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Abstract

Over successive stages, the ventral visual system of the primate brain develops neurons that respond selectively to
particular objects or faces with translation, size and view invariance. The powerful neural representations found in
Inferotemporal cortex form a remarkably rapid and robust basis for object recognition which belies the difficulties faced by
the system when learning in natural visual environments. A central issue in understanding the process of biological object
recognition is how these neurons learn to form separate representations of objects from complex visual scenes composed
of multiple objects. We show how a one-layer competitive network comprised of ‘spiking’ neurons is able to learn separate
transformation-invariant representations (exemplified by one-dimensional translations) of visual objects that are always
seen together moving in lock-step, but separated in space. This is achieved by combining ‘Mexican hat’ functional lateral
connectivity with cell firing-rate adaptation to temporally segment input representations of competing stimuli through anti-
phase oscillations (perceptual cycles). These spiking dynamics are quickly and reliably generated, enabling selective
modification of the feed-forward connections to neurons in the next layer through Spike-Time-Dependent Plasticity (STDP),
resulting in separate translation-invariant representations of each stimulus. Variations in key properties of the model are
investigated with respect to the network’s ability to develop appropriate input representations and subsequently output
representations through STDP. Contrary to earlier rate-coded models of this learning process, this work shows how spiking
neural networks may learn about more than one stimulus together without suffering from the ‘superposition catastrophe’.
We take these results to suggest that spiking dynamics are key to understanding biological visual object recognition.

Citation: Evans BD, Stringer SM (2013) How Lateral Connections and Spiking Dynamics May Separate Multiple Objects Moving Together. PLoS ONE 8(8): e69952.
doi:10.1371/journal.pone.0069952

Editor: Todd W. Troyer, University of Texas at San Antonio, United States of America

Received December 15, 2012; Accepted June 13, 2013; Published August 2, 2013

Copyright: � 2013 Evans, Stringer. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by the Economic and Social Research Council (http://www.esrc.ac.uk/). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: benjamin.evans@psy.ox.ac.uk

Introduction

In the primate visual system, increasingly complex representa-

tions are developed at successively higher layers in the ventral

stream hierarchy [1,2] until individual neurons respond selectively

to particular faces [3] or objects [4]. In a way that still eludes many

artificial systems, these neurons also respond invariantly to a range

of transformations of their preferred stimuli including translations

[5–7], changes in size [7,8] and view [9,10]. Models which have

sought to understand the formation of such transformation-

invariant representations in Inferotemporal cortex (IT) have

largely used training paradigms where stimuli are presented

individually. An important question concerning this learning

process therefore remains – how can the visual system become

selective for individual objects (or faces) when it only experiences

natural scenes composed of multiple objects?

Previous attempts to simulate this process with rate-coded

models of the visual system have encountered difficulties whereby

the coactivity of neurons representing features of each stimulus

leads to false conjunctions between features belonging to different

stimuli – the ‘superposition catastrophe’ [11]. This problem is

further exacerbated by rate-based Hebbian learning, whereby the

stimuli are associated onto the same (simultaneously coactive)

output neurons leading to combined representations after learning.

The consequence of this learning is that the same response is

evoked by presenting any of the individual stimuli, thus

undermining the discriminability of the model. In order to avoid

this problem, rate-coded neural networks are commonly trained

by presenting only one stimulus at a time to ensure that only

features from one particular stimulus are associated onto an output

neuron [12–14], but leaving the training paradigm lacking in

ecological validity. However, recent research has uncovered a

number of mechanisms for overcoming this problem.

VisNet, a model of the ventral visual stream consisting of a

hierarchical, feed-forward series of rate-coded competitive net-

works [12] was presented with multiple stimuli transforming

(shifting or rotating) in different combinations. It was found that if

the pool of stimuli was large enough and a sufficient number

combinations was presented during the learning phase, the

statistical decoupling between the objects forced the competitive

networks to form independent representations of the stimuli in the

output layer [15,16]. However, achieving this required an

extensive training regime where objects were repeatedly seen in

different combinations, leaving the problem of how objects may be

disentangled even when they are always (or very often) seen

together.

Another mechanism discovered in VisNet solving the ‘superpo-

sition catastrophe’ of multiple object presentations was found to

depend upon independent movement of the stimuli [17]. Although

there were only two stimuli in each experiment (negating the
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possibility of statistical decoupling by showing different combina-

tions of stimuli), presenting the objects rotating at different speeds

allowed the competitive networks to similarly form transformation-

invariant separate representations in the network’s output layer.

While independence of movement is typically a reasonable

assumption to make of objects in a natural scene, it may not

always be valid, (for example when neither the objects nor the

viewer moves, such as when viewing a photograph). This leaves

the possibility that simple spatial separation of objects may be

sufficient to learn independent representations of them.

Traditionally, visual perceptions have been assumed to be

represented by the activation level or firing-rate of neurons, known

as the spike-count hypothesis. Indeed, previous work has suggested

that the average firing rate over a short window, T , from the onset

of the stimulus, Sf (t)TT , is the relevant code for transmitting

information [18] with estimates for T of 5{10ms [19], 20, or even

up to 50ms [20]. While the majority of the information of output

neurons’ responses may be contained within their firing rates [18],

the timing of their action potentials may still be important for how

networks self-organize during learning, potentially allowing them

to overcome the limitations inherent in a simpler rate-coded

counterpart.

In one spiking neural network, the ‘binding problem’ of

separating stimuli within large receptive fields was overcome

through an attentional mechanism [21]. This was implemented by

selectively reducing the firing threshold of particular neurons

throughout the layers, whose receptive fields fell in the attended

region. However, while attention may play a role in some

circumstances, there must still be an automatic mechanism for

unattended scene segmentation.

Previous work with a network of spiking neural networks has

found that, under the right conditions, competing populations of

neurons will tend to push one another out of phase and thereby

alternate their respective perceptual representations through time

in a phenomena dubbed ‘perceptual cycles’ [22]. This mechanism

has been demonstrated to allow for both segmentation and

binding (feature linking) of a visual scene [23] and may be used by

spiking neurons to overcome the difficulties presented by multi-

object training paradigms.

Once such an anti-phase dynamic is established in the inputs, it

is hypothesised that postsynaptic excitatory cells in subsequent

layers will be able to learn (through Spike-Time-Dependent

Plasticity in the feed-forward synapses) about each object

independently of the others as they translate across the input

layer. Hence, without independent motion or the extensive

training of statistical decoupling, the binding and segmentation

occurring naturally through the inputs’ temporal code should

allow transformation-invariant cells for each object to rapidly and

naturally form in the output layer. This would be in line with

previous speculation that automatic scene segmentation may

increase the learning ability in downstream areas of the brain [22].

It would also suggest that spiking neurons may be a more

appropriate level of abstraction on which to capture the learning

processes in biological object recognition [24].

In some of our earlier work, we demonstrated how a more

biophysically accurate spiking neural network, (explicitly model-

ling individual action potentials rather than a time-windowed

average of activity) could form transformation-invariant represen-

tations of objects presented individually during training [25]. In

this paper it is demonstrated how such a spiking neural network

can utilise the richer spiking dynamics to learn separate

translation-invariant representations of visual stimuli which are

always seen together and always moving together, but spatially

separated in the visual field. This is achieved by combining a

‘Mexican hat’ network architecture with adapting spiking neurons

learning through a spike-time-dependent learning rule. There

follows an introduction to the key components required for the

operation of this model in more detail and a summary of how they

interact to achieve separate translation-invariant representations.

Conditions for Synchronous Cell Assemblies
Previous work has revealed several key features required of a

model to form synchronous assemblies of neurons representing a

particular stimulus (‘feature linking’) and to generate an anti-phase

relationship between competing (input) representations. One such

requirement is for (short-range) lateral excitatory connections

between principal excitatory cells. These form a mutually

supportive basis for synchronising the spike volleys of spatially

proximal features of a particular object, while inhibitory

interneurons tend to desynchronise representations of different

objects. The second requirement is either conduction delays [26],

varying postsynaptic potential decay rate [27] or cell firing-rate

adaptation [22,23,28,29]. Together, these features act to generate

periodic firing in each population of principal cells.

