring that neuron n responds only to a
single spatial arrangement ¥ from the set of feature
combinations Q, and hence reducing the possibility of
false recognition.
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The second way in which lateral inhibition may help
to reduce binding errors is through limiting the sparsity
of neuronal firing rates within layers. In our discussion
above, the spurious stimuli we suggested that might lead
to false recognition of triples were obtained from split-
ting up the component feature combinations (pairs) so
that they occurred in separate training locations.
However, this would lead to an increase in the number
of features present in the complete stimulus; triples
contain three features while their spurious counterparts
would contain six features (resulting from three separate
pairs). For this trivial example, the increase in the
number of features is not dramatic, but if we consider,
say, stimuli composed of four features where the com-
ponent feature combinations represented by lower layers
might be triples, then to form spurious stimuli we need
to use 12 features (resulting from four triples occurring
in separate locations). But if the lower layers also
represented all possible pairs, then the number of fea-
tures required in the spurious stimuli would increase
further. In fact, as the size of the stimulus increases in
terms of the number of features, and as the size of the
component feature combinations represented by the
lower layers increases, there is a combinatorial explosion
in terms of the number of features required as we
attempt to construct spurious stimuli to trigger false
recognition. And the construction of such spurious sti-
muli will then be prevented through setting a limit on the
sparsity of firing rates within layers, which will in turn
set a limit on the number of features that can be
represented. Lateral inhibition is likely to contribute in
both these ways to the performance of VisNet when the
stimuli consist of subsets and supersets of each other, as
described in Sect. 2.1.

In conclusion, in this paper we have addressed one of
the major issues in multilayer hierarchical networks, that
of feature binding. Other issues that arise in this class of
architecture and its application to learning-invariant
representations are addressed elsewhere, including the
effect of increasing the number of locations over which
translation-invariant representations must be formed
(see Wallis and Rolls (1997) and Rolls and Milward
(2000) who trained with, for example, 17 faces at 49
locations), the nature of the learning rule (Rolls and
Milward 2000; Rolls and Stringer 2001), the operation
of the network in cluttered environments (Stringer and
Rolls 2000), and the operation of a related network with
the trace synaptic learning rule implemented in the
recurrent collateral connections of an attractor network
(Parga and Rolls 1998; Elliffe et al. 2000). Another issue
that arises in this class of network is whether forming
neurons that respond to feature combinations in the way
described here leads to a combinatorial explosion in the
number of neurons required. The solution that is
proposed to this issue is to form only low-order
combinations of features at any one stage of the network
(Rolls 1992; cf. Feldman 1985). Using low-order
combinations limits the number of neurons required, yet
enables the type of computation that relies on feature-
combination neurons that is analysed in this paper to
still be performed. The actual number of neurons

required depends also on the redundancies present in the
statistics of real-world images. Even given these factors,
it is likely that a large number of neurons would be
required if the central visual system performs the
computation of invariant representations in the manner
captured by the hypotheses implemented in VisNet.
Consistent with this, a considerable part of the non-
human primate brain is devoted to visual information
processing. The fact that large numbers of neurons and a
multilayer organization are present in the primate
ventral visual system is actually thus consistent with the
type of model of visual information processing described
here and by Rolls and Deco (2002).
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