Figure 1. Transformation-invariance with the CT learning mechanism. In the initial position at the first transform time (t1) the input neurons
randomly activate a set of postsynaptic neurons (due to the random synaptic weight initialisation) and the synaptic connections between the active
input and output neurons will be strengthened through Hebbian learning. If the second transform at t2 is similar enough to the first, the same
postsynaptic neurons will be encouraged to fire by some of the same connections potentiated at t1 and the input neurons of the second transform
will have their synapses potentiated onto the same set of output neurons. This process may continue (t3) until there is very little or no resemblance
between the current and the initial transforms. In addition to changes in retinal location, the same principles will apply to build other types of
transformation-invariance. For example, changes in view and scale will be accommodated through the same process, provided that there is sufficient
overlap of afferent neurons between the transforms.
doi:10.1371/journal.pone.0069952.g001

Separation of Objects in Spiking Neural Networks

PLOS ONE | www.plosone.org 2 August 2013 | Volume 8 | Issue 8 | e69952



The conditions for synchronisation and desynchronisation were

studied in detail for pairs of neurons with conduction delays [26].

In general, four regimes were identified in their analysis of a simple

two neuron system with excitatory or inhibitory coupling, and then

confirmed with larger scale simulations. These regimes are as

follows: (1) mutual excitatory connections without delays cause

synchrony (quickly); (2) mutual excitatory connections with delays

cause desynchrony; (3) mutual inhibitory connections without

delays cause desynchrony; and (4) mutual inhibitory connections

with delays cause synchrony (slowly). Similarly, E?E synapses

with fast PSP decay and E?I synapses with slow PSP decay lead

to synchrony, whilst the opposite combinations lead to desyn-

chrony [27].

Delayed self-inhibition. In the work presented here, we

chose cell firing-rate adaptation as the mechanism by which

periodic firing is generated through a ‘time-delayed neuronal self-

inhibition mechanism’ [30] as this is a common feature of many

spiking neuron models and found throughout the brain. When

calcium ions (Ca2z) enter the cell through voltage-gated L-type

channels during an action potential [31], Calcium-gated Potassi-

um (Kz) channels are opened. The resultant flow of Potassium

ions across the cell membrane is known as the after-hyperpolar-

ization current (IAHP). This makes the membrane more ‘leaky’,

and so has a shunting effect upon the cell membrane potential,

making it harder to reach spiking threshold again for a time course

governed by the decay rate of IAHP as it exponentially returns to 0

[30,32].

Alternately, this process has been modelled with a ‘dynamic

threshold’ but contrary to the experimental evidence [33] the time

constant of adaptation in the dynamic threshold model decreased

as a function of the input current intensity [30] and so the current

subtraction model is used here. Interestingly, when operating in

conjunction with Spike-Time-Dependent Plasticity (STDP), adap-

tation has been found to yield almost optimal information

transmission [34]. It was found in the simulations described below

that this mechanism facilitated the emergent behaviour of interest

in a homogeneous population of principal cells.

Lateral interactions. Lateral connections are commonly

found throughout the visual cortex [35] and according to the

analysis of Nischwitz and Glunder, [26], are another key property

for generating the firing dynamics of interest. Rather than using

axonal conduction delays as in previous work [26], a ‘Mexican hat’

profile is used to mediate interactions between neurons within a

layer. With this connectivity, features spatially close to one another

in a visual projection will provide mutually supportive excitation

leading to synchronous firing. Since such neighbouring neurons

are likely to represent features of the same stimulus, the

appropriate neurons will therefore be bound into a coherent

stimulus percept through synchrony. Conversely, longer-range

inhibition should desynchronise neural populations with respect to

those representing other simultaneously presented stimuli else-

where in the visual field. Such features of lateral connectivity

therefore allow the temporal binding of the proximal features of

one stimulus, in anti-phase oscillations to features of another (more

distant) object.

Synchronising feature representations which belong to the same

stimulus (in this case on the basis of spatial proximity) to produce a

coherent percept of the stimulus is known as the ‘binding-by-

synchrony’ hypothesis [36,37]. Importantly, this mechanism

elegantly avoids the combinatorial explosion of cells which would

otherwise be required in a system where conjunctions of features

are represented explicitly. This idea is supported by neurophys-

iological recordings showing the synchronised oscillations of visual

neurons with similar orientation preferences when presented with

a common input [38] and psychophysics studies showing that

stimuli are harder to differentiate when presented synchronously

[39], suggesting synchronous oscillations underpin the conscious

perception of a stimulus.

Overview of Model Dynamics
Here it is demonstrated how the Gaussian profile of excitatory

lateral connections helps to synchronise the discharges of local

clusters of neurons in the input layer which represent an individual

visual object, while the long-range (global) inhibitory connections

desynchronise the action potentials between spatially separate

clusters of input neurons (which represent different visual objects).

The two visual input representations are thus pushed out of phase

with respect to each other in this manner. Furthermore, the cell

Table 1. Default network parameters.

Network Parameters Symbol Value

Cue current Iext 0.75 nA

Cue period {training, testing} tcue {500, 500} ms

Number of training epochs Nepochs 10

Time step for numerical integration Dt 0.02 ms

Number of layers NL 2

Number of excitatory cells per layer NE {512, 256}

Number of inhibitory cells per layer NI {128, 64}

Prob. of E cell synapsing with afferent feed-forward E cell p(EfE) f{,1:0g
Prob. of E cell synapsing with afferent lateral E cell p(ElE) f1:0,0:0g
Prob. of E cell synapsing with afferent I cell p(IE) f1:0,1:0g
Prob. of I cell synapsing with afferent E cell p(EI) f1:0,1:0g
Prob. of I cell synapsing with afferent I cell p(II) f0:0,0:0g
Standard deviation of lateral connection strength sElE ½0,256�

Sets of values are indicated by braces whereby the values correspond to the parameters used for each of the two layers of neurons (or the training/testing periods in the
case of the cue period). Square brackets are used to indicate ranges of parameters which were explored through simulations.
doi:10.1371/journal.pone.0069952.t001
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firing-rate adaptation ensures that one representation does not

continually suppress the other but that the volleys of spikes

oscillate between the different stimuli on a time-scale of roughly

100ms.

With the dynamics of the input layer representations settling

into the described anti-phase oscillations, the strength of the plastic

feed-forward excitatory connections projecting to the next layer

are selectively modified through STDP. Specifically, there is long-

term potentiation (LTP) if the presynaptic spikes occur in the order

of 10ms before the postsynaptic spikes and long-term depression

(LTD) if this order is reversed [40]. If separate output neurons fire

between the oscillations of the two input representations, they will

experience LTP for only one stimulus (and LTD for the other if

the frequency of oscillation is sufficiently high). The effect of this is

that separate pools of output neurons (determined by the initial

random feed-forward connectivity) learn to respond selectively to

only one of the synchronised input clusters representing a

particular stimulus.

This dynamic may be combined with the Continuous Trans-

formation (CT) learning mechanism to achieve translation-

invariant output representations. CT learning is a biologically

plausible mechanism for guiding the development of transforma-

tion-invariant visual representations [14,25]. Similar transforms of

a stimulus are likely to activate many of the same upstream

(afferent) neurons, thereby leading to the activation of, and

association onto, the same set of downstream (efferent) neurons.

This principle is most easily understood in the case of translation

invariance (as detailed below and illustrated in Figure 1) where

each transform represents a small change in retinal position.

However, the same principle may be naturally extended to

changes in viewing angle or scale provided that these transforms

activate significantly overlapping sets of neurons. As such, the

simulations provided here with translation invariance serve as

examples of the more general case of forming transformation-

invariant representations by virtue of the same mechanisms.

By continuously transforming (shifting) the stimuli on the input

layer, the similarity between transforms belonging to each

particular stimulus is high. Due to this similarity, the CT learning

mechanism is able to build the desired output representations

using spike-time-dependent learning in the feed-forward connec-

tions according to the following process. Presentation of an initial

transform in the input layer will excite a set of postsynaptic

neurons and through the Hebbian (STDP) learning rule, will

strengthen the synapses between those cells. If there is enough

overlap (similarity) between the original and the new transform,

the same postsynaptic neurons will be excited, causing potentiation

of the synapses from the input neurons of the current transform.

This process can continue across a series of overlapping transforms

until they are all mapped onto the same output cells.

In this paper, it is shown how these neural mechanisms may

operate together during learning to produce stimulus-specific and

translation-invariant output cells when the visual objects have

always been presented moving together in lock-step during

training but physically separated in space. This network behaviour

relies upon the explicit modelling of the times of spikes, together

with STDP in order to obtain the necessary dynamics which

would not be possible in earlier rate-coded models such as VisNet

[15–17].

Table 2. Cellular parameters.

Cellular Parameters Symbol Value

Excitatory cell somatic capacitance CE
m

500 pF

Inhibitory cell somatic capacitance CI
m

214 pF

Excitatory cell somatic leakage conductance gE
0

25 nS

Inhibitory cell somatic leakage conductance gI
0

18 nS

Excitatory cell membrane time constant tE
m

20 ms

Inhibitory cell membrane time constant tI
m

12 ms

Excitatory cell resting potential VE
0

-74 mV

Inhibitory cell resting potential VI
0

-82 mV

Excitatory firing threshold potential HE -53 mV

Inhibitory firing threshold potential HI -53 mV

Excitatory after-spike hyperpolarization potential VE
H

4 mV

Inhibitory after-spike hyperpolarization potential VI
H

-58 mV

Excitatory reversal potential V̂VE 0 mV

Inhibitory reversal potential V̂VI -70 mV

Absolute refractory period tR 2 ms

Increase in adaptation (potassium) conductance gK ½a� 6 nS

Potassium reversal potential VK -80 mV

Adaptation (calcium decay) time constant tCa 50 ms

The leaky integrate-and-fire parameters used by default throughout this paper
were taken from Troyer et al. [43] (derived originally from cortical
electrophysiological recordings [68]) with the adaptation parameters mostly
taken from Liu & Wang [30].
doi:10.1371/journal.pone.0069952.t002

Table 3. Synaptic parameters.

Synaptic Parameters Symbol Value

Synaptic neurotransmitter
concentration

aC 0.5 {

Proportion of unblocked NMDA
receptors

aD 0.5 {

Presynaptic STDP time constant tC 15 ms {

Postsynaptic STDP time constant tD 25 ms {

Synaptic learning rate r 0.1 {

Plastic (E?E) synaptic conductance
range

lDgEfE [0, 3.75] nS *

Lateral (E?E) synaptic conductance
range

lDgElE [0, &40
sElE

] nS *

Change in synaptic conductance
(I?E)

lDgIE 5.0 nS *

Change in synaptic conductance
(E?I )

lDgEI 5.0 nS *

Excitatory-Excitatory synaptic time
constant

tEE 2 ms }

Inhibitory-Excitatory synaptic time
constant

tIE 5 ms }

Excitatory-Inhibitory synaptic time
constant

tEI 2 ms }

The synaptic conductance time constants were taken from the same studies as
the cellular parameters [43,68]) as indicated by }. Plasticity parameters (denoted
by {) are taken from Perrinet et al. [41]. Parameters marked with * were tuned
for the reported simulations and ranges were systematically explored where
indicated by square brackets.
doi:10.1371/journal.pone.0069952.t003
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Methods

Model Architecture
To investigate the role of spike-timing in the segmentation of

multiple stimuli, a neural network was created consisting of

conductance-based integrate-and-fire neurons, (gLIF), which

model the individual action potentials. To test the utility of input

segmentation for learning in downstream neurons, the model

consisted of two layers of excitatory (principal) cells, fully

connected with feed-forward plastic synapses [41], while all other

synaptic weights were fixed. The principal cells also featured cell

firing-rate adaptation to provide a mechanism of self-inhibition

and each layer had a separate pool of inhibitory interneurons to

provide competition between the principal cells of each layer.

Correlated firing of principal cells responding to the same object

was encouraged by a fixed ‘Mexican hat’ connectivity profile in

the input layer (with exponentially decreasing excitatory connec-

tion strength). Conversely, anti-correlated firing of (more distant)

neurons representing different objects was encouraged by the

uniform strength of connections between principal cells and

inhibitory interneurons. The input layer contained 512 excitatory

cells (arranged in one dimension) to provide enough room for

multiple translating stimuli (while the output layer was a 16|16
grid). For a summary of the network parameters used throughout

the simulations, please refer to Table 1.

Figure 2. Training stimuli schematic. Two stimuli are presented
simultaneously to the network by injecting current into neurons in
separate parts of the input layer. These stimuli are then shifted with the
same velocity across their respective parts of the input layer.
doi:10.1371/journal.pone.0069952.g002

Figure 3. Input layer dynamics. The post-stimulus time histogram of global activity in the input layer (top) with the spike raster of the input layer
(bottom) for the simultaneous presentation of each stimulus over all transforms, coloured according to stimulus. The first stimulus (shown in blue)
consists of 64 neurons and its transforms are represented by the first (contiguous) half of the input layer (neurons 1-256) over which it gradually
moves, while transforms of the second stimulus (shown in red) occupy the second half of the input layer (neurons 257-512). It can be seen from both
the PSTH and raster plots that there is synchronisation of spikes within each stimulus representation and desynchronisation of spikes between them.
doi:10.1371/journal.pone.0069952.g003
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Neuron Model Description
The leaky integrate-and-fire neuron is principally defined by a

differential equation describing the evolution of its cell membrane

potential given by Equation 1, with accompanying parameters in

Table 2. The synaptic currents perturbing the cell membrane

potential are described by Equation 2 (and the accompanying

parameters in Table 2) with the dynamics of the conductance-

based synapses described by Equation 3 and the parameters of

Table 3. This model also incorporates an adaptation current

triggered by calcium-gated potassium channels [30] with a

coupled equation to describe the Potassium channel dynamics

given in Equation 4 (and accompanying parameters in Table 2).

Both the cell membrane potential and adaptation current are also

governed by the after-spike resetting conditions of Equation 5

(with the parameters also given in Table 2).

Cm
dV (t)

dt
~g0 V

c
0{V (t)

� �
{gK ½Ca2z�(t)(V (t){VK )

zI(t)zIext(t)zs:j(t):
ffiffiffiffiffi
tm

p ð1Þ

The time constant of the cell membrane (tm) is broken into its

component parts, the capacitance, Cm and leakage conductance,

g0 (inverse of the membrane resistance, Rm), such that

tm~RmCm~Cm=g0. The membrane reversal potential (which

the V (t) moves towards in the absence of stimulation) is

symbolised by V
c
0 , with c[fE,Ig denoting the class of neuron,

(either Excitatory or Inhibitory).

For biological realism, the cell membrane potential model

(Equation 1) includes Gaussian noise of zero mean and standard

deviation s~0:015: H{VHð Þ [42]. Here, j(t) is a Wiener

(Gaussian) variable (where j(t) represents
dW

dt
) satisfying the

definition of the Wiener process such that SjT~0 and

Sj(t)j(s)T~d(t{s), where d(:) is the Dirac delta function. The

noise amplitude is scaled by s, (since j has unit variance) set to

1:5% of the difference between the firing threshold HfE,Ig and the

hyperpolarization potential V
fE,Ig
H .

The sum of synaptic currents flowing into the cell is represented

by I(t) (described in Equation 2) while current from direct external

stimulation is denoted by Iext(t).

Ii(t)~
X

c

X
j

gij(t) V̂V c{Vi(t)
� �

ð2Þ

Here V̂V c represents the reversal potential of a particular class of

synapse (denoted again by c) which consists of Excitatory and

Inhibitory neurons, E,If g and j indexes the presynaptic neurons

of each class. Activation of a particular synapse will therefore make

the membrane more permeable to the species of ion determined

by the synapse’s class E,If g and will therefore drive the cell

membrane potential more rapidly towards the reversal potential

for that class (above or below the firing threshold respectively).

Equation 3 describes the dynamics governing the conductance

of a particular synapse, g(t). The conductance of each synapse

(indexed by ij) is governed by a decay term tg, which varies

according to the class of synapse, denoted tEE , tIE and tEI , with

corresponding parameters given in Table 3. A Dirac delta function

describes the incoming presynaptic spikes, where l indexes over

their arrival times at the synapse. This model neuron therefore

neglects the shape of the action potential, as the present work is

A

B

C

Figure 4. Input layer correlation functions. After binning the input
layer spiking activity (5ms bins) the auto-correlations were plotted for
Stimulus 1 (A) and Stimulus 2 (C) in addition to the cross-correlation
between the stimuli (B). Both stimuli exhibit positive auto-correlations
approximately every 90ms, indicating that this is the period with which
each is repeated. The cross-correlation shows strong peaks approx-
imately every +45ms, suggesting that the representations of the two
stimuli are interleaved through time in anti-phase oscillations.
doi:10.1371/journal.pone.0069952.g004
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concerned only with their timing.

dgij(t)

dt
~{

gij(t)

tg

zlDgij(t)
X

l

d t{tl
j

� �
ð3Þ

The synaptic efficacies for each class of synapse

fEfE,ElE,IE,EIg are modelled as a change in conductance at a

particular synapse upon the arrival of an incoming spike. Hence,

the efficacy (weight) is determined by the product of Dg, which is

bounded in the range ½0,1� but set individually for all synapses and

l, the biological scaling constant in nS, which is set individually for

each synaptic class. The strengths of excitatory feed-forward

synapses (l:DgEfE ) were plastic, modified by the STDP learning

rule (described below) in the range ½0,3:75�nS. The strength of

these synapses were lower than the default due to the simultaneous

presentation of multiple stimuli. All other classes of synapse were

fixed (non-plastic) as described below and detailed in Table 3.

To provide a mechanism of self-inhibition, an additional

potassium-based (Kz) leakage conductance, gK ½Ca2z�(t), acti-

vates following recent spiking activity. This variable denotes the

(potassium) conductance of the cell membrane, gK , (resulting from

the unblocking of potassium channels) due to a particular calcium

concentration, ½Ca2z�. The resultant adaptation current (IAHP)

leaking out of the membrane drives the membrane potential

towards the potassium reversal potential, VK , making it harder for

the neuron to reach its firing threshold. The duration of this

impeding effect is determined by the time course of the calcium

concentration’s ½Ca2z� (and hence the adaptation current’s) decay

back to 0 (Equation 4), characterised in this model by the time

constant tCa~50ms [30].

d½Ca2z�(t)
dt

~{
½Ca2z�(t)

tCa

ð4Þ

The auxiliary after-spike resetting is given by Equation 5. If the

cell membrane potential reaches the cell’s firing threshold, HfE,Ig,
then the cell membrane potential is set to its hyperpolarization

potential, V
fE,Ig
H . Additionally for principal cells, the calcium

concentration is incremented by a, tuned such that gK increases by

6nS=spike. The cell remains in this hyperpolarized state for a

refractory period (tR~2ms), after which updates of the cell

membrane potential are resumed (as per Equation 1).

If V (t)~H, then
V (t)?V

½Ca2�(t)?½Ca2z�(t)za

�
ð5Þ

The default cell body and synaptic parameters [43] and noise

parameters [42] were used throughout these simulations unless

otherwise indicated, which may be found in Tables 2-3. The time

constant of the excitatory feed-forward synaptic conductance, tEfE

was set to 2ms in line with a CT learning mechanism as explored

in previous work [25].

Lateral Connectivity
The input layer of the network incorporated a ‘Mexican hat’

lateral connectivity structure, featuring short-range excitatory

connections and long-range inhibitory connections. To achieve

this, the strength of connection between excitatory neurons within

a layer becomes weaker with distance (while the strength of

connections with inhibitory neurons remains constant). To set the

excitatory spatial structure, the Euclidean distances between all

principal (excitatory) neurons within a layer are calculated

according to Equation 6.

dij~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min(Dxi{xj D,DDxi{xj D{SxD)2zmin(Dyi{yj D,DDyi{yj D{SyD)2

q
ð6Þ

Here, Sx and Sy are the sizes of the x and y dimensions

respectively, which together with the ‘min’ functions implement

periodic boundary conditions, such that one-dimensional layers

become circular (and two-dimensional layers become toroidal). All

excitatory neurons within the input layer are then connected to

every other excitatory neuron up to a radius of 5sElE (given the

probability of connection, p(ElE)~1). With the scaling factor

wElE~100nS, their synaptic weights (l:DgElE ) were set to a

maximum of approximately 40=sElEnS, (&1:25nS using the

default value of sElE~32) which then become exponentially

weaker with increasing Euclidean distance, according to Equation

7.

Figure 5. Firing rate plots of the compound training stimulus across all transforms. Each transform of the two combined stimuli (labelled
T1 to T13) are plotted showing the two input representations move in lock-step across the input layer. On the basis of the input neurons’ firing rates
alone (indicated by the colour of heat map in Spikes/s) it is very difficult for the next layer of neurons to distinguish between the transforms of each
of the testing stimuli when presented together.
doi:10.1371/journal.pone.0069952.g005
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DgElE
ij ~

wElE

sElE
:
ffiffiffiffiffiffi
2p
p :exp

{d2
ij

2s2
ElE

( )
ð7Þ

This accounts for the short-range excitatory component of the

‘Mexican hat’ weight profile, since the Gaussian weight profile

means that more proximal principal cells share stronger connec-

tions than between more distal cells. The long-range inhibitory

component is modelled by the uniform strength, full-connectivity

between the principal cells and the inhibitory interneurons, which

will come to dominate between more distal neurons as the

excitatory connections become smaller.

The output layer featured the same connectivity between

principal cells and inhibitory interneurons but had no lateral

connections between the excitatory cells (ElE) and hence no

‘Mexican hat’ synaptic weight profile.

Synaptic Learning
To investigate the input dynamics upon learning, the Excitato-

ry-Excitatory feed-forward connections between the layers were

modified by an online, multiplicative form [44,45] of Spike-Time-

Dependent Plasticity formulated by [41] and described in

Equations 8-10. Only the excitatory feed-forward connections

(EfE) were modified through learning according to these rules,

while all lateral connections (namely ElE,IE,EI ) were fixed

throughout each simulation.

Each synapse has a differential equation describing a plasticity

variable Cij modelling a trace of recent presynaptic activity which

may be thought of as the concentration of glutamate released into

the synaptic cleft [41]. It is bounded by ½0,1� for 0ƒaCv1 and is

described in Equation 8, where tl
j is the time of the lth spike

emitted by the jth presynaptic cell.

dCij(t)

dt
~{

Cij(t)

tC

zaC 1{Cij(t)
� �X

l

d t{tl
j

� �
ð8Þ

Figure 6. The effect of training upon the output layer. Raster plots for all output layer neurons during presentation of each transform of each
stimulus are shown before and after training. Before training (A), the output cells respond randomly to transforms of each stimulus. After training (B),
the majority of output cells have become object selective and translation-invariant.
doi:10.1371/journal.pone.0069952.g006

Figure 7. The effect of training upon the organisation of the feed-forward synaptic efficacies. The strength of the synaptic weights are
indicated by the colour (red being high and blue being low). Before training (top) the weight matrix is random (unstructured). After training (bottom)
there are strong connections from all the inputs representing all transforms of one stimulus to particular output neurons (indicated by horizontal red
stripes) and likewise for the input neurons representing transforms of the other stimulus to a different set of output neurons.
doi:10.1371/journal.pone.0069952.g007
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Figure 8. The effect of training upon the information content of the output layer. Before training, both information measures can be seen
to be low. After training, the single cell information measure (A) shows that most of the cells in the output layer are maximally informative in
discriminating between the stimuli and the multiple cell information measure (B) shows that both stimuli’s transforms have been learnt by the
network.
doi:10.1371/journal.pone.0069952.g008
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The presynaptic spikes drive Cij(t) up at a synapse according to

the model parameter aC and the current value of Cij(t) which then

decays back to 0 over a time course governed by tC .

The recent postsynaptic activity, Di(t), is modelled by Equation

9, which may be interpreted as the proportion of unblocked

NMDA receptors as a result of recent depolarization through

back-propagated action potentials [41]. Here tk
i is the time of the

kth spike emitted by the ith postsynaptic cell.

dDi(t)

dt
~{

Di(t)

tD

zaD 1{Di(t)ð Þ
X

k

d t{tk
i

� �
ð9Þ

Based upon the instantaneous values of the plasticity variables

Cij and Di, the strength of each feed-forward synaptic weight,

Dg
EfE
ij (t), is then modified according to Equation 10 and governed

by the time course variable tDg.

tDg

dDg
EfE
ij (t)

dt
~ 1{Dg

EfE
ij (t)

� �
Cij(t)

X
k

d t{tk
i

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

LTP

{ Dg
EfE
ij (t)Di(t)

X
l

d t{tl
j

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

LTD

ð10Þ

Note that the postsynaptic spike train (indexed by k) is now

associated with the presynaptic state variable (C) and vice versa. If

C is high (due to recent presynaptic spikes) at the time of a

postsynaptic spike, then the synaptic weight is increased (LTP).

Conversely, if D is high (from recent postsynaptic spikes) at the

time of a presynaptic spike, then the weight is decreased (LTD).

Throughout the simulations presented, the default parameter

values shown in Table 3 were used for the STDP model [41],

except when they were systematically varied (as indicated) to assess

their effect upon network performance.

The system of differential equations describing the dynamics of

the cell bodies, synaptic conductances and synaptic plasticity are

discretized with a Forward Euler numerical scheme and simulated

with a numerical time-step Dt of 0:02ms. The code for this model

has been made publicly available on our laboratory server

(https://mac0.cns.ox.ac.uk/svn/SpikeNet/) and is also available

upon request.

Stimuli and Training
The stimuli used throughout these studies were abstract,

homogeneous patches, represented by injecting tonic current into

spatially separate pools of input-layer neurons. Contiguous blocks

of neurons within these pools were gradually shifted across the

input layer to represent successive overlapping transforms

(translations) of each stimulus which which may be associated

together in the output layer by Continuous Transformation

learning [14]. In the initial simulation with two stimuli, a stimulus

consisted of 64 neurons which was presented in 13 locations

(transforms), with a shift of 16 neurons between each adjacent

transform. This yields an overlap of 75% between contiguous

transforms for the facilitation of the CT learning mechanism (as

described in Figure 1).

Figure 9. Network performance versus lateral connection spread. The mean network performance measure (ik) is plotted against the
standard deviation of the lateral excitatory connection strength (sElE ) for ten random seeds, with the standard error of the mean indicated by the
whiskers. It can be seen that network performance is robust to approximately a four-fold increase in sElE .
doi:10.1371/journal.pone.0069952.g009
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During testing phases, all stimuli were presented individually to

measure how the network responded specifically to each stimulus.

However during training, the stimuli were presented together,

such that the network never learnt about them in isolation. The

untrained network was first tested in a ‘pretraining’ phase by

presenting all transforms of all stimuli sequentially, each for a cue

period of 500ms. This phase therefore provides a baseline ‘pre-

training’ behaviour to contrast with ‘post-training’ behaviour, in

order to reveal the effects of learning in the feed-forward synapses.

After saving the network outputs and resetting the dynamic

variables for each cell and synapse, the training phase began where

all transforms of all stimuli were presented for 500ms per

Figure 10. Network performance versus STDP time constants. The mean network performance measure (ik) is plotted against the STDP time
constants (tC and tD), maintaining a constant asymmetric ratio, tC~3=5tD (A) or symmetric learning windows, tC~tD (B). The standard error of the
mean across the ten random seeds for each set of simulations is also indicated by the whiskers around each mean value. In each case, the network
performance is shown to be robust to a large span of STDP time-constants. Lengthening the time constants eventually reduces performance to 0 due
to association across stimuli, whereas performance remains reasonably high for very short time constants, around 1ms.
doi:10.1371/journal.pone.0069952.g010
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Figure 11. Input layer activity without lateral excitatory connections and with no strength gradient. Both post-stimulus time histograms
(top row) and input spike rasters (bottom row) are shown for a network with no lateral excitatory connections (A) and a network with a flat synaptic
efficacy profile in all its lateral connections (B). In each case, the spike volleys representing each stimulus are disorganised, with no global
synchronisation within a stimulus and no desynchronisation between stimuli.
doi:10.1371/journal.pone.0069952.g011
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transform. For combinations of stimuli, the direction of shift

between transforms was randomly chosen but with each stimulus

in the presented pair shifting in the same direction at the same rate

(lock-step) to prevent any (slow) disentanglement through inde-

pendent motion [17]. The presentation of all transforms of the

pairs of stimuli constituted one epoch of training, and the training

phase consisted of ten epochs in total. Figure 2 illustrates the multi-

stimulus presentation paradigm with a simple example of two

stimuli with five transforms each, over one epoch of training.

Once the network had been trained and the dynamic variables

(except synaptic weights) reset, the ‘post-training’ testing phase was

simulated in an identical way to the pretraining testing phase. The

final outputs were then saved and analysed with the information

theory algorithms described below.

Network Performance Measures
The network performance is primarily assessed using two

measures derived from information theory [46,47], which reflect

how well cells respond invariantly to a particular stimulus over

several transforms but differently to other stimuli [48–50]. In so

doing, these analyses measure the extent to which a cell possesses

both specificity to the identity of a particular object (ideally by

responding to one stimulus only) and generality to natural variations

in its appearance (ideally by responding to all transforms of that

stimulus) – the computational crux of visual object recognition

[24].

While spiking dynamics are critical for how the network

organises the stimulus representations, analysis of macaque visual

cortical neuron responses has revealed that the majority of

information about stimulus identity is contained within the firing

rates rather than the detailed timing of spikes [5]. Accordingly, the

network self-organizes through spiking dynamics but the informa-

tion content (with respect to stimulus identity) is assessed through

the output cell’s firing rates.

To measure the information conveyed by the responses of the

output neurons, each transform of each stimulus was presented to

the input layer of the network individually during a testing phase.

Each neuron was allowed to settle after presentation of each

transform, such that the activity due to one transform did not

affect the responses to later transforms. The spikes of each output

neuron were binned individually for each transform of each

stimulus and the corresponding firing rate for each cell was

calculated. Each cell’s responses were then used to construct

conditional P(rDs) and unconditional P(r) firing rate distributions.

From these distributions, the stimulus-specific single-cell informa-

tion, I(s,R), was calculated according to Equation 11. This

measure quantifies the information conveyed by a particular cell

through its complete set of responses to every transform of every

stimulus, R, about a specific stimulus, s.

Figure 12. Input layer activity with no cell firing-rate adaptation. Post-stimulus time histogram of global activity in the input layer coloured
according to stimulus (top) with the spike raster of the input layer (bottom) for the simultaneous presentation of each stimulus over all transforms.
Very quickly, both populations of input neurons start firing together and remain synchronised throughout the epoch.
doi:10.1371/journal.pone.0069952.g012
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I(s,R)~
X
r[R

P(rDs)log2
P(rDs)

P(r)
ð11Þ

Good performance for a cell is indicated by a high (or maximal)

information score, which would entail stimulus specificity, with

generality across most (or all) transforms of that stimulus. In terms

of the original firing rates, this would mean a large response to one

stimulus regardless of its position (transform) and small responses

to transforms of other stimuli. Such a cell may transmit relatively

little information about other, non-preferred stimuli (for example,

by responding indiscriminately to a number of other stimuli or

unevenly to their transforms) but will still be very useful if it

conveys maximum information for one particular stimulus. We

therefore compute the maximum amount of information a neuron

conveys about any of the stimuli rather than the average amount it

conveys about the whole set of stimuli, S (which would be the

mutual information).

If all the output cells learnt to respond to the same stimulus then

there would be no discriminability and the information about the

set of stimuli (S) would be poor. To test this, the multiple cell

information measure is used which calculates the information

about the set of stimuli from a population of up to Cmax~5:DSD
output neurons. This population consisted of the subset of up to

five cells which had, according to the single cell measure, the most

information about each of the two stimuli.

Ideally, we would calculate the mutual information – the

average amount of information about which stimulus was shown

from the responses of all cells after a single presentation of a

stimulus, averaged across all stimuli. However, the high dimen-

sionality of the neural response space and the limited sampling of

these distributions are prohibitive to such an approach. Instead, a

decoding procedure is used to estimate the stimulus s’ that gave

rise to the particular firing rate response vector on each trial, as

detailed below. Knowing (a priori) which stimuli have been

presented, a probability table (confusion matrix) may be

constructed (in the much lower dimensional space) between the

real stimuli s and the decoded stimuli s’, from which the mutual

information is then calculated (Equation 12).

I(s,s’)~
X
s,s’[S

P(s,s’)log2
P(s,s’)

P(s)P(s’)
ð12Þ

In this work, a Bayesian decoding procedure is used to infer the

presented stimulus from the neural responses. For each cell in the

ensemble vector, its firing rate response to each unknown

transform is separately fitted to a Gaussian distribution of firing

rates to each stimulus. Each stimulus-conditional distribution is

parameterized by the mean and standard deviation of the cell’s

sets of responses to transforms of each particular stimulus.

Importantly, the unknown response is excluded from these

parameterizations, hence a jack-knife cross-validation procedure

is incorporated in the decoding process. This unknown response is

then decoded by comparing it to each stimulus-conditional firing

rate distribution to calculate from which it was most likely to have

come, and so yield an estimate of P(rcDs’). Taking the product of

these probabilities over all cells in the response vector (r) with P(s’)

Figure 13. Input layer dynamics with four stimuli. Post-stimulus time histogram of activity in the input layer coloured according to stimulus
(top) with the spike raster of the input layer (bottom) for the simultaneous presentation of four stimuli over all transforms. The first stimulus consists
of 32 neurons and its transforms are represented by the first (contiguous) quarter of the input layer (neurons 1–128) over which it gradually moves,
while transforms of the second, third and fourth stimuli occupy the subsequent quarters of the input layer. The four stimulus representations are
generally internally synchronised and interleaved through time in perceptual cycles (for example, Transform 9: 4000{4500ms). Occasionally, two of
the stimulus representations become synchronised, however the stimulus combination is random and can be seen to change between different
transforms.
doi:10.1371/journal.pone.0069952.g013

Separation of Objects in Spiking Neural Networks

PLOS ONE | www.plosone.org 15 August 2013 | Volume 8 | Issue 8 | e69952



and then normalizing the resultant joint probability distribution

gives an estimate of P(s’Dr) [51].

The calculated mutual information values were then corrected

to compensate for the upward bias due to finite sampling [52]. As

in previous work, only the first term of an analytically derived

series was used, since this has been shown to be a good

approximation [53,54]. To smooth out the effects of random

sampling for the neural ensemble, the information values were

averaged over Ni~100:(Cmax{cz1) iterations, decreasing line-

arly (in this case from 1000 to 100) as the ensemble size, c,

increases. The smoothed values were then clipped at the

theoretical information limits to remove any artefacts caused by

the approximate correction terms, before factoring them into the

probability tables, P(s,s’). From these decoding, cross-validation

and correction procedures, more reliable estimates of the true

probabilities are obtained for calculating the multiple cell

information measure [48].

This multiple cell information measure should increase up to

the theoretical maximum log2NS bits, (where NS is the number of

stimuli), as a larger population of cells is used, only if those cells

have become tuned to different stimuli. A high information score

from the multiple cell measure therefore indicates that all stimuli

are represented in the ensemble of output cells, meaning that the

network has good discriminability.

To assess the network performance across a range of parameter

values, an ‘information score’, ik was calculated from the single-

cell information described in Equation 11. For each stimulus, s,

the number of cells which conveyed at least 95% (k~0:95) of the

theoretical maximum information (in this case 0.95 bits) according

to the single-cell measure was counted. The minimum number of

such cells for any stimulus in the set was then found and

normalised to a proportion of the total number of output cells.

This ‘information score’ therefore expresses the information

conveyed by the network about all transforms of the least well

represented stimulus (see Equation 13).

ik~
minsD Ic,s§k:log2NSf gcD

C
ð13Þ

Here, Ic,s is the amount of information conveyed by a particular

output cell, c, about a particular stimulus, s according to the

single-cell information measure, NS is the number of stimuli and C

is the total size of (number of cells in) the output layer. Although

this measure is derived from the single-cell information measure,

taking the minimum proportion of cells across all stimuli means

that non-zero values of ik indicate that all stimuli are represented,

fulfilling the role of the multiple-cell information analysis.

Results

The results section first demonstrates the input layer dynamics

and the ability of feed-forward plastic connections to take

advantage of them in order to form independent, translation-

invariant representations of each stimulus. These results are then

further investigated by exploring their robustness to variations in

Figure 14. Input layer auto-correlation functions with four stimuli. The four populations of input neurons representing each stimulus were
binned separately (in 5ms intervals) and auto-correlations were plotted for each population. The auto-correlations are found to be significant (when
they rise above the blue line) approximately every 175ms, indicating a combined period of approximately 45ms for an ideal separation of the four
stimuli.
doi:10.1371/journal.pone.0069952.g014
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key parameters. The stimuli are then expanded to a larger set of

four (simultaneously presented during training) to show how the

same mechanism may be applied in more ecologically valid scenes

composed of more stimuli.

Segmentation of Stimuli through Synchronisation
In the first simulation presented, a network was built with two

layers of excitatory neurons (each with a separate pool of

inhibitory neurons) as described in Equations 1-5 with parameters

specified in Tables 1, 2, 3. The lateral connectivity was specified

(between excitatory neurons within each layer only) as described in

the methods section. Two stimuli were presented simultaneously to

the network during training but individually during testing. This

was simulated by injecting a current of 0:75nA into the cell bodies

of the sets of input neurons representing the particular transform

(of a particular stimulus) during the presentation period of 500ms

(either training or testing).

While both stimuli are represented simultaneously and with

equal strength, the input layer neurons rapidly adjust the timing of

spikes such that each stimulus is represented separately to the

other through time. That is, the constellation of features

representing a stimulus are synchronised with respect to one

another and desynchronised with respect to the features of the

other stimulus (see Figure 3, bottom). Throughout the course of

stimulation, these two competing representations alternate (as

shown in the PSTH, Figure 3, top), each with a regular frequency

of approximately 12:5Hz. This means that, for both stimuli

combined, the input layer exhibits c{band oscillations at slightly

less than 25Hz.

Looking at the combined PSTH (Figure 3) it is clear that the

two competing populations of input neurons representing each

stimulus have pushed one another out of phase, as the volleys of

spikes (and frequency bars) for each stimulus are interleaved

through time. This is confirmed by the cross-correlation (Figure 4,

B) which shows that the volleys representing the two stimuli are

positively correlated with lags of approximately

+f45,135,225gms and anti-correlated elsewhere meaning that

they are separated by a period, p, of approximately 45ms (with the

positive cross-correlations corresponding to fp,3p,5pg). Further-

more, the auto-correlations for each stimulus’ populations of input

cells (Figure 4, A and C) show that the volleys are repeating

through time approximately every 90ms (2p).

To understand this phenomenon, consider the features (excit-

atory input neurons) representing a particular stimulus. For both

populations (representing each stimulus), the external stimulation

is identical in terms of time course and amplitude. This causes the

neurons representing both stimuli to fire together initially, as can

be seen in the first *50 ms of Figure 3. However, the noise in the

neurons’ cell potentials means that one population (or subpopu-

lation) will by chance, quickly come to dominate the initial

competition. These cells transmit action potentials to their

neighbouring cells, thus raising the cell potentials of those nearby

neurons and encouraging neurons which represent features of the

same object to also fire.

Figure 15. Input layer cross-correlation functions with four stimuli. Significant cross-correlations can be seen at multiples of approximately
+60ms, indicating that at least one stimulus is represented every 60ms. There are also significant cross-correlations at 0ms lag for some of the pairs of
stimuli, showing that on this particular training epoch, the firing of those stimuli was still (at least partially) synchronised. However, inspecting the
data from other training epochs confirmed that the synchronised pairs changed between presentations.
doi:10.1371/journal.pone.0069952.g015
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Compared to excitatory neurons representing other features of

the same object, those representing the second object are spatially

much further away. As such, they do not receive as much

excitation through the lateral connections, which exponentially

decrease in strength with distance (see Equation 6). Instead, they

receive a wave of inhibition from the mutually connected

inhibitory interneuron population, which suppresses their firing.

Since the principal cells representing the first object have now

fired, they will have self-inhibited through their adaptation

mechanism, making it relatively harder for them to fire soon

after. Neurons representing the first stimulus are therefore less able

to compete with the second population of input neurons (through

the inhibitory interneurons), which are then able to fire their own

synchronised spike volleys. The second population of cells then

temporarily suppresses the first population by the same interneu-

ron-mediated interaction, until they too self-inhibit through

adaptation and the cycle repeats.

Learning Translation-invariant Representations
The process described for the formation of anti-phase input

representations, when coupled with CT learning [25] in the feed-

forward plastic weights, is shown here to lead to the formation of

translation-invariant representations in the output layer. If Spike-

Time-Dependent Plasticity (STDP) is used, the output neurons will

Figure 16. The effect of training with four stimuli upon the information content of the output layer. It can be seen that before training,
the information content according to the single cell (A) and multiple cell (B) information measures is extremely low. After training the network, the
single cell information measure shows that a number of cells in the output layer are maximally informative in discriminating between the stimuli.
Similarly, the multiple cell information measure also reaches the maximum 2 bits, showing that all four stimuli’s transforms have been learnt by the
network.
doi:10.1371/journal.pone.0069952.g016
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be selective in terms of which population of input neurons they

associate with, as each stimulus representation is separated

through time. This process persists as the objects translate across

the input layer until all transforms of a particular stimulus are

potentiated onto a distinct set of output neurons.

In contrast to the precise timings of the action potentials shown

in Figure 3, it would be very difficult for the output layer to

distinguish between the two input stimuli on the basis of firing

rates alone (given the full excitatory feed-forward connectivity

between the layers). The 13 transforms of the ‘compound’ training

stimulus are plotted as a rate-coded representation in Figure 5 for

comparison.

In Figure 6 we present results demonstrating the formation of

cells in the output layer which are selective to one of the two

stimuli presented to the network during training, yet invariant to

most or all transforms of that particular stimulus. For the testing

phase shown in these raster plots, each transform of Stimulus 1 is

presented in sequence for 500ms each, followed by the sequence of

transforms for Stimulus 2, each for the same duration. In the case

of the trained network, this leads to a shift after 6500ms where a

separate population of output neurons become active to represent

the transforms of the second stimulus.

The effect of training is also clear from the structure in the

weight matrix of feed-forward excitatory synaptic conductance

strengths as shown in Figure 7. These synaptic weights are

initialised to random values drawn from a uniform distribution

(top) but attain a clear structure through the process of training

(bottom). After training, particular output neurons (shown on the

y{axis) can be seen to have striations of large weight values

extending across, for example, the first half of the input layer

(x{axis) corresponding to all transforms of the first stimulus. In

contrast, neurons in the second half of the input layer have formed

strong feed-forward synapses with other output neurons, which

have come to represent all transforms of the second stimulus.

As a quantitative measure of the network’s ability to learn to

form transformation-invariant representations of each stimulus,

information analysis plots of the output layer are given in Figure 8.

The plot of the single-cell information measure shows that a large

proportion of output cells transmit the maximum information (1

bit) across all transforms of the stimuli, meaning that they

unambiguously signal which stimulus is being presented. The

multiple-cell information measure plot shows that both stimuli are

represented in the output layer, as it also attains the maximum

information level.

Spread of Lateral Excitatory Connections
During preliminary explorations of the parameter space, earlier

simulations revealed the gradient in the strength of lateral

excitatory connections to be a crucial element in generating

anti-phase relationships in inputs presented to the network.

Further investigation was needed to understand how the spread

of such connections relative to the size of the stimuli relates to the

network’s ability to learn stimulus-specific translation-invariant

representations.

If the radius of excitation grows too large relative to the spacing

between the stimuli, then two stimuli are encouraged to fire

together, leaving the postsynaptic neurons unable to distinguish

between their synchronised activity. If the radius becomes too

small relative to the size of the stimuli, the input representation

becomes fragmented as not all features of the object are

synchronised by the lateral excitatory connections and only partial

views (or a subset of transforms) are learnt about by postsynaptic

neurons. In summary, for large sElE specificity was found to suffer,

whereas for small sElE invariance learning suffers.

Here we used the parameters from the optimal simulation

(Table 1, with DgElE~20) and varied sElE from 0 to 256. The

results of running ten different random seeds are shown in

Figure 9, with the mean information score, ik, plotted as points

and the standard error of the mean over the ten random seeds

plotted as whiskers.

From this analysis, the optimal standard deviation of the lateral

excitatory connection profile was found to be s�ElE~32, (1/2 the

width of each stimulus and 1/8 of the average inter-stimulus

distance). Network performance (as measured by the information

score) was also found to be more tolerant to larger spreads of the

weight profile than to smaller values of sElE , as shown by the

relatively steep decline on the left side of Figure 9. The optimal

value was used in subsequent simulations throughout this paper.

Temporal Specificity in Learning
In the simulations presented so far, the alternation of input

representations on successive gamma cycles allows the output layer

to exploit learning through Spike-Time-Dependent Plasticity

(STDP) – a temporally sensitive learning rule. It is hypothesised

that if the form of STDP is made less specific (such that it begins to

resemble a firing-rate based learning rule) then the advantage of

the self-organised perceptual cycles in the inputs will be lost, as the

learning rule will no longer be specific enough for a given

population of output cells to learn about a particular input without

interference from the other. In other words, the alternation of the

input representations will effectively be too fast for output cells to

learn about one or the other discriminatingly. In this case, the

different input representations will be associated onto the same

output cells.

To test this, further simulations were run with a range of STDP

time constants (tC and tD), both symmetrical (tC~tD) and

asymmetrical (tC~3=5:tD). To summarise the network perfor-

mance, the information score, ik was calculated as before

according to Equation 13. The results of these simulations are

presented in Figure 10 (A) for asymmetrical time constants (with a

larger LTD time window) and Figure 10 (B) for symmetrical time

constants.

As the STDP time constants deviate from the default values,

15ms=25ms, the network performance can be seen to deteriorate

(although with symmetrical learning windows, the optimal time

constant was found to be longer at 50ms). When the learning time

constants are shortened, network performance is reduced since

only partial fragments of the stimuli are synchronised within the

more restrictive time window. Consequently, associating all

transforms of a particular stimulus together becomes a more

difficult task. By lengthening these time constants, the network

performance also decreases (although more gradually) as the

oscillations of both stimuli start to experience both LTP and LTD

together.

From inspecting the output layer cell response properties (not

shown) for simulations with STDP time constants of 150ms or

longer, it was confirmed as hypothesised that the learning rule is

no longer temporally specific enough for separate sets of output

cells to learn about each stimulus independently. Instead, one set

of output cells tend to form which are invariant to all transforms of

both stimuli.

Lateral Connections
In order for features of the same object to generate synchronised

firing in the input cells which represent them and yet desynchro-

nise the firing between more distant populations of cells

representing different objects, a gradient of lateral excitation is

necessary. The consequence of this architecture is that cells which
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are close together are more mutually supportive than those which

are further apart.

To test this, the same simulation was rerun under two different

conditions; firstly with no lateral excitatory connections in the

input layer and secondly, keeping the lateral excitatory connec-

tions but flattening the Gaussian profile of their strength (i.e. all

lateral excitatory connections were of the same efficacy irrespec-

tive of the distance between the neurons). In each case, the

strength of inhibition was adjusted to prevent saturated firing

through positive feedback.

In Figure 11 we present input rasters from a typical simulation

with no lateral excitatory connections in the input layer (A) and

one with a flat strength profile and retuned lateral connection

strength (B). It is evident in each plot that, not only have the

perceptual cycles between the input stimuli disappeared, but also

the coherence of the representations, shown by the limited local

synchronisation between subsets of features within each stimulus.

Consequently, with no temporal structure in the spike timings of

cells representing the transforms of the input stimuli, the output

layer does not manage to discriminate between the two inputs and

hence the single and multiple cell information measures (not

shown) are no better than the untrained network (essentially no

improvement on random feed-forward connectivity). This suggests

that a distance-based gradient in the lateral connection strength

profile is a necessary element of this model for forming perceptual

cycles in the input layer and that these are the basis for learning

separate object representations in the output layer.

Cell Firing Rate Adaptation
Adaptation has been found to be a necessary element in

generating anti-phase representations between input stimuli, also

known as ‘perceptual cycles’ [22]. Without cell firing-rate

adaptation, the entire population of excitatory input cells was

synchronised by the action of the inhibitory interneurons. This can

be seen in Figure 12, which may be contrasted with the input layer

raster plot of Figure 3 showing both stimuli being represented in

anti-phase cycles. Without a mechanism of self-inhibition and the

effects of cell membrane noise and random initialisation to help

randomly select an initial winner to begin the oscillations, the two

populations would continue to fire as one. As such, it was much

harder to train the network to form separate output representa-

tions of each stimulus, as without the dynamic of perceptual cycles,

both stimuli would typically be associated onto the same output

neurons.

This was also found to be the case for a wide range of

parameters, including the strength of the lateral connections, the

standard deviation of the distribution of their strengths, (sElE ), and

the strength of excitatory to inhibitory connections and inhibitory

to excitatory connections. Without the time-varying degree of

competition (provided by the self-inhibiting effects of cell firing-

rate adaptation in this case), the perceptual cycles can no longer be

formed and so are not observed in the results.

Capacity
While presenting pairs of stimuli to the network during training

is an advance on presenting stimuli in isolation, there is still much

scope for more biologically realistic and therefore improved

ecological validity of the simulations. In the following simulations

we aim to investigate the capacity of the network by presenting

larger numbers of stimuli (four) simultaneously during training.

The size of the network and the number of transforms remain the

same but as the number of stimuli doubles, the size of the stimuli

and the shift between transforms both halve to 32 and 8 neurons

respectively. To encourage synchronisation within object repre-

sentations and desynchronisation between object representations,

the spread of excitatory lateral connections was reduced slightly (to

sElE~12) and the injected current was also reduced to allow for a

slower frequency of firing (Iext~0:6nS).

Using the same simulation paradigm as described above (except

for the changes necessary to accommodate four stimuli as

discussed), the network was trained with all four stimuli presented

simultaneously translating across their portions of the input layer.

The PSTH and raster plot of the input layer with four stimuli are

shown in Figure 13. It can be seen from these plots that the four

populations of input neurons have organised themselves into

internally synchronised volleys, which are out of phase with

respect to the spikes from neurons representing the other three

stimuli. This is qualitatively very similar to the case with two

stimuli presented during training except that the volleys of spikes

for a particular stimulus fire approximately once every three or

four cycles (as opposed to every two cycles) and that there is

occasionally some synchronisation between volleys representing

transforms of different stimuli.

The auto-correlations for each of the four populations of input

neurons representing each of the four stimuli are plotted in

Figure 14. They each show a high correlation repeated

approximately every 175ms, indicating the period of oscillation

for each stimulus. For an ideal separation of the NS competing

stimuli, the combined input representations (across all stimuli)

should oscillate at approximately 1=NS of the autocorrelation

periods (the ideal separation period, p&175=4ms). This implies

that at least one population of input cells should fire approximately

every 45ms in a repeating cycle.

The cross-correlations of spiking activity during a single epoch

of training are shown in Figure 15 for each of the six possible

combinations of two stimuli. Significant cross-correlations are

observed approximately every +60ms, contrary to the expected

peaks at lags of +45ms suggested by the period of the auto-

correlations (Figure 14). This means that occasionally two of the

stimulus representations tend to be synchronised, as evidenced by

the 0{lag cross-correlations for some pairs of stimuli in Figure 15

and in the occasional coincident spiking activity of Figure 13.

Importantly, the coincident representations tend to occur

randomly between different combinations of transforms at

different times (as shown in Figure 13) and on different training

epochs, as was confirmed by examination of rasters and cross-

correlations for the other training epochs (not shown). With this

lack of consistency between coincident stimulus representations

and a sufficient degree of training (extended to 20 epochs for these

results), cells in the output layer were eventually able to learn

independent representations of each stimulus, as confirmed by the

information analysis of Figure 16.

The Information plots for four stimuli (Figure 16) show that a

number of neurons in the output layer have been trained to

convey the theoretical maximum amount of single-cell information

possible which has risen to two bits (log2(NS), where the number of

stimuli, NS~4), rather than one bit in the case of two stimuli. This

means that these cells have been able to learn to unambiguously

signal which stimulus is being presented from any of its transforms,

despite always experiencing all four stimuli together during

training, and the lack of perfect stimulus separation. Furthermore

the cells in the output layer can collectively identify each of the

four stimuli across all transforms as indicated by the multiple cell

information measure reaching the theoretical maximum of two

bits.
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Discussion

This paper has investigated how a model of the primate ventral

visual system may develop neurons which are selective to a

particular individual stimulus and respond invariantly to it over a set

of learned transforms, even though the network is only exposed to

visual scenes containing multiple stimuli moving together. Previous

work has investigated this issue using rate-coded neural networks

whereby the precise times of action potentials are not simulated

explicitly but replaced by a temporal average. To overcome the

‘superposition catastrophe’ of associating the simultaneously

presented stimuli together onto the same output neurons through

a rate-based Hebbian learning rule, these earlier studies had to

present the stimuli in different combinations on different learning

trials [15,16], or the stimuli had to be shown moving indepen-

dently of each other during training [17]. The work presented in

this paper has demonstrated how by using a spiking neural

network, (in which the times of the action potentials are explicitly

modelled) output neurons can learn separate representations of

visual stimuli which are always seen moving together in lock-step

during training but which are separated in space.

Importantly, this model incorporates ‘Mexican hat’ lateral

excitatory connectivity within the input layer with cell firing-rate

adaptation. The effect is that the short-range (exponentially

declining) excitatory lateral connections help to synchronise

localised clusters of input neurons (representing a stimulus).

Conversely, the long-range (global) inhibition and firing-rate

adaptation constitute a delayed self-inhibition mechanism, pushing

the firing of one cluster out of phase with respect to the other, so

causing them to oscillate through time. The first simulations

demonstrate the resulting effect, which is to synchronise the firing

of neurons representing one particular stimulus and desynchronise

them with respect to the ensemble representing the other stimulus.

The alternating representations in the input layer, arising from

the detailed properties of the network, were then shown to

facilitate learning about the stimuli individually. When combined

with the temporal specificity of STDP in the feed-forward

excitatory connections, this temporal separation between the

oscillating input representations allows for different pools of output

neurons to learn about each stimulus separately. Furthermore, this

input layer dynamic persists as the stimuli transform (translate

across the input layer) such that the output neurons also build

translation-invariant representations of the individual stimuli

through the CT learning mechanism [14,25].

In agreement with earlier work, the ability of the input layer to

form the perceptual cycles of the individual stimuli (when

presented simultaneously) was found to be be critically dependent

upon a mechanism of delayed self-inhibition [22,27] – in this case,

cell firing-rate adaptation. The adaptation model used here is a

more realistic implementation than in previous work [22,55], yet

instantiates the same core principle, thus indicating a convergence

of views.

In addition to cell firing-rate adaptation, the presented

simulations also demonstrated the importance of the lateral

excitatory connectivity in generating perceptual cycles between

the input representations. A ‘Mexican hat’ functional architecture

is often taken to mean lateral connectivity with short-range

excitation and long-range inhibition [35,36]. This connectivity was

modelled here through a gradual weakening of the excitatory

lateral connections with increasing distance plus uniform strength,

fully laterally connected inhibitory interneurons (representing a

long-range or global inhibitory mechanism). By flattening the

profile of these lateral excitatory connections or removing them

altogether, the perceptual cycles were extinguished. This made the

input representations disorganised and unable to facilitate

translation-invariant learning of independent object representa-

tions in the feed-forward connections to the next layer.

The role of lateral connectivity was also explored by system-

atically varying the standard deviation of the lateral excitatory

connection strength, sElE , to assess its impact upon network

performance. It was found that if this parameter was too small,

then not all ‘features’ of a particular stimulus were synchronised –

in other words, the lateral excitatory connections were unable to

promote coherence of the stimuli (intra-stimulus synchronisation).

Alternatively, with too large a spread of ElE strength, the neurons

representing features of both stimuli are encouraged to fire in

phase with each other, abolishing the perceptual cycles found with

intermediate values. At each extreme, the disruption caused to the

input representations had a negative impact on network perfor-

mance, meaning separate translation-invariant representations

were less likely to form.

The problem of synchronising independent objects with a large

radius of excitation may be alleviated with more realistic inputs

and architecture. In V1, cells sensitive to a particular bar or edge

orientation are laterally connected to other cells of similar

orientation preference through excitatory synapses [57], providing

a means of contour integration [35]. Similarly, excitatory lateral

projections in V2 appear to be between cells with a wide range of

orientation preferences but avoid orthogonal orientations [58]. If

these ‘feature-aligned’ lateral connections are strong relative to the

undirected ‘Mexican hat’ lateral connections, this architecture

would allow distinct objects (with unaligned edges) to be closer

together in the visual field, without their representations (undesir-

ably) synchronising. Equivalently, the (‘Mexican hat’) radius of

excitation could be larger without the collapse of meaningful

perceptual cycles between distant, independent objects.

Conversely, if the edges of two stimuli were aligned (particularly

if they are close together), their neural representations would tend

to synchronise, eliminating the anti-phase relationship in their

oscillations and therefore binding them as a single percept

[38,39,59–61]. However, this would be advantageous if the ‘two’

stimuli were actually a single occluded object, suggesting a

neurophysiological basis for the Gestalt ‘continuity principle’ and

perceptual phenomena such as illusory contours [62]. If feature

alignment is a major architectural principle of early visual areas,

along with decreasing strength (or probability) of connection with

increasing distance, the two features would work synergistically to

both, segment proximal stimuli and integrate distal contours as

appropriate. This would predict that the radius of excitatory

lateral connections, especially between neurons representing

aligned features, should be large relative to the distance spanned

by the cortical representation of an object.

The ability of this model to learn output representations which

are both selective to a particular stimulus and invariant across its

transforms was found to be dependent upon a number of key

properties. The temporal specificity of the STDP learning rule was

explored through systematically varying the time constants of the

LTP and LTD time windows. If the time constants were too short,

the output neurons were unable to learn translation-invariant

stimulus representations successfully as the learning rule became

too sensitive to the timing jitter of the input spike volleys.

Conversely, if the STDP time constants became too long, there

was not enough temporal specificity to isolate the potentiation of a

particular output neuron to just one stimulus and both stimuli

associated onto the same output neuron.

The paradigm of translation-invariance learning employed here

has been used as an example of more general forms of

transformation-invariance learning, as used in several previous
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studies [5–7,25,63–67]. Invariance learning with other forms of

transformation, such as scalings and rotations, should operate in a

similar manner. Small changes in view of the same object

(including rotations and scalings) are likely to activate an

overlapping set of bar and edge detector neurons in V1 and

other early visual areas. This would enable the CT learning

mechanism to associate similar transforms together onto the same

downstream neurons, as exemplified by the results presented here.

Since this was not easy to demonstrate with the abstract stimulus

representations used in these simulations, future work would

benefit from validating this point with more realistic stimuli

undergoing other forms of transformation.

In summary, this paper has shown one way in which spiking

neural network dynamics may support mechanisms necessary to

solve key problems in learning specificity to object identity and

generality across object transforms. In particular, the simulations

have shown how competitive oscillations and Spike-Time-Depen-

dent Plasticity may be critical to enabling the primate ventral

visual system to segment natural scenes composed of multiple

stimuli, thereby forming independent and translation-invariant

representations of each object in higher layers. As such, it indicates

the importance of using detailed spiking models (over simpler rate-

coded models) to more fully understand the learning processes

involved in biological visual object recognition.
